• Sonuç bulunamadı

Harmonic analysis of steady-state visual evoked potentials in brain computer interfaces

N/A
N/A
Protected

Academic year: 2021

Share "Harmonic analysis of steady-state visual evoked potentials in brain computer interfaces"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Harmonic

analysis

of

steady-state

visual

evoked

potentials

in

brain

computer

interfaces

Volkan

etin

a,∗

,

Serhat

Ozekes

b

,

Hüseyin

Selc¸

uk

Varol

c

aDepartmentofComputerEngineering,ArelUniversity,34722Tepekent,Istanbul,Turkey bDepartmentofComputerEngineering,UskudarUniversity,34662,Uskudar,Istanbul,Turkey

cDepartmentofElectronicsandCommunicationEngineering,DogusUniversity,34722Kadıkoy,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22September2019

Receivedinrevisedform28February2020 Accepted30April2020

Availableonline15May2020 Keywords:

Brain-computerinterface

Steady-statevisualevokedpotentials Harmonicanalysis

Featureextraction

a

b

s

t

r

a

c

t

Thesignalsgeneratedintheoccipitallobeofthebrain,asaresultofvisualstimuliflickeringatacertain frequency,arecalledsteady-statevisualevokedpotentials(SSVEPs).SpectralpropertiesoftheSSVEPsare extractedtouseinclassificationstageinSSVEPbasedbrain-computerinterfaces.However,therehasbeen nopreviousstudyexaminingtheeffectsofSSVEPharmonicsonclassificationperformance.Thefrequency spectrumofanSSVEPconsistsofharmonicsatfrequenciesthatareintegermultiplesofthestimulussignal frequency.Inthisstudy,theeffectsofthefirstfourharmonicsofSSVEPsinclassificationperformance wereinvestigated.Totalandrelativebandpowervalues,extractedfromvariouscombinationsofthefirst fourharmonicsofSSVEPs,areusedasfeatures.Duetothequasi-sinusoidalnatureofSSVEPs,ithasbeen observedthattheclassificationmadebythefeaturesextractedfromthesecondharmonicgivesbetter resultsthantheclassificationmadebythefeaturesextractedfromthefirstharmonic.Inaddition,ifmore thanoneharmonicisusedinfeatureextraction,itwasobservedthatthebestclassificationperformance wasobtainedwiththepropertiesextractedfromthesetof1st,2ndand4thharmonics,inalmostall cases.Furthermoreastatisticalstudywasperformedbyapplyingvarianceanalysistotheobtaineddata toverifythesignificanceoftheresults.

©2020ElsevierLtd.Allrightsreserved.

1. Introduction

Brain-ComputerInterface(BCI)isdefinedastheinterfacethat usesbrainsignalstocontroladevice,ortoprovidecommunication betweenthedeviceandtheuser[1].Amorecomprehensive def-initionforBCIisthatthemediuminwhichtheelectricalactivity generatedbythebrainistransmittedtothenervesandmuscles arounditindependentlyofnormalexitpathways[2].BCIdesign canbenefitfromoneormoreelectrophysiologicalsourcesrecorded fromvariousregionsofthebrain.Asaresultofavisualstimulus, theelectricalsignalsseenintheoccipitalandparietallobesofthe brainarecalledvisualevokedpotentials.TheVEPobtainedfrom visualcortexinconsequenceofstimuliatfrequenciesbelow3.5 HziscalledtransientVEP[3,4],becausethestimuluscannot trig-gertogenerateacontinuoussinusoidal-likeresponseinthevisual cortex.Atstimulusfrequenciesbetween3.5Hzand75Hz,a quasi-sinusoidalwaveformisformedduetosuperimpositionoftheaction

∗ Correspondingauthor.

E-mailaddresses:volkancetin@arel.edu.tr(V.C¸etin),

serhat.ozekes@uskudar.edu.tr(S.Ozekes),hsvarol@dogus.edu.tr(H.S.Varol).

potentialsgeneratedinthevisualcortex[5].Duringthepresenceof thestimulus,thevisualcortexgeneratesaquasi-sinusoidalsignal. Therefore,theVEPobtainedinconsequenceofstimuliatfrequency of3.5Hzandaboveisdefinedasthesteady-stateVEP(SSVEP)[4]. InaSSVEP-basedBCIdesign,stimulimustbebetween3.5Hzand 75 Hzsothata classificationcanbepossibleusingthespectral propertiesofthesignals.

Lalor et al. showed that control of computer games can be accomplishedbybinaryclassificationofEEGreceivedfromO1and O2electrodesinaSSVEP-basedBCIsystem[6].Theyusedtwo stim-uliatfrequencies6Hzand25Hz,andextractedfeaturesfromthe powerspectraldensity(PSD)ofSSVEPforclassification.Kellyetal. madeabinaryclassificationofSSVEPsbyusingtwostimuliat fre-quencies10Hzand 12Hz [7]. TheyrecordedEEGfromO1and O2electrodes,andmadeaclassificationbasedonPSDofSSVEPs. Muller-PutzandPfurtschellershowedthatafour-taskclassification byaSSVEP-basedBCIispossibletocontrolabiaxialhand prosthe-sis[8].PruecklandGugerperformedafour-taskclassificationof SSVEPsusingfourstimuliatfrequencies10Hz,11Hz,12Hzand 13Hz[3].TheyusedfirstandsecondharmonicsofPSDofSSVEPs recordedfromO1,O2,Oz,PO3,PO4,PO7,PO8andPOzelectrodes. Binetal.madeacanonicalcorrelationanalysis(CCA)based classifi-https://doi.org/10.1016/j.bspc.2020.101999

(2)

cationinaSSVEP-basedBCI[9].TheyusedEEG,recordedfromnine electrodesintheoccipitalandtemporalregions.LuoandSullivan madeafour-taskclassificationbyaSSVEP-basedBCIusingonlythe PO2electrode[5].Theyusedfourstimuliatfrequencies9Hz,10 Hz,11Hzand12Hz,andmadeaclassificationbasedonPSDof SSVEPs.VolosyakI.developedanSSVEP-basedBCI,usingfive stim-uliatfrequenciesof6.67Hz,7.5Hz,8.57Hz,10Hzand12Hz,and madeaclassificationbasedonPSDofSSVEPs[10].Longetal. con-trolledabattery-poweredchairusingahybridBCIapproach.While usingsensorimotorEEGfordirectionanddecelerationofthechair, theyusedSSVEPsobtainedfromO1,O2andOzelectrodesfor accel-eration[11].Leeetal.controlledamobilerobotusingstimuliat frequencies13Hz,14Hzand15Hzthatarecorrespondingtothree differenttasks[12].Zhangetal.designedanSSVEP-basedBCIwith aCCA-basedclassification.Theyusedstimuliatfrequencies6Hz, 7Hz,8Hzand9Hz[13].TheydesignedtheirBCIusingthesignals recordedfromtheO1,O2,Oz,P7,P8,P3,P4andPzelectrodes.Chen etal.controlledaroboticarmbySSVEPs,usingthesignalsrecorded fromPz,PO5,PO3,POS,PO4,PO6,O1,Oz,O2electrodes[14].Park etal. used theextension of multivariatesynchronization index (EMSI)algorithmoverthreeharmonicsofthefrequencyspectrum ofSSVEPsintheirstudywhere theyusedstimuliatfrequencies 7.5Hz,8.57Hz,10Hzand12Hz[15].Choietal.investigatedthe classificationperformanceandeaseofuseofBCIsystemsina vir-tualrealityenvironment[16].TheyrecordedEEGfromCz,PO3,POz, PO4,O1,Oz,andO2electrodes,andusedEMSIalgorithmforfeature extraction.TherearemanySSVEP-basedBCIdesignsandstudiesin theliterature.Inthesestudies,PSD,CCAorEMSIbasedmethods wereappliedtothefrequencyspetrumofSSVEPs.However,there isnostudyinliterature,investigatinghowtheharmonicsofSSVEPs affecttheclassificationperformance.Inthisstudy,the classifica-tionperformedwiththefeatures extractedfromtheharmonics obtainedfromthefrequencyspectrumofSSVEPswerecompared. Thefeaturevectorsconsistofthetotalandrelativebandpower val-uesofthevariouscombinationsofthefirstfourharmonicsobtained fromthePSDoftheSSVEPs.Itisobservedthattheamplitudeof thesecondharmonicishigherthanthefirstharmonicinalmost allcases.Theamplitudesofthethirdandfourthharmonicswere observedtobelowasexpected,anddoesnothaveaneffectthat canimprovetheclassificationperformanceatanacceptablerate.

2. Materialsandmethods

EmotivEpocwasusedtorecordtheEEGinthisstudy.There are 16 electrodes onthe head-set,two of which are reference electrodes.Theactiveelectrodesintheneuro-headsetareinfixed positionsasAF3,F7,F3,FC5,T7,P7,O1,O2,P8,T8,FC6,F4,F8,AF4. P3andP4areusedasreferenceelectrodes.SSVEPsthatarerecorded fromtheoccipitalregionofthebrainwereusedasthe electroneu-rophysiologicalsourceoftheBCI.TheheadsethasonlyO1andO2 channelsontheoccipitallobes.Therefore,onlydatarecordedfrom thesechannelscouldbeused.PruecklandGugerhavetried30

dif-Table1

FrequencysetofstimuliusedtotriggerSSVEPsinHertz.

Stimuli 1stHarmonic 2ndHarmonic 3rdHarmonic 4thHarmonic

1st 4 8 12 16

2nd 4.6 9.2 13.8 18.4

3rd 5.3 10.6 15.9 21.2

ferentchannelcombinationsonfivedifferentsubjectsinorderto determinethechannelsfromwhich thebestSSVEPresponse is obtained.TheyappliedsurfaceLaplaciantransformationsasa mea-surementstrategy.TheirresultsshowthatO1,O2andOzarethe bestpossiblechannelcombinationfromwhichtheSSVEPresponse isobtained[3].ThissuggeststhattheO1andO2channelslocated onEpocaresufficientforaSSVEP-basedBCIapplication.

EEGrecordingswereobtainedfromsevendifferentsubjects.Six ofthemwerecompletelyinexperiencedwithBCIwhileone sub-jecthasahistoryofBCIexperience.Atotalof12minofEEGwere recordedforeachsubject.Aninterfacewiththreebuttonsflickering atdifferentfrequencieswasdesigned,andthesubjectswereasked tolookateachofthethreebuttonsforfourminutes.Thismeans 840datasamplesperclassfor2-stimewindows,and420data samplesperclassfor4-stimewindows.Thestimulusfrequencies, eachcorrespondingtoaseparatepseudo-task,aregiveninTable1. Afour-minuteEEGwasrecordedforeachstimulus,andsubjects wererestedforthreeminutesbetweenrecordings.

2.1. Stimulitypeandfrequency

AcomputerprogramwasdevelopedtotriggeraSSVEPinthe visualcortex.Therearethreebuttonsflickeringatthespecified fre-quenciestotriggeraSSVEPasshowninFig.1.Thedistancesofthe buttonstoeachotherandtotheedgesofthemonitorarealsogiven inFig.1.Thesedistancesaremeasuredona21.5monitorwitha resolutionof1920×1080pixels,whentheprogramisinfullscreen. Themonitor’sdistancetothesubjectsissettobeapproximately60 cmduringtherecordings.

ThereisanasymmetryinSSVEPsasshowninFig.2.A signifi-cantdifferenceisobservedbetweentheamplitudeoftheresponse obtainedatthetimeofswitchingfromtheoffpositiontotheon positionandtheamplitudeoftheresponseobtainedatthetimeof switchingfromtheonpositiontotheoffposition.Asymmetryin theluminanceofonandoffpositionsofthestimulusalsocreatesan asymmetryintheresponse.Therefore,theresponseincludesnot onlythefundamentalfrequencyofthestimulus,butalsohigher harmonics[4].Evenandoddharmonicsoffundamentalfrequency areobservedintheasymmetricSSVEPresponse.Ontheotherhand, symmetricSSVEPsonlycontainevenharmonics offundamental frequency[4]. Asymmetric SSVEPresponsecan beobtainedby usingoppositecheckerboardpatternsasstimuli.However,a uni-formsurfacewasusedasastimulus,takingintoaccountthatamore

(3)

Fig.2. (a)Stimulussignalasasquarewave,and(b)asymmetricresponseinthe visualcortex.

provocativestimulussuchasapatternwouldcausemorefatigue becauseoflong-standingSSVEPrecordings[5].

The three stimuli shown in Fig. 1 are applied with button controlschangingbackground coloratspecific frequencies.The adjustmentofthefrequenciesofthebuttonsisoneofthedifficulties encounteredintheuseofacomputerprogramwithaSSVEP-based BCI.Whendeterminingthefrequencyofastimulus,thetime reso-lutionoftheoperatingsystem,theprogramminglanguageandthe monitormustbeconsidered.

Monitor-basedtime resolutionconstraintscausemajor prob-lemsindesignofstimulusprogramsinBCIapplications.Onlythe partoftheSSVEPresponsebetween3.5Hzand30Hzismeasurable byamonitorwitha60Hzrefreshrate.Whenassessedintermsof bandwidth,itcanbeconcludedthatthemonitorisnotasignificant restrictionofadjustingthefrequencyofastimuli.However,dueto thetimeresolutionofthemonitor,onlystimuliatcertain frequen-ciescanbeobtainedinasmoothsquarewaveform.Forexample, frequencyofastimuluscannotbeexactly9Hzonamonitorwith arefreshrateof60Hz.Inorderforafrequencyofastimulusto beseenatapreciselysetvalue,thefrequencymustbedivisibleby 60.Inotherwords,thestimulusfrequenciesthatcanbeseenina regularsquarewaveformonamonitorwitharefreshfrequencyof 60Hzare1Hz,2Hz,3Hz,4Hz,5Hz,6Hz,6.67Hz,7.5Hz,8.57Hz, 15Hz,20Hz,and30Hz[17].Ontheotherhand,asaresultofthe spectralanalyzescarriedout,itisobservedthatstimulithatarenot inperfectsquarewaveform,suchas9Hzand11Hz,triggerSSVEPs whosefrequenciesareapproximately9Hzand11Hz.Forinstance, thefirstandsecondharmonicsofa20-slongSSVEPrecord, trig-geredbyastimuluswithafrequencyof4.6Hz,areobservedat4.56 Hzand9.16Hz,respectively,asseeninthefrequencyspectrum showninFig.3.

2.2. Signalpre-processinganddigitalfiltering

Theonlysignalpre-processinginthisstudyistoclearthe direct-current(DC)offsetvaluesthatvarybetween4−5mV.Atfirstglance itcanbeconsideredthattheDCoffsetvaluecanbeclearedwith a high-passfilter (HPF).It is necessary toattenuateby 100dB orhighertocleanthehighamplitude-lowfrequencynoises[18]. However,DCoffsetcannotberemovedbyapplyingaHPFwitha stopbandattenuationof100dBduetocertainlimitations encoun-teredinthedigitalfilterdesign.Averystrongattenuation,suchas

Fig.3. FrequencyspectrumofSSVEPthatcontainsfirstandsecondharmonicsat thefrequenciesof4.56Hzand9.16Hz.

Table2

CharacteristicsofHPFandLPFappliedinfilteringEEGsignals.

Filtercharacteristic HPF LPF Attenuation 37dB 60.5dB PassbandRipple 0.33dB 0.1dB TransitionWidth 4.6Hz 12Hz 6dBPoint 2.48Hz 38Hz 3dBPoint 3.22Hz 36.7Hz FilterLength 45 42

100dB,willcauseatimedelaywellabovetheacceptablevalues. Forthisreason,theDCoffsetisremovedbytakingthedifference betweenthesignalanditsarithmeticmean.Inelectrophysiology ButterworthIIR filters or FIRfilters areusually applied[18]. In thisstudy,FIRfilterdesign wasappliedinordertoavoid signal distortionsespeciallyduetononlinearphase.Table2showsthe characteristicsoftheHPFandlow-pass(LPF)filters.

2.3. Featureextractionandclassification

ThefeaturesusedinclassificationofEEGaregenerally classi-fiedintotimedomainandfrequencydomain.Timedomainfeatures usedinBCIstudiescanbewaveform-based,suchaspeakvalueof thesignalorblock-basedsuchasaverageoveraspecifiedtime win-dow[19].TherearealsoBCIstudiesinvolvingtemplatematching asfeatureextraction.Inthesestudies,thesimilarityoftheEEGwith apredefinedtemplatewasusedasafeature[19].BCIusersarebest atmodulatingthespectralcharacteristicsofthestimuli.Hence,the spectralfeaturesofEEGsignalsaremostlyusedinSSVEP-based BCIapplications[3,6,10,12,19–21].Inthisstudythefeaturevectors consistofthetotalandrelativebandpowervaluesofthevarious combinationsofharmonicsobtainedfromthefrequencyspectraof theSSVEPs.

Itisobservedthatthemostwidelyusedclassificationmethods inBCIdesignareartificialneuralnetworks(ANN),supportvector machines(SVM)andNaiveBayes(NB)[2,22].Inthisstudy,binary andternaryclassificationswereperformed.Three-layered percep-tronnetwork,trainedbyback-propagationalgorithm,wasusedin theclassificationofEEGsignals.Theinputandtheoutputlayers containneuronsasmanyasthenumberoffeaturesandnumberof classes,respectively.Numberofneuronsinhiddenlayerissetto bethemeanofthenumberofneuronsintheinputandtheoutput layers.Thelearningrateofthenetworkis0.3andthenumberof trainingiterationsis40.Gridsearchandcrossvalidationwereused forhyper-parameteroptimizationofANNandDVMalgorithms.A 10-foldcross-validationmodelwasusedtoevaluatethe classifica-tionresults.Eachfoldiscomposedofrandomsampleswithequal classdistribution.

(4)

Fig.4. BinaryClassificationAccuracyforseveralharmonicsetsfor2sTime-Windows.

3. Resultsanddiscussion

Thisstudyhasshownthatthemostprominentfeaturescanbe extractedfromthesecondharmonicoftheSSVEPresponse.Ithas alsobeenobservedthatthefirstandsecondharmonicstogether aremoreprominentthananyotherbinarysetofharmonics com-binations.Inaddition,1st,2ndand4thharmonic-basedfeatures providebetterclassificationperformancethan1st,2ndand3th harmonic-basedfeatures,albeitwithaslightdifference.The accu-racypercentages of binaryand ternaryclassifications using2-s windowlengthforallsubjectsaregiveninFigs.4and5, respec-tively.Whenboththebinaryandternaryclassificationresultsgiven inFigs.5and6areexamined,itisobservedthattheeffectofthefirst harmonicontheclassificationperformancealoneisinadequate.On theotherhand,intheclassificationswheresecond,thirdand/or fourthharmonicsareusedtogetherwiththefirstharmonic,the accuracyrateincreasesdrastically.

Wealsoperformedbinaryandternaryclassificationswith4-s windowlength.Indoingso,wewantedtoseetheeffects ofthe featuresextractedfromdifferentharmonicsetsonthe classifica-tionperformancemoresignificantlybycollectingpropertiesover alongerperiodoftime.Theaccuracypercentagesofbinaryand ternaryclassificationsusing4-swindowlengthforallsubjectsare giveninFigs.6and7,respectively.Intheclassificationsmadewith 4-swindowlength,parallelresultswereobtainedwiththosein2-s windowlength.

Whenexaminingtheaverageperformancesofclassifications basedononlyfirstandonlysecondharmonics,theresultsshow that the second harmonic-based features are more prominent than the first harmonic-based features. Therefore, the second harmonic-basedfeaturesshouldbepreferredifonlysingle har-monicissufficientforclassification.Asexpected,theclassifications basedonthefirsttwo harmonicstogetherisfarsuperiortothe classificationsbasedonthefirstandsecondharmonicsalone, inde-pendentofthesubject,varietyoftasks,andthewindowlength. It is also understood that in all cases in which the first and secondharmonicsareusedtogether,theclassificationsperform betterthanthecasesinwhichthefirsttwoharmonicsareused alone.

Itis clearthat inthe caseof usingthree harmonic frequen-ciestogether,thefirstandsecondharmonicsaremoreprominent. Normally,thirdharmonicisconsideredtobemorepowerfulthan thefourthharmonic.However,asaresultofthethisstudy,itwas observedthatthefourthharmonic-basedfeaturesaremore promi-nentthanthethirdharmonic-basedfeatures.Thisresultisbelieved

Table3

SummaryoftheSSVEPHarmonicAnalysis.

Harmonics Meanaccuracy

2-s 4-s

2-Class 3-Class 2-Class 3-Class

1 73,6 53,6 78,1 56,0 1,2 85,5 68,9 88,7 74,5 1,2,3 86,1 71,6 88,9 76,1 1,2,4 86,5 71,6 89,8 75,4 1,2,3,4 85,6 70,6 88,1 74,4 2 82,4 66,3 87,3 71,8

tocausedbecauseoftheasymmetricresponseofthevisualcortex totheflickeringstimulus.

Table3showsthemeanclassificationaccuraciesofallharmonic sets.InTable3,theresultsobtainedfromharmonicsetssuchas 2,3,4or3,4arenotincluded.Thereasonforthisisthatthe classi-ficationaccuracywiththefeaturesextractedfromtheseharmonic setsisverylow.Bestclassificationperformancesarehighlightedas boldcharacters.Itisseenthat1st,2ndand4thharmonics-based featuresarethebestpreferencesinclassificationofSSVEPsinterms ofclassificationaccuracy.

Analysisofvariance(ANOVA)isappliedtoverifywhetherthere isastatisticalsignificanceinclassificationaccuraciesofdifferent harmonic sets. When the accuracy percentages of binary clas-sification using 2-s window length were analyzed by one-way ANOVA,astatisticalsignificance betweenharmonicgroups was observed(F(5,36)=3.164,p=.018).Astatisticalsignificancewas alsoobservedbetweenharmonicsetsofternaryclassificationusing 2-swindowlength(F(5,36)=4.067,p=.005).Itisobservedthata statisticalsignificancebetweenharmonicsetsexistsafteranalyzing theaccuracypercentagesofbinaryclassificationusing4-swindow length,(F(5,36)=3.355,p=.014).Finally,asignificantdifference wasobservedbetweenharmonicsetsfortheaccuracypercentages ofternaryclassificationusing4-swindowlength(F(5,36)=7.117, p=.000).Theseone-wayANOVAresultsshowthestatistically sig-nificantdifferencesinmeanclassificationaccuracyvaluesbetween differentharmonicsets.

Tukeytestwasusedforconductingposthoctestsonone-way ANOVAtodeterminestatisticallysignificantdifferencesbetween harmonicsets.Tukeyposthoctestrevealedthatforbinary clas-sificationusing2-swindowlength,theaccuracyoffirstharmonic (73.6±10.5)wasstatisticallysignificantlylowerthanfirst-second harmonics(85.5±6.9,p=.049),first-second-thirdharmonics(86.1

(5)

Fig.5.TernaryClassificationAccuracyforseveralharmonicsetsfor2sTime-Windows.

Fig.6. BinaryClassificationAccuracyforseveralharmonicsetsfor4sTime-Windows.

Fig.7.TernaryClassificationAccuracyofSubjectsfor4sTime-Windows.

±6.0,p=.033),first-second-fourthharmonics(86.5±5.9,p=.027), andfirst-second-third-fourthharmonics(85.6±6.0,p=.047).For ternaryclassificationusing2-swindowlength,theaccuracyoffirst harmonic(53.6±12.5)wasstatisticallysignificantlylowerthan first-secondharmonics(68.9±8.3,p=.34),first-second-third

har-monics(71.6±8.4,p=.008),first-second-fourthharmonics(71.6 ±8.3,p=.009),andfirst-second-third-fourthharmonics(70.6± 7.7,p=.014).Forbinaryclassificationusing4-swindowlength,the accuracyoffirstharmonic(78.1±9.3)wasstatisticallysignificantly lowerthanfirst-secondharmonics(88.7±5.9,p=.33),

(6)

first-second-Inpreviousyears,firstandsecondharmonicsbasedfeaturesare usedforfeatureextractioninSSVEP-basedBCIstudies.However, therehasbeennopreviousstudyexaminingtheeffectsofSSVEP harmonicsonclassificationperformanceinBCIs.Tothebestofour knowledge,thisisthefirststudythatinvestigatedtheeffectsofthe frequencyharmonicsofSSVEPsinclassificationperformance. In thisstudy,theclassificationperformedwiththefeaturesextracted fromthedifferentsetsofharmonicsofSSVEPswereinvestigated. Thefeaturevectorsconsistofthetotal andrelativebandpower valuesoftheharmonics.Itisobservedthatclassification perfor-manceis betterwithsecond harmonic-based features thanthe classificationperformanceofthefirstharmonic-basedfeaturesin almostallcases.Theamplitudesofthethirdandfourth harmon-icswereobservedtobelowasexpected.However,ifthefourth harmonic-basedfeaturesareusedtogetherwiththe1stand2nd harmonics,itisseenthattheclassificationperformanceincreases slightly.

Authors’contribution

VolkanC¸etin: Data curation, Formal analysis, Investigation,

Software,Methodology,Writingoriginaldraft,Writingreview.

Ser-hatOzekes:Conceptualization,Investigation,Validation.Hüseyin

Selc¸ukVarol:Conceptualiztion,Supervision,Project

administra-tion.

DeclarationofCompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

References

[1]J.VanErp,F.Lotte,M.Tangermann,Brain-computerinterfaces:beyond medicalapplications,Computer45(4)(2012)26–34.

attentioncontrolinanindependentbrain-computerinterface,IEEETrans. Biomed.Eng.52(9)(2005)1588–1596.

[8]G.R.Muller-Putz,G.Pfurtscheller,Controlofanelectricalprosthesiswithan SSVEP-basedBCI,IEEETrans.Biomed.Eng.55(1)(2008)361–364.

[9]G.Bin,X.Gao,Z.Yan,B.Hong,S.Gao,Anonlinemulti-channelSSVEP-based brain-computerinterfaceusingacanonicalcorrelationanalysismethod,J. NeuralEng.6(4)(2009),046002.

[10]I.Volosyak,SSVEP-basedBremen-BCIinterface-boostinginformation transferrates,J.NeuralEng.8(3)(2011),036020.

[11]J.Long,Y.Li,H.Wang,T.Yu,J.Pan,F.Li,Ahybridbraincomputerinterfaceto controlthedirectionandspeedofasimulatedorrealwheelchair,IEEETrans. NeuralSyst.Rehabil.Eng.20(5)(2012)720–729.

[12]P.Lee,H.Chang,T.Hsieh,H.Deng,C.Sun,Abrainwaveactuatedsmallrobot carusingensembleempiricalmodedecomposition-basedapproach,IEEE Trans.Syst.ManCybern.PartASyst.Hum.42(5)(2012)1053–1064.

[13]Y.Zhang,G.Zhou,J.Jin,X.Wang,A.Cichocki,SSVEPrecognitionusing commonfeatureanalysisinbrain-computerinterface,J.Neurosci.Methods 244(2015)8–15.

[14]X.Chen,B.Zhao,Y.Wang,X.Gao,Combinationofhigh-frequency

SSVEP-basedBCIandcomputervisionforcontrollingaroboticarm,J.Neural Eng.16(2019),026012.

[15]S.Park,H.Cha,C.Im,Developmentofanonlinehomeappliancecontrol systemusingaugmentedrealityandanSSVEP-basedbrain–computer interface,IEEEAccess7(2019)163604–163614.

[16]K.Choi,S.Park,C.Im,Comparisonofvisualstimuliforsteady-statevisual evokedpotential-basedbrain-computerinterfacesinvirtualreality environmentintermsofclassificationaccuracyandvisualcomfort,Comput. Intell.Neurosci.2019(2019),9680697.

[17]F.T.Hvaring,A.H.Ulltveit-Moe,Acomparisonofvisualevokedpotential (VEP)-basedmethodsforthelow-costemotiveEPOCneuroheadset,in:Msc. Thesis,NorwegianUniversityofScienceandTechnology,Departmentof ComputerandInformationScience,Trondheim,Norway,2014.

[18]A.Widmann,E.Schröger,B.Maess,Digitalfilterdesignfor

electrophysiologicaldata-apracticalapproach,J.Neurosci.Methods250 (2014)34–46.

[19]J.R.Wolpaw,E.W.Wolpaw,Brain-ComputerInterfacesPrinciplesand Practice,OxfordUniversityPress,Inc.,NewYork,USA,2012.

[20]Y.Wang,R.Wang,X.Gao,B.Hong,S.Gao,ApracticalVEP-based

brain-computerinterface,IEEETrans.NeuralSyst.Rehabil.Eng.14(2)(2006) 234–239.

[21]H.Gollee,I.Volosyak,A.J.McLachlan,K.J.Hunt,A.Graser,AnSSVEP-Based brain-computerinterfaceforthecontroloffunctionalelectricalstimulation, IEEETrans.Biomed.Eng.57(8)(2010)1847–1855.

[22]A.Nijholt,D.Tan,Brain-computerinterfacingforintelligentsystems,IEEE Intell.Syst.23(3)(2008)72–79.

Şekil

Fig. 3. Frequency spectrum of SSVEP that contains first and second harmonics at the frequencies of 4.56 Hz and 9.16 Hz.
Fig. 4. Binary Classification Accuracy for several harmonic sets for 2 s Time-Windows.
Fig. 5. Ternary Classification Accuracy for several harmonic sets for 2 s Time-Windows.

Referanslar

Benzer Belgeler

Figure 4.8: Average error minus correct ErrP waveforms for P300 and motor imagery based BCI experiments for all three protocols.. Blue lines show the difference waveform for

Therefore, absence of detectable intracranial Doppler signal along with available ultrasound window in TCCS can confirm clinical diagnosis of brain death.. We herein discuss

The adsorbent in the glass tube is called the stationary phase, while the solution containing mixture of the compounds poured into the column for separation is called

The higher the learning rate (max. of 1.0) the faster the network is trained. However, the network has a better chance of being trained to a local minimum solution. A local minimum is

The plots of the solvent uptake, W, versus swelling time measured by gravimetrically for PAAm hydrogels, swollen in water are shown in Fig.. These are typical solvent uptake

American Foulbrood causative agent Paenibacillus larvae and European Foulbrood causative agent Melissococcus plutonius were not detected in any sample examined by PCR and

Mezeler de nefis hani, midye tavası puf gibi kabarmış, üzerine de tarator, yemek meraklılarının ta’biri veçhile, yeme de yanında yat, derken efendim,

Salih dede, yavru köpek için tahtadan küçük ama çok sağlam bir kulübe inşa etmişti. Yavru köpeğin kulübesi neredeyse Kemallerin evi kadar sağlam