• Sonuç bulunamadı

Study of J/psi -> omega p(p)over-bar at BESIII

N/A
N/A
Protected

Academic year: 2021

Share "Study of J/psi -> omega p(p)over-bar at BESIII"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

arXiv:1303.3108v3 [hep-ex] 13 Jun 2013

Study of

J/ψ → ωp ¯

p at BESIII

1 M. Ablikim1 , M. N. Achasov6 , O. Albayrak3 , D. J. Ambrose39 , F. F. An1 , Q. An40 , J. Z. Bai1 , R. Baldini Ferroli17A, 2 Y. Ban26 , J. Becker2 , J. V. Bennett16 , M. Bertani17A, J. M. Bian38 , E. Boger19,a, O. Bondarenko20 , I. Boyko19 , R. A. Briere3 , 3 V. Bytev19 , H. Cai44 , X. Cai1

, O. Cakir34A, A. Calcaterra17A, G. F. Cao1

, S. A. Cetin34B, J. F. Chang1 , G. Chelkov19,a, 4 G. Chen1 , H. S. Chen1 , J. C. Chen1 , M. L. Chen1 , S. J. Chen24 , X. Chen26 , Y. Chen1 , Y. B. Chen1 , H. P. Cheng14 , 5 Y. P. Chu1 , D. Cronin-Hennessy38 , H. L. Dai1 , J. P. Dai1 , D. Dedovich19 , Z. Y. Deng1 , A. Denig18 , I. Denysenko19,b, 6

M. Destefanis43A,43C, W. M. Ding28

, Y. Ding22 , L. Y. Dong1 , M. Y. Dong1 , S. X. Du46 , J. Fang1 , S. S. Fang1 , L. Fava43B,43C, 7 C. Q. Feng40 , P. Friedel2 , C. D. Fu1 , J. L. Fu24 , O. Fuks19,a, Y. Gao33 , C. Geng40 , K. Goetzen7 , W. X. Gong1 , W. Gradl18 , 8 M. Greco43A,43C, M. H. Gu1 , Y. T. Gu9 , Y. H. Guan36 , A. Q. Guo25 , L. B. Guo23 , T. Guo23 , Y. P. Guo25 , Y. L. Han1 , 9 F. A. Harris37 , K. L. He1 , M. He1 , Z. Y. He25 , T. Held2 , Y. K. Heng1 , Z. L. Hou1 , C. Hu23 , H. M. Hu1 , J. F. Hu35 , T. Hu1 , 10 G. M. Huang4 , G. S. Huang40 , J. S. Huang12 , L. Huang1 , X. T. Huang28 , Y. Huang24 , Y. P. Huang1 , T. Hussain42 , C. S. Ji40 , 11 Q. Ji1 , Q. P. Ji25 , X. B. Ji1 , X. L. Ji1 , L. L. Jiang1 , X. S. Jiang1 , J. B. Jiao28 , Z. Jiao14 , D. P. Jin1 , S. Jin1 , F. F. Jing33 , 12 N. Kalantar-Nayestanaki20 , M. Kavatsyuk20 , B. Kopf2 , M. Kornicer37 , W. Kuehn35 , W. Lai1 , J. S. Lange35 , P. Larin11 , 13 M. Leyhe2 , C. H. Li1 , Cheng Li40 , Cui Li40 , D. M. Li46 , F. Li1 , G. Li1 , H. B. Li1 , J. C. Li1 , K. Li10 , Lei Li1 , Q. J. Li1 , 14 S. L. Li1 , W. D. Li1 , W. G. Li1 , X. L. Li28 , X. N. Li1 , X. Q. Li25 , X. R. Li27 , Z. B. Li32 , H. Liang40 , Y. F. Liang30 , 15 Y. T. Liang35 , G. R. Liao33 , X. T. Liao1 , D. Lin11 , B. J. Liu1 , C. L. Liu3 , C. X. Liu1 , F. H. Liu29 , Fang Liu1 , Feng Liu4 , 16 H. Liu1 , H. B. Liu9 , H. H. Liu13 , H. M. Liu1 , H. W. Liu1 , J. P. Liu44 , K. Liu33 , K. Y. Liu22 , Kai Liu36 , P. L. Liu28 , Q. Liu36 , 17 S. B. Liu40 , X. Liu21 , Y. B. Liu25 , Z. A. Liu1 , Zhiqiang Liu1 , Zhiqing Liu1 , H. Loehner20 , G. R. Lu12 , H. J. Lu14 , J. G. Lu1 , 18 Q. W. Lu29 , X. R. Lu36 , Y. P. Lu1 , C. L. Luo23 , M. X. Luo45 , T. Luo37 , X. L. Luo1 , M. Lv1 , C. L. Ma36 , F. C. Ma22 , 19 H. L. Ma1 , Q. M. Ma1 , S. Ma1 , T. Ma1 , X. Y. Ma1 , F. E. Maas11

, M. Maggiora43A,43C, Q. A. Malik42

, Y. J. Mao26 , 20 Z. P. Mao1 , J. G. Messchendorp20 , J. Min1 , T. J. Min1 , R. E. Mitchell16 , X. H. Mo1 , H. Moeini20 , C. Morales Morales11 , 21 K. Moriya16 , N. Yu. Muchnoi6 , H. Muramatsu39 , Y. Nefedov19 , C. Nicholson36 , I. B. Nikolaev6 , Z. Ning1 , S. L. Olsen27 , 22 Q. Ouyang1 , S. Pacetti17B, J. W. Park27 , M. Pelizaeus2 , H. P. Peng40 , K. Peters7 , J. L. Ping23 , R. G. Ping1 , R. Poling38 , 23 E. Prencipe18 , M. Qi24 , S. Qian1 , C. F. Qiao36 , L. Q. Qin28 , X. S. Qin1 , Y. Qin26 , Z. H. Qin1 , J. F. Qiu1 , K. H. Rashid42 , 24 G. Rong1 , X. D. Ruan9 , A. Sarantsev19,c, B. D. Schaefer16 , M. Shao40 , C. P. Shen37,d, X. Y. Shen1 , H. Y. Sheng1 , 25 M. R. Shepherd16 , W. M. Song1 , X. Y. Song1

, S. Spataro43A,43C, B. Spruck35

, D. H. Sun1 , G. X. Sun1 , J. F. Sun12 , S. S. Sun1 , 26 Y. J. Sun40 , Y. Z. Sun1 , Z. J. Sun1 , Z. T. Sun40 , C. J. Tang30 , X. Tang1 , I. Tapan34C, E. H. Thorndike39 , D. Toth38 , 27 M. Ullrich35 , I. Uman34B, G. S. Varner37 , B. Q. Wang26 , D. Wang26 , D. Y. Wang26 , K. Wang1 , L. L. Wang1 , L. S. Wang1 , 28 M. Wang28 , P. Wang1 , P. L. Wang1 , Q. J. Wang1 , S. G. Wang26 , X. F. Wang33 , X. L. Wang40 , Y. D. Wang17A, Y. F. Wang1 , 29 Y. Q. Wang18 , Z. Wang1 , Z. G. Wang1 , Z. Y. Wang1 , D. H. Wei8 , J. B. Wei26 , P. Weidenkaff18 , Q. G. Wen40 , S. P. Wen1 , 30 M. Werner35 , U. Wiedner2 , L. H. Wu1 , N. Wu1 , S. X. Wu40 , W. Wu25 , Z. Wu1 , L. G. Xia33 , Y. X Xia15 , Z. J. Xiao23 , 31 Y. G. Xie1 , Q. L. Xiu1 , G. F. Xu1 , G. M. Xu26 , Q. J. Xu10 , Q. N. Xu36 , X. P. Xu31 , Z. R. Xu40 , F. Xue4 , Z. Xue1 , L. Yan40 , 32 W. B. Yan40 , Y. H. Yan15 , H. X. Yang1 , Y. Yang4 , Y. X. Yang8 , H. Ye1 , M. Ye1 , M. H. Ye5 , B. X. Yu1 , C. X. Yu25 , 33 H. W. Yu26 , J. S. Yu21 , S. P. Yu28 , C. Z. Yuan1 , Y. Yuan1 , A. A. Zafar42 , A. Zallo17A, S. L. Zang24 , Y. Zeng15 , B. X. Zhang1 , 34 B. Y. Zhang1 , C. Zhang24 , C. C. Zhang1 , D. H. Zhang1 , H. H. Zhang32 , H. Y. Zhang1 , J. Q. Zhang1 , J. W. Zhang1 , 35 J. Y. Zhang1 , J. Z. Zhang1 , LiLi Zhang15 , R. Zhang36 , S. H. Zhang1 , X. J. Zhang1 , X. Y. Zhang28 , Y. Zhang1 , Y. H. Zhang1 , 36 Z. P. Zhang40 , Z. Y. Zhang44 , Zhenghao Zhang4 , G. Zhao1 , H. S. Zhao1 , J. W. Zhao1 , K. X. Zhao23 , Lei Zhao40 , Ling Zhao1 , 37 M. G. Zhao25 , Q. Zhao1 , S. J. Zhao46 , T. C. Zhao1 , X. H. Zhao24 , Y. B. Zhao1 , Z. G. Zhao40 , A. Zhemchugov19,a, B. Zheng41 , 38 J. P. Zheng1 , Y. H. Zheng36 , B. Zhong23 , L. Zhou1 , X. Zhou44 , X. K. Zhou36 , X. R. Zhou40 , C. Zhu1 , K. Zhu1 , K. J. Zhu1 , 39 S. H. Zhu1 , X. L. Zhu33 , Y. C. Zhu40 , Y. M. Zhu25 , Y. S. Zhu1 , Z. A. Zhu1 , J. Zhuang1 , B. S. Zou1 , J. H. Zou1 40 (BESIII Collaboration) 41 1

Institute of High Energy Physics, Beijing 100049, People’s Republic of China

42

2

Bochum Ruhr-University, D-44780 Bochum, Germany

43

3

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

44

4

Central China Normal University, Wuhan 430079, People’s Republic of China

45

5

China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China

46

6

G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

47

7

GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

48

8

Guangxi Normal University, Guilin 541004, People’s Republic of China

49

9

GuangXi University, Nanning 530004, People’s Republic of China

50

10

Hangzhou Normal University, Hangzhou 310036, People’s Republic of China

51

11

Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

52

12

Henan Normal University, Xinxiang 453007, People’s Republic of China

53

13

Henan University of Science and Technology, Luoyang 471003, People’s Republic of China

54

14

Huangshan College, Huangshan 245000, People’s Republic of China

55

15

Hunan University, Changsha 410082, People’s Republic of China

56

16

Indiana University, Bloomington, Indiana 47405, USA

57

17

(A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati,

58

Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy

59

18

Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

60

19

Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

(2)

20

KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands

62

21

Lanzhou University, Lanzhou 730000, People’s Republic of China

63

22

Liaoning University, Shenyang 110036, People’s Republic of China

64

23

Nanjing Normal University, Nanjing 210023, People’s Republic of China

65

24

Nanjing University, Nanjing 210093, People’s Republic of China

66

25

Nankai University, Tianjin 300071, People’s Republic of China

67

26

Peking University, Beijing 100871, People’s Republic of China

68

27

Seoul National University, Seoul, 151-747 Korea

69

28

Shandong University, Jinan 250100, People’s Republic of China

70

29

Shanxi University, Taiyuan 030006, People’s Republic of China

71

30

Sichuan University, Chengdu 610064, People’s Republic of China

72

31

Soochow University, Suzhou 215006, People’s Republic of China

73

32

Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

74

33

Tsinghua University, Beijing 100084, People’s Republic of China

75

34

(A)Ankara University, Dogol Caddesi, 06100 Tandogan, Ankara, Turkey; (B)Dogus

76

University, 34722 Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey

77

35

Universitaet Giessen, D-35392 Giessen, Germany

78

36

University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

79

37

University of Hawaii, Honolulu, Hawaii 96822, USA

80

38

University of Minnesota, Minneapolis, Minnesota 55455, USA

81

39

University of Rochester, Rochester, New York 14627, USA

82

40

University of Science and Technology of China, Hefei 230026, People’s Republic of China

83

41

University of South China, Hengyang 421001, People’s Republic of China

84

42

University of the Punjab, Lahore-54590, Pakistan

85

43

(A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern

86

Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy

87

44

Wuhan University, Wuhan 430072, People’s Republic of China

88

45

Zhejiang University, Hangzhou 310027, People’s Republic of China

89

46

Zhengzhou University, Zhengzhou 450001, People’s Republic of China

90

a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

91

b On leave from the Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine

92

c Also at the PNPI, Gatchina 188300, Russia

93

d Present address: Nagoya University, Nagoya 464-8601, Japan

94

(Dated: June 15, 2013)

95

The decay J/ψ → ωp¯p has been studied, using 225.3 × 106

J/ψ events accumulated at BESIII. No significant enhancement near the p¯p invariant-mass threshold (denoted as X(p¯p)) is observed. The upper limit of the branching fraction B(J/ψ → ωX(p¯p) → ωp¯p) is determined to be 3.9 × 10−6

at the 95% confidence level. The branching fraction of J/ψ → ωp¯p is measured to be B(J/ψ →

ωp¯p) = (9.0 ± 0.2 (stat.) ± 0.9 (syst.)) × 10−4.

PACS numbers: 13.25.Gv, 12.39.Mk, 13.75.Cs

96

I. INTRODUCTION

97

An anomalous enhancement near the threshold of the

98

p¯p system, namely X(p¯p), was first observed by the

BE-99

SII experiment in the radiative decay J/ψ → γp¯p [1],

100

and it was recently confirmed by the CLEO and BESIII

101

experiments [2–4]. In the BESII experiment, its mass is

102 measured to be 1859+3−10 (stat.) +5 −25 (syst.) MeV/c 2 and 103

the total width is Γ < 30 MeV/c2 at the 90%

confi-104

dence level (C.L.). While in the BESIII experiment, a

105

partial wave analysis (PWA) with a correction for the

106

final-state interaction (FSI) is performed, and the

spin-107

parity of X(p¯p) is determined to be 0−+, its mass is

108

1832+19−5 (stat.) +18

−17 (syst.) MeV/c

2 and the total width

109

is Γ < 76 MeV/c2 at the 90% C.L. [3].

110

The discovery of X(p¯p) stimulated a number of

the-111

oretical interpretations and experimental studies [5–16].

112

There is no experimental evidence of such an

enhance-113

ment in other quarkonium decays, e.g. J/ψ → π0p [1]

114

or Υ(2S) → γp¯p [5]. In ψ(2S) → γp¯p, the recent BESIII

115

measurement shows a relative production rate to that of

116

J/ψ decays of R = 5.08% [3]. A number of theoretical

117

speculations have been proposed to interpret the nature

118

of this structure, including baryonium [9–11], a

multi-119

quark state [12] or mainly a pure FSI [13, 14]. It was

120

proposed to associate this enhancement with a broad

en-121

hancement observed in B meson decays [17, 18] or a new

122 resonance X(1835) in J/ψ → γπ+π− η′ decay at BE-123 SII [19]. 124

The investigation of the near-threshold p¯p invariant

125

mass spectrum in other J/ψ decay modes will be helpful

126

in understanding the nature of the observed structure.

127

The decay J/ψ → ωp¯p restricts the isospin of the p¯p

128

system, and it is helpful to clarify the role of the p¯p

129

FSI. The BESII collaboration studied J/ψ → ωp¯p via ω

130

decaying to π0π+π

with a data sample of 5.8 × 107J/ψ

(3)

events [6]. No significant signal near the threshold of the

132

p¯p invariant-mass spectrum was observed and an upper

133

limit on the branching fraction of J/ψ → ωX(p¯p) → ωp¯p

134

was determined to be 1.5 × 10−5at the 90% C.L., which

135

disfavored the interpretation of a pure FSI effect giving

136

rise to the X(p¯p). In this paper, the analysis of J/ψ →

137

ωp¯p via the decay channel ω → γπ0 is presented, based

138

on a data sample of (225.3 ± 2.8) × 106 J/ψ events [20]

139

accumulated with the BESIII detector. Searching for the

140

X(p¯p) in the decay mode J/ψ → ωp¯p → γπ0p has a

141

particular advantage: a low irreducible background from

142

N∗

is expected. The channel J/ψ → ωp¯p → πππ0p has

143

irreducible background from various N∗

decays and ∆

144

decays, where interferences may have a large impact on

145

the uncertainty of the measurements.

146

BESIII/BEPCII [21] is a major upgrade of the BESII

147

experiment at the BEPC accelerator [22] for studies of

148

hadron spectroscopy and τ -charm physics [23]. The

de-149

sign peak luminosity of the double-ring e+e

collider,

150

BEPCII, is 1033cm−2s−1at beam currents of 0.93 A. The 151

BESIII detector with a geometrical acceptance of 93%

152

of 4π, consists of the following main components: 1) a

153

small-celled, helium-based main drift chamber (MDC)

154

with 43 layers. The average single wire resolution is

155

135 µm, and the momentum resolution for 1 GeV/c2

156

charged particles in a 1 T magnetic field is 0.5%; 2)

157

an electromagnetic calorimeter (EMC) made of 6240

158

CsI (Tl) crystals arranged in a cylindrical shape (barrel)

159

plus two end-caps. For 1.0 GeV photons, the energy

res-160

olution is 2.5% in the barrel and 5% in the end-caps, and

161

the position resolution is 6 mm in the barrel and 9 mm in

162

the end-caps; 3) a Time-Of-Flight system (TOF) for

par-163

ticle identification (PID) composed of a barrel part made

164

of two layers with 88 pieces of 5 cm thick, 2.4 m long

plas-165

tic scintillators in each layer, and two end-caps with 48

166

fan-shaped, 5 cm thick, plastic scintillators in each

end-167

cap. The time resolution is 80 ps in the barrel, and 110

168

ps in the end-caps, corresponding to a K/π separation

169

by more than 2σ for momenta below about 1 GeV/c2;

170

4) a muon chamber system (MUC) made of 1000 m2 of

171

Resistive Plate Chambers (RPC) arranged in 9 layers in

172

the barrel and 8 layers in the end-caps and incorporated

173

in the return iron yoke of the superconducting magnet.

174

The position resolution is about 2 cm.

175

The optimization of the event selection and the

es-176

timate of physics backgrounds are performed through

177

Monte Carlo (MC) simulations. The GEANT4-based

178

simulation software BOOST [24] includes the geometric

179

and material description of the BESIII detectors and the

180

detector response and digitization models, as well as the

181

tracking of the detector running conditions and

perfor-182

mance. The production of the J/ψ resonance is

simu-183

lated by the MC event generator KKMC [25], while the

184

decays are generated by EVTGEN [26] for known

de-185

cay modes with branching ratios being set to PDG [27]

186

world average values, and by LUNDCHARM [28] for the

187

remaining unknown decays. The analysis is performed in

188

the framework of the BESIII offline software system [29]

189

which takes care of the detector calibration, event

recon-190

struction and data storage.

191

II. EVENT SELECTION

192

Signal J/ψ → ωp¯p events with ω → γπ0 final states

193

have the topology γγγp¯p. The event candidates are

re-194

quired to have two well reconstructed charged tracks with

195

net charge zero, and at least three photons.

196

Charged-particle tracks in the polar angle range

197

| cos θ| < 0.93 are reconstructed from the MDC hits, only

198

tracks in barrel region (| cos θ| < 0.8) are used to reduce

199

systematic uncertainties in tracking and particle

identi-200

fication. Tracks with their points of closest approach to

201

the beamline within ±10 cm of the interaction point in

202

the beam direction, and within 1 cm in the plane

perpen-203

dicular to the beam are selected. TOF and dE/dx

infor-204

mation are combined to determine particle identification

205

confidence levels for π, K and p(¯p) hypotheses; and the

206

particle type with highest confidence level is assigned to

207

each track. A proton and an anti-proton are required.

208

To reduce the systematic error due to differences of the

209

tracking efficiency at low momentum between data and

210

MC, the momentum of the proton or anti-proton is

fur-211

ther required to be larger than 300 MeV/c.

212

Photon candidates are reconstructed by clustering

sig-213

nals in EMC crystals. The photon candidates are

re-214

quired to be in the barrel region (| cos θ| < 0.8) of the

215

EMC with at least 25 MeV energy deposition, or in the

216

end-caps region (0.86 < | cos θ| < 0.92) with at least

217

50 MeV energy deposition, where θ is the polar angle of

218

the shower. Timing information from the EMC is used to

219

suppress electronic noise and energy depositions that are

220

unrelated to the event. To suppress showers generated by

221

charged particles, the photon candidates are furthermore

222

required to be separated by an angle larger than 10◦

and

223

larger than 30◦

from the proton and anti-proton,

respec-224

tively.

225

A four-constraint (4C) energy-momentum conserving

226

kinematic fit is performed to the γγγp¯p hypothesis. For

227

events with more than three photon candidates, the

com-228

bination with the minimum χ2

4Cis selected, and χ24C< 30 229

is required. The π0candidates are reconstructed from the

230

two of the three selected photons with an invariant mass

231

closest to the π0 mass, and |M

γγ− Mπ0| < 15 MeV/c2is 232

required.

233

III. BRANCHING FRACTION AND YIELD

234

MEASUREMENTS

235

236

Figure 1 shows the γπ0 invariant mass spectrum for

237

candidate J/ψ → γπ0p events, where a distinctive ω

238

signal is seen. An unbinned maximum likelihood fit is

239

performed to the γπ0 invariant mass with the ω signal

(4)

) 2 ) (GeV/c 0 π γ M( 0.7 0.75 0.8 0.85 0.9 ) 2 Events/ (0.003 GeV/c 0 50 100 150 200 250 300 350 400 450 ) 2 ) (GeV/c 0 π γ M( 0.7 0.75 0.8 0.85 0.9 ) 2 Events/ (0.003 GeV/c 0 50 100 150 200 250 300 350 400 450 FIG. 1. γπ0

invariant mass distribution of J/ψ → γπ0

p¯p

candidates. The dashed line is the signal shape which is

parametrized by a Breit-Wigner function convoluted with the detector resolution described by the Novosibirsk func-tion; the dashed-dotted line is the background shape which is described by a second order Chebychev polynomial; and the solid line is the total contribution of the two compo-nents. The solid arrows indicate the ω signal region (0.753 < M (γπ0

) < 0.813 GeV/c2

) and the two pairs of dashed arrows indicate the ω sidebands (0.663 < M (γπ0

) < 0.693 GeV/c2 and 0.873 < M (γπ0

) < 0.903 GeV/c2 ).

parametrized by a Breit-Wigner function convoluted with

241

the Novosibirsk function [30] which describes the

detec-242

tor resolution. The background shape is described by a

243

second-order Chebychev polynomial function. The mass

244

and width of the ω peak are fixed to the values published

245

by the Particle Data Group (PDG) [27], and the yield of

246

the ω signal obtained from the fit is Nobs= 2670 ± 69.

247

The branching fraction of J/ψ → ωp¯p is calculated

248 according to : 249 B(J/ψ → ωp¯p) = Nobs NJ/ψ× B(ω → γπ0) × B(π0→ γγ) × εrec . (1)

where Nobs is the number of signal events determined

250

from the fit to the γπ0invariant mass; N

J/ψ is the

num-251

ber of J/ψ events [20]; B(ω → γπ0) and B(π0 → γγ)

252

are branching fractions of ω → γπ0 and π0 → γγ,

re-253

spectively, as from the PDG [27]; and the detection

effi-254

ciency εrec is (16.1 ± 1.7)% obtained from a MC sample

255

for J/ψ → ωp¯p events generated according to a

phase-256

space distribution. The measured branching fraction is

257

B(J/ψ → ωp¯p) = (9.0 ± 0.2 (stat.)) × 10−4.

258

Candidate J/ψ → ωp¯p events are selected with the

259

mass window requirement 0.753 GeV/c2 < M (γπ0) <

260

0.813 GeV/c2, and the Dalitz plot of these events is shown

261

in Fig. 2. There are no obvious structures in the Dalitz

262

plot, though the distribution is different from the pure

263

ωp¯p phase space distribution. The corresponding p¯p,

264

ωp and ω ¯p invariant-mass spectra are also presented in

265

Fig. 2. The data points with error bars are from signal

266

region and the hatched area are from the sideband region.

267

the mass threshold is shown in Fig. 3.

268

To obtain the number of J/ψ → ωX(p¯p) → ωp¯p

269

events, an unbinned maximum likelihood fit is performed

270

to the p¯p invariant mass around the mass threshold. In

271

the fit, the spin-parity of X(p¯p) is assumed to be 0−

,

272

and the signal of X(p¯p) in the J/ψ → ωX(p¯p) → ωp¯p

273

decay is parametrized by an acceptance-weighted S-wave

274 Breit-Wigner function : 275 BW (M ) ≃ q 2L+1k3 (M2− M2 0)2+ M02Γ2 × εrec(M ) . (2)

Here, q is the momentum of the proton in the p¯p rest

276

frame; k is the the momentum of the ω meson; L = 0

277

is the relative orbital angular momentum; M is the

in-278

variant mass of p¯p; M0 and Γ are the mass and width

279

of the X(p¯p), respectively, which are taken from

BESI-280

II results [3]; εrec is the detection efficiency. The

non-281

ω background is presented by a function of the form

282

f (δ) = N (δ1/2+ a

1δ3/2+ a2δ5/2) with δ = Mp ¯p− 2mp 283

where mp is the proton mass. The normalization and

284

shape parameters a1and a2are determined by a

simulta-285

neous fit to the M (p¯p) in ω signal region and ω sideband

286

region 0.09 GeV/c2 < |M (γπ0) − 0.783| < 0.12 GeV/c2. 287

The non-resonant J/ψ → ωp¯p events are also described

288

by the function f (δ), where the normalization and shape

289

parameters are allowed to float. The fit results are shown

290

in Fig. 3, and the number of X(p¯p) events is 0 ± 1.6.

291

A Bayesian approach [27] estimate the upper limit of

292

B(J/ψ → ωX(p¯p) → ωp¯p), and Nobs < 9 at 95% C.

293

L. is determined by finding the value NUP

obs with 294 RNUP obs 0 LdNobs R∞ 0 LdNobs = 0.95, (3)

where Nobs is the number of signal events, and L is the

295

value of the likelihood function with the Nobsvalue fixed

296

in the fit. The upper limit on the product of branching

297

fractions is calculated with

298 B(J/ψ → ωX(p¯p) → ωp¯p) < N UL obs NJ/ψ× (1 − σsys.) × B(ω → γπ0) × B(π0→ γγ) × εrec , (4)

(5)

) 4 /c 2 ) (GeV p ω ( 2 M 3 3.5 4 4.5 ) 4 /c 2 p) (GeV ω ( 2 M 3 3.5 4 4.5 ) 2 ) (GeV/c p M(p 1.9 2 2.1 2.2 2.3 ) 2 Events / (0.01 GeV/c 0 50 100 150 ) 2 p) (GeV/c ω M( 1.7 1.8 1.9 2 2.1 ) 2 Events / (0.01 GeV/c 0 50 100 150 ) 2 ) (GeV/c p ω M( 1.7 1.8 1.9 2 2.1 ) 2 Events / (0.01 GeV/c 0 50 100 150

FIG. 2. Dalitz plot and p¯p, ωp, ω ¯p invariant-mass spectra of J/ψ → ωp¯p candidates. The data points with error bars are from signal region and the hatched areas are from the sideband region.

where σsys.is the total systematic uncertainty which will

299

be described in the next section. The upper limit on the

300

product of branching fractions is B(J/ψ → ωX(p¯p) →

301

ωp¯p) < 3.9 × 10−6 at the 95% C.L.. 302

An alternative fit with a Breit-Wigner function

includ-303

ing the J¨ulich FSI

304 BW (M ) ≃ fFSI× q 2L+1k3 (M2− M2 0)2+ M02Γ2 × εrec(M ), (5)

for X(p¯p) is performed. Here, fFSI is the J¨ulich FSI cor-305

rection factor [14]. The mass and width of X(p¯p) are

306

taken from the previous BESIII PWA results [3]. The

307

upper limit on the product of branching fractions is

de-308

termined to be B(J/ψ → ωX(p¯p) → ωp¯p) < 3.7 × 10−6

309

at the 95% C.L..

310

IV. SYSTEMATIC UNCERTAINTIES

311

Several sources of systematic uncertainties are

con-312

sidered in the measurement of the branching fractions.

313

These include differences between data and the MC

sim-314

ulation for the tracking algorithm, the PID, photon

de-315

tection, the kinematic fit, as well as the fitting procedure,

316

the branching fraction of the intermediate states and the

317

total number of J/ψ events.

318

The systematic uncertainties associated with the

track-319

ing efficiency and PID efficiency have been studied with

320

J/ψ → p¯pπ+π

using a technique similar to that

dis-321

cussed in Ref. [31]. The difference of tracking efficiencies

322

between data and MC simulation is 2% per charged track.

323

The systematic uncertainty from PID is 2% per proton

324

(anti-proton).

325

The photon detection systematic uncertainty is studied

326

by comparing the photon efficiency between MC

simula-327

tion and the control sample J/ψ → ρπ. The relative

328

efficiency difference is about 1% for each photon [32, 33].

(6)

) 2 (GeV/c p )-2m p M(p 0 0.05 0.1 0.15 0.2 ) 2 Events/ (0.01 GeV/c 0 10 20 30 40 50 60 70 80 total fit data ψ J/ )) p X(p ω → ψ (J/ obs UP 5xN non-resonant contribution sideband fit ω sideband data ω

FIG. 3. Near-threshold p¯p invariant-mass spectrum. The

sig-nal J/ψ → ωX(p¯p) → ωp¯p is described by an

acceptance-weighted Breit-Wigner function, and and signal yield is con-sistent with zero. The dotted line is the shape of the signal which is normalized to five times the estimated upper limit. The dashed line is the non-resonant contribution described by the function f (δ) and the dashed-dotted line is the non ωp¯p contribution which is estimated from ω sidebands. The sol-id line is the total contribution of the two components. The hatched area is from the sideband region.

Here, 3% is taken as the systematic error for the

efficien-330

cy of detecting three photons. The uncertainty due to π0

331

reconstruction efficiency is taken as 1% [32, 33].

332

To estimate the uncertainty associated with the

kine-333

matic fit, selected samples of J/ψ → Σ+Σ¯−

→ pπ0¯ 0 334

events are used. The kinematic fit efficiency is defined as

335

the ratio between the signal yield of Σ+ with or without

336

the kinematic fit. The difference of kinematic fit

effi-337

ciency between data and MC is 3%, and is taken as the

338

systematic uncertainty caused by the kinematic fit.

339

As described above, the yield of J/ψ → ωp¯p is

de-340

rived from a fit to the invariant-mass spectrum of γπ0

341

pairs. To evaluate the systematic uncertainty

associ-342

ated with the fitting procedure, the following two

as-343

pects are studied (i) Fitting region: In the nominal fit,

344

the mass spectrum of γπ0 is fitted in the range from

345

0.663 GeV/c2 to 0.903 GeV/c2. Alternative fits within

346

ranges 0.653 GeV/c2 to 0.913 GeV/c2 and 0.673 GeV/c2

347

to 0.893 GeV/c2 are performed, and the difference in

348

the signal yield of 2% is taken as the systematic

un-349

certainty associated with the fit interval. (ii)

Back-350

ground shape: To estimate the uncertainty due to the

351

background parametrization for the branching fraction

352

B(J/ψ → ωp¯p), a first or third order instead of a

second-353

order Chebychev polynomial is used in the fitting. The

354

difference of 1.2% is used as an estimate of the systematic

355

uncertainty.

356

For the upper limit on the branching fraction B(J/ψ →

357

ωX(p¯p) → ωp¯p), the systematic uncertainty

associat-358

ed with the fitting procedure is estimated by fixing

359

the shape of the non-resonant contribution to a phase

360

space MC simulation of J/ψ → ωp¯p, which is

pre-361 ) 2 (GeV/c p )-2m p M(p 0 0.05 0.1 0.15 0.2 ) 2 Events/ (0.01 GeV/c 0 10 20 30 40 50 60 70 80 90 total fit data ψ J/ )) p X(p ω → ψ (J/ obs UP 5xN non-resonant contribution sideband fit ω phsp mc p p ω → ψ J/

FIG. 4. Near-threshold p¯p invariant-mass spectrum. The

sig-nal J/ψ → ωX(p¯p) → ωp¯p is described by an

acceptance-weighted Breit-Wigner function, and and signal yield is con-sistent with zero. The dashed line is the non-resonant

contri-bution fixed to a phase space MC simulation of J/ψ → ωp¯p

and the dashed-dotted line is the non ωp¯p contribution which is estimated from ω sidebands. The solid line is the total con-tribution of the two components. The hatched area is from a

phase space MC simulation of J/ψ → ωp¯p.

sented by Figure. 4; enlarging/reducing the

normaliza-362

tion of the non-ω contribution by 7% (the difference of

363

the estimation of non-ω background level between

da-364

ta and inclusive MC); and varying the sideband region

365

to 0.095 GeV/c2 < |M (γπ0) − 0.783| < 0.115 GeV/c2 366

and 0.085 GeV/c2 < |M (γπ0) − 0.783| < 0.125 GeV/c2. 367

When fitting with or without the FSI effect, the signal

368

yields for the alternative fits are lower or equal to the

369

nominal fit, therefore the conservative upper limit from

370

the fit without FSI correction is reported.

371

Various distributions obtained with data and the

372

phase-space MC sample have been compared and some

373

discrepancies are observed. To determine the

systemat-374

ic error on the detection efficiency associated with these

375

discrepancies, an alternative detection efficiency is

esti-376

mated by the re-weighting phase-space MC samples. The

377

difference in detection efficiency compared to the

nomi-378

nal one is 7% and taken as a systematic uncertainty. The

379

number of J/ψ events is determined from an inclusive

380

analysis of J/ψ hadronic events and an uncertainty of

381

1.24% is associated to it [20]. The uncertainties due to

382

the branching fractions of ω → γπ0 and π0 → γγ are

383

taken from the PDG [27].

384

(7)

TABLE I. Summary of systematic uncertainties. ’-’ means the corresponding systematic uncertainty is negligible.

Upper limit of Upper limit of

Source B(J/ψ → ωp¯p) B(J/ψ → ωX(p¯p) → ωp¯p) B(J/ψ → ωX(p¯p) → ωp¯p) with FSI

Tracking 4% 4% 4% PID 4% 4% 4% Photon 3% 3% 3% Kinematic Fit 3% 3% 3% π0 reconstruction 1% 1% 1% Fitting region 2% − − Background Shape 1% − −

Branching fraction of intermediate state 3% 3% 3%

Total J/ψ numbers 1.24% 1.24% 1.24%

MC Generator 7% − −

Total uncertainty 10.3% 7.8% 7.8%

V. SUMMARY

386

In summary, using (225.3 ± 2.8) × 106 J/ψ events

col-387

lected with the BESIII detector, the decay of J/ψ →

388

ωp¯p in the decay mode ω → γπ0 is studied. The

389

branching fraction B(J/ψ → ωp¯p) is measured to be

390

(9.0 ± 0.2 (stat.) ± 0.9 (syst.)) × 10−4. No obvious

en-391

hancement around the p¯p invariant-mass threshold is

ob-392

served. At the 95% C.L., the upper limits on the

prod-393

uct of branching fractions B(J/ψ → ωX(p¯p) → ωp¯p) are

394

measured to be 3.7 × 10−6and 3.9 × 10−6with and

with-395

out accounting for the J¨ulich FSI effect, respectively. As

396

isospin for J/ψ → γp¯p and ωp¯p should both favor I = 0

397

(I = 1 should be suppressed in J/ψ → γp¯p as in

oth-398

er J/ψ radiative decays), the non-observation of X(p¯p)

399

in ωp¯p disfavors the pure FSI interpretation for the p¯p

400

threshold enhancement in the decay J/ψ → γp¯p.

401

VI. ACKNOWLEDGMENT

402

The BESIII collaboration thanks the staff of BEPCII

403

and the computing center for their hard efforts. This

404

work is supported in part by the Ministry of Science and

405

Technology of China under Contract No. 2009CB825200;

406

National Natural Science Foundation of China (NSFC)

407

under Contracts Nos. 10625524, 10821063, 10825524,

408

10835001, 10935007, 11125525, 11235011; Joint Funds

409

of the National Natural Science Foundation of China

410

under Contracts Nos. 11079008, 11179007; the

Chi-411

nese Academy of Sciences (CAS) Large-Scale Scientific

412

Facility Program; CAS under Contracts Nos.

KJCX2-413

YW-N29, KJCX2-YW-N45; 100 Talents Program of

414

CAS; German Research Foundation DFG under

Con-415

tract No. Collaborative Research Center CRC-1044;

Is-416

tituto Nazionale di Fisica Nucleare, Italy; Ministry of

417

Development of Turkey under Contract No.

DPT2006K-418

120470; U. S. Department of Energy under Contracts

419

Nos. FG02-04ER41291, FG02-05ER41374,

DE-420

FG02-94ER40823; U.S. National Science Foundation;

421

University of Groningen (RuG) and the

Helmholtzzen-422

trum fuer Schwerionenforschung GmbH (GSI),

Darm-423

stadt; WCU Program of National Research Foundation

424

of Korea under Contract No. R32-2008-000-10155-0.

425

[1] J. Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 91,

426

022001 (2003).

427

[2] M. Ablikim et al. (BES Collaboration), Chinese Physics

428

C 34, 4 (2010).

429

[3] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett.

430

108, 112003 (2012).

431

[4] J. P. Alexander et al. (CLEO Collaboration), Phys. Rev.

432

D 82, 092001 (2010).

433

[5] S. A. Athar et al. (CLEO Collaboration), Phys. Rev. D

434

73, 032001 (2006).

435

[6] M. Ablikim et al. (BES Collaboration), Eur. Phys. J. C

436

53, 15 (2008).

437

[7] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett.

438

99, 011802 (2007).

439

[8] For review, S. Jin, Int. J. Mod. Phys. A 20, 5145 (2005).

440

[9] A. Datta and P. J. O’Donnel, Phys. Lett. B 567, 273

441

(2003).

442

[10] M. L. Yan, S. Li, B. Wu, B. Q. Ma, Phys. Rev. D 72,

443

034027 (2005).

444

[11] S. L. Zhu, Int. J. Mod. Phys. A 20,1548 (2005).

445

[12] M. Abud, F. Buccella, F. Tramontano, Phys. Rev. D 81,

446

074018 (2010).

447

[13] B. S. Zou, H. C. Chiang, Phys. Rev. D 69, 034004 (2004).

(8)

[14] A. Sibirtsev, J. Haidenbauer, S. Krewald, U. Meissner,

449

A. W. Thomas, Phys. Rev. D 71, 054010 (2005).

450

[15] D. V. Bugg, Phys. Lett. B 598, 8 (2004).

451

[16] For review, C. S. Gao and S. L. Zhu, Commun. Theor.

452

Phys. 42, 844 (2004); E. Klempt and A. Zaitsev, Phys.

453

Rept. 454, 1 (2007).

454

[17] K. Abe et al. (BELLE Collaboration), Phys. Rev. Lett.

455

94, 182002 (2005).

456

[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D

457

74, 051101 (2006).

458

[19] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett.

459

95, 262001 (2005); M. Ablikim et al. (BES

Collabora-460

tion), Phys. Rev. Lett. 106, 072002 (2011).

461

[20] M. Ablikim et al. (BES Collaboration), Chinese Physics

462

C 36(10), 915-928 (2012).

463

[21] M. Ablikim et al. (BES Collaboration), Nucl. Instrum.

464

Methods Phys. Res., Sect. A 614, 345 (2010).

465

[22] J. Z. Bai et al. (BES Collaboration), Nucl. Instrum.

466

Methods Phys. Res., Sect. A 344, 319 (1994); 458,

467

627(2001).

468

[23] D. M. Asner et al. Int. J. Mod. Phys. A 24, No. 1, 499

469

(2009).

470

[24] Z. Y. Deng et al. HEP & NP 30, 371 (2006).

471

[25] S. Jadach, B. F. L. Ward and Z. Was, Comp. Phys.

Com-472

mu. 130, 260 (2000); S. Jadach, B. F. L. Ward and Z.

473

Was, Phys. Rev. D 63, 113009 (2001).

474

[26] R. G. Ping, Chin. Phys. C32, 599 (2008); D. J. Lange,

475

Nucl. Instrum. Meth. A 462, 152 (2001).

476

[27] J. Beringer et al. (Particle Data Group), Phys. Rev. D

477

86, 010001 (2012).

478

[28] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, Y. S.

479

Zhu, Phys. Rev. D 62, 034003 (2000).

480

[29] W. D. Li, H. M. Liu et al. in proceeding of CHEP06,

481

Mumbai, India, 2006 edited by Sunanda Banerjee (Tata

482

Institute of Fundamental Research , Mumbai, 2006).

483

[30] W. Verkerke and D. Pirkby, eConf C0303241, MOLT007

484

(2003).

485

[31] M. Ablikim et al. (BES Collaboration), Phys. Rev. D 83,

486

112005 (2011).

487

[32] M. Ablikim et al. (BES Collaboration), Phys. Rev. D 81,

488

052005 (2010).

489

[33] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett.

490

104, 132002 (2010).

Şekil

Fig. 2. The data points with error bars are from signal
FIG. 2. Dalitz plot and p¯ p, ωp, ω ¯ p invariant-mass spectra of J/ψ → ωp¯ p candidates
FIG. 4. Near-threshold p¯ p invariant-mass spectrum. The sig-
TABLE I. Summary of systematic uncertainties. ’-’ means the corresponding systematic uncertainty is negligible.

Referanslar

Benzer Belgeler

Bu bağlamda, geleneksel mimari öğelerin, kullanıcı kitleleri tarafından, „„beğeniliyor olma‟‟ olgusunun ve bu olgunun nedenlerinin, henüz mimarlık

Sonuç olarak mevcut örnekleme frekansı ve kayıt süresi ile seçilen kısa dönem periyotları, 780 adet kısa dönemli ses örneklem cümlesine dönüştürülmüş, tüm

Bunun bir adım ötesinde kamu diplomasisinin büyük güçler tarafından yumuşak gücün bir vasıtası olarak diğer ülke halklarına derinden nüfuz etmek ve onları uzun

Dönüşüm projesi öncesinde konut ve ticaret alanlarının birlikte yer aldığı, altyapı ve üst yapı açısından yetersiz bir kent alanı görünümünde bulunan

Araştırmaya katılanların %86,1'i dijital tüketim harcamalarımı daha fazla kontrol ettiğini, %92,6'sı en uygun fiyata ürün/hizmet bulabileceğim alışveriş

Eğitimcilerin işkoliklik ve girişimcilik düzeylerinin eğitim durumlarına göre karşılaştırılması amacıyla yapılan Kruskal Wallis H testi sonucuna göre

This study was carried on 60 patients who were planned to have an elective neck-head surgery (ASA I-II), aged between 20-60 Aim was to compare the effects of anesthesia provided

Bu nedenle yeni medya işlerini okuyabilmek için yerleşik anlayışlara ve tartışmalara bir ilmek atarak başka bir zihniyeti ve çok yönlü bir perspektifi sahiplenme becerisini