• Sonuç bulunamadı

Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater

N/A
N/A
Protected

Academic year: 2021

Share "Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Protocols

Encapsulation

of

living

bacteria

in

electrospun

cyclodextrin

ultrathin

fibers

for

bioremediation

of

heavy

metals

and

reactive

dye

from

wastewater

Nalan

Oya

San

Keskin

a,b,c,∗∗

,

Asli

Celebioglu

a,d

,

Omer

Faruk

Sarioglu

a,d

,

Tamer

Uyar

a,d,∗

,

Turgay

Tekinay

c,e,∗∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey bPolatlıScienceandLiteratureFaculty,BiologyDepartment,GaziUniversity,Ankara06900,Turkey cLifeSciencesApplicationandResearchCenter,GaziUniversity,Ankara06830,Turkey

dInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey

eFacultyofMedicine,DepartmentofMedicalBiologyandGenetics,GaziUniversity,Ankara06560,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23February2017

Receivedinrevisedform11October2017 Accepted17October2017

Availableonline18October2017 Keywords: Electrospinning Cyclodextrin Nanofibers Bacteria Encapsulation Heavymetals Reactivedye

a

b

s

t

r

a

c

t

Cyclodextrins(CD)arecyclicoligosaccharidesproducedfromtheenzymaticdegradationofstarchasa whitepowderform;ontheotherhand,theycanbetransformedintoultrathinelectrospunfiberformby electrospinningtechnique.Theelectrospuncyclodextrinfibers(CD-F)canbequiteattractivematerials toencapsulatebacteriaforbioremediationpurposes.Forinstance,CD-Fnotonlyserveasacarriermatrix butalsoitservesasafeedingsourcefortheencapsulatedbacteria.Inthepresentstudy,wedemonstrate afacileapproachbyencapsulationofbacteriaintoCD-Fmatrixforwastewatertreatmentapplication. Thenaturalandnon-toxicpropertiesofCD-Frenderabetterbacterialviabilityforfibrousbiocomposite. TheencapsulatedbacteriainCD-Fexhibitcellviabilityformorethan7daysat4◦Cstoragecondition. Fur-thermore,wehavetestedthebioremediationcapabilityofbacteria/CD-Fbiocompositeforthetreatment ofheavymetals(Nickel(II)andChromium(VI))andtextiledye(ReactiveBlack5,RB5).Thebacteria/CD-F biocompositehasshownremovalefficiencyofNi(II),Cr(VI)andRB5as70±0.2%,58±1.4%and82±0.8, respectively.Asanticipated,thepollutantsremovalcapabilitiesofthebacteria/CD-Fwashigher com-paretofreebacteriasincebacteriacanuseCDasanextracarbonsourcewhichpromotestheirgrowth rate.ThisstudydemonstratesthatCD-Faresuitableplatformsfortheencapsulationofbacterialcellsto developnovelbiocompositesthathavebioremediationcapabilitiesforwastewatertreatment.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

The use of biomass such as bacteria, fungi and algae as a biosorbenthavegreat potentials for cleaningup environmental contaminantsduetotheavailabilityofwiderangeofsorptionsites which retainmetals andmetallic ions,aswellasother organic compounds[1,2].Avarietyofapproachesareemployedin bioreme-diation,encapsulationofbacterialcellsisconsideredtobethemost promisingduetotheirpotentialinremovingspecificcontaminants within a carrier matrix [3]. Encapsulationhas many promising

∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,Ankara,06800,Turkey.

∗∗ Correspondingauthorsat:PolatlıScienceandLiteratureFaculty,Biology Depart-ment,GaziUniversity,Ankara,06900,Turkey.

E-mailaddresses:oyasan@gazi.edu.tr(N.O.SanKeskin), uyar@unam.bilkent.edu.tr(T.Uyar),ttekinay@gazi.edu.tr(T.Tekinay).

applicationsinabroadrangeoffieldsfrombioreactorstomedicine. Advantagesofencapsulatedcellsinclude,easeofseparation, pro-tectionfromharshexternalconditions,andreducedsusceptibility tocontaminationbyforeignorganisms.Themostcommon encap-sulationtechniquesarespray-drying[4],emulsifying-crosslinking [5]orcoacervation[6].However,thesetechniquesinvolveuseof hightemperatureororganicagentsinatleastoneoftheproduction steps,leadingtopotentialdestructionofsensitiveencapsulated nutrients aswell as toxicity problems associated withresidual organic agents [7]. Hence, to overcome these limitations, new encapsulationtechnologiesthatdonotinvolveharshconditions suchhightemperatureandtoxicsolventsarebeinginvestigated, which can provide effective encapsulation for sensitive guest agents.

Recently,electrospinningtechniquehasattractedcertain atten-tionin which activeagents suchaspharmaceuticals [8,9], food additives [10–12] are being simultaneously encapsulated into fibermatrixviaelectrospinningprocess.Electrospunfibershave https://doi.org/10.1016/j.colsurfb.2017.10.047

(2)

receiveda great deal of attention owing to their high surface area,verylight-weight,nano-porousnature,andflexibilityin spe-cific physical and chemical functionalization [13–15]. Thereby, electrospunfibersandtheirwebsareverypromisingcandidates for membranes/filters and environmental applications [16–20]. Forexample,electrospunwebswerealsousedasimmobilization matrixforlivingmicroorganismforremediationofwastewater [21–24].Therearealsoveryfewreportsaboutencapsulationof microorganisminelectrospunfibers.For example,Salalhaetal. [25]showedencapsulationofEscherichiacoliandStaphylococcus albusby electrospinningof bacteriasuspensions withpolyvinyl alcohol (PVA).Further, Funget al. [26] has successfully encap-sulatedprobiotics inagrowaste-based nanofibers,and Liuet al. [27]hasfabricatedaninsolublefibrousmaterialvia electrospin-ningwhichencapsulateindustriallyimportantbacteria.Another reportbyVajdaietal.[28]demonstratessuccessfultrackingofcell viabilityofStenotrophomonasmaltophiliabacteriainPVAfibrous webs.Furthermore,Lee andBelcherfabricatedone-dimensional (1D)micro-andnanosizeddiameterfiberswithlongrod-shaped M13viruses[29].Encapsulationtechniquemayrepresent excel-lentalternativetolyophilizationforthepreservationoforganisms. Furthermore,noneedtowaitbacterialattachment(3–21days)and haslowercontaminationrisk.Eventhoughfewstudiesreported successful encapsulation of bacteria in electrospun matrix, the proof-of-concept studiesfor thepotential applicationsof these fibershavenotbeendemonstratedsatisfactorily.Oneofourrecent studybioremediatingbacterial cells weresuccessfully encapsu-latedintopolyvinylalcohol(PVA)andpolyethyleneoxide(PEO) polymericmatriceswhilekeepingthebacteriabioactiveandthe viablecellnumbersindesirableamounts[30].Moreover,thechoice offibermatrixwasoftena water solublepolymer suchasPVA orPEO since aqueoussolution waspreferablyused as an elec-trospinningsolutioninordertoprovidesuitableenvironmentfor thebacteriabeforeelectrospinning.Yet,aftertheelectrospinning, thesesyntheticpolymericmatrixesarenotveryappropriateonce thebacteriaareencapsulatedwithinthematrixsincebacterianeed carbonsourcefortheirsurvival.Hence,carbohydrate-basedfiber wouldbemuchpreferablematrixfortheencapsulationofbacteria. Therefore,inthisstudywechoosecyclodextrin(CD)electrospun fibermatrixtoencapsulatebacteriaforbioremediationpurposes. CDsareclassifiedascyclicoligosaccharides whichareproduced fromstarchasawhitepowderform,andtheycanbetransformed intofiberformbyelectrospinningtechnique[31–34].Ingeneral, polymericmaterialsareneededfortheelectrospinningoffibers sincechainentanglementandoverlappingbetweenthepolymer chainsare therequirementstosustainthecontinuousjet elon-gationduringtheelectrospinning process[13,14].Nevertheless, inourrecent studieswehave shownsuccessfulelectrospinning of fibers from CD without using any polymeric carrier matrix. AlthoughCDarecyclicoligosaccharides,whichareconsideredtobe verysmallmoleculescomparedtopolymers,theself-assemblyand aggregationcharacteristicsofCDmoleculesintheirconcentrated solutionsenablestheelectrospinningoffibersfromCDwithoutthe needofcarrierpolymericmatrix[31–34].

Inourstudy,wesuccessfullydemonstratedtheencapsulation ofLysinibacillussp.NOSKbacteriainwaterbasedand biocompati-blenon-polymericcyclodextrinfibers(CD-F)usingelectrospinning process. The CD-Fprotects bacterial cells to reduce theeffects ofexteriorenvironment;besidetheyservedasanencapsulating matrixandcarbon-sourceforthebacteria.Furthermore,these bac-teriaencapsulatedwater-solublefibersexhibitedaninstantrelease mechanism.The potentialapplicationof thisbacteria/CD-F bio-composite in bioremediationof heavy metals (Ni(II) and Cr(VI) ions)andreactivedyefromaqueoussolutionwassystematically investigated.Themorphologicalcharacteristicsofthepristineand bacteriaencapsulatedfibers wereevaluated.Our resultsclearly

Fig.1.Schematicviewofencapsulationofbacteriainelectrospunfibersby electro-spinningprocess(CD:Cyclodextrin,F:Fiber).

showedthatencapsulatedLysinibacillussp.NOSKwereviable,and theirmetabolicactivitywasnotaffectedbytheencapsulationinto electrospunCD-F.Onthebasisofpresentresults,wecansuggest thatthisnovelbacteria/CD-Fbiocompositecouldbeofinterestfor wastewatertreatment.

2. Materialandmethods

2.1. Materials

The hydroxypropyl-␤-cyclodextrin (HP␤CD) (degree of sub-stitution:∼0.6,Cavasol®W7HP Pharma)waskindlydonatedby WackerChemieAG(Germany).Thedeionizedwaterwasobtained fromtheMilliporeMilli-QUltrapureWaterSystem.Thestock solu-tionofNi(II)waspreparedbydissolvingnickelsulfateheptahydrate (SigmaAldrich,99.9%)indeionizedwater.Potassiumdichromate (SigmaAldrich,≥99.0%)wasusedtoprepareCr(VI)aqueous solu-tionbydissolvingindeionizedwater.Reactivedye(ReactiveBlack 5(RB5))wasobtainedfromSETAS¸ChemistryFactory(Tekirdag, Turkey).Appropriatevolumeofthestocksolutionswasaddedto thenutrientbroth(NB)medium(Peptonefrommeat5.0g/L;Meat extract3.0g/L)forpreparationoftheexperimentalsamples. 2.2. Cultivationofbacteriuminnutrientbroth(NB)

TheLysinibacillussp.NOSKcultureisolatedfromwastewater treatmentsystem[35]wasroutinelymaintainedinNutrientBroth (NB)medium.Theworkingbacterialculturewaspreparedfrom thestock culture stored at−20◦C in 70%(v/v) sterile glycerol.

ThefrozenstockcultureswererevivedthreetimesinNBmedium priortoexperimentaluse.Thereactivatedculturewasgrownin Erlenmeyer flasks containing NBmedium to getenough active inoculum.Thefreshlyculturedcellswerecollectedby centrifuga-tionat5000rpmfor10minandthendefinedvolumeofbiomass usedforelectrospinningprocess.

2.3. Electrospinningofbacteriaencapsulatedcyclodextrinfibers (bacteria/CD-F)andbacteria-freeCD-F

Theelectrospinningofbacteria encapsulatedCD-Fwere per-formedbyusinghighlyconcentratedaqueousCDsolution(200%, w/v) with 0.5%(w/v) of skim milk media(Fig.1). For bacteria encapsulationprocess,electrospinningwascarriedoutbymaking

(3)

asuspensionofbacteriaintheCDaqueoussolution.Theamount ofbacteriaintheCDaqueoussolutionwasvariedas0.25%,0.5%, 1%and 2% (w/w)(respect toCD concentration) inorder toget enoughbacterialcountinCD-F.Theelectrospinningofbacteria-free CD solution and bacteria/CD suspension wereperformed sepa-ratelybyusing1mLsyringewithaneedleofaninnerdiameter of0.4mm.Oneoftheelectrodesofthehighvoltagepowersupply (MatsusadaPrecision,AUSeries)wasclampedtothemetalneedle tip,andtheotherwasclampedtothegroundedcylindrical alu-minumcollector.Theelectrospinningparameterswereoptimized asfollows:appliedvoltage:15kV,tip-to-collectordistance:10cm, andthesolutionflowrate:0.5mL/h.Alltheelectrospinning pro-cesseswereperformedinaUVsterileelectrospinningcabinatroom temperature(∼24◦C)and25%relativehumidityconditions.After

electrospinningprocess,thebacteriaencapsulatedCDfibershave beenstoredat4◦C(inarefrigerator)insmallplasticpetridishes whichwereenclosedbyparaffinbandsforpreventionofairand humiditypassage.Petridishesweresterile(UV-sterilized),dryand havingminimizedheadspacevolume(byoverspreadwithbacteria CD-F)toenhancethestabilityoftheencapsulatedbacteria. 2.4. Viabilitytesting

Inordertocheckbacterialviabilityandtheirsuccessful encap-sulation within the electrospun CD-F, Lysinibacillus sp. NOSK cellswerestainedwithfluorescentstains(LIVE/DEADBacLightTM kit)priortotheelectrospinningprocess.Microscopicassessment of LIVE/DEAD-stained bacterial cells is usually simplified with “green”-labeledcells foralivebacteria. Photographsweretaken byusinganopticalmicroscopewithanattachedfluorescenceunit (Leica,DMI4000B).TheviabilityofLysinibacillussp.NOSKeitherin electrospinningsolutionsorencapsulatedinCD-Fwasalso deter-minedascolony-formingunits(CFU)usingthepour-plateassay. Toevaluatetheencapsulationefficiency,piecesoftheCD-Ffibrous materialwereweighed(10mg)whichcontainthelivingorganisms. Nutrientmedium (1.0mL) wasadded tothesepiecesin micro-centrifugetubes,heldfor60minatroomtemperatureandserial 10-folddilutionsweremadeonthesesamplesandplatedon Nutri-entagar.Afterincubationatoptimalconditions,thenumberofCFU wasdetermined.Alltestswereperformedintriplicate.

2.5. Characterization

Themorphologicalinvestigationofthefiberswascarriedoutby usingscanningelectronmicroscopy(SEM)(200FEG,FEI).The sam-plesweresputtercoated(PECS-682)withagold-palladiumalloy for∼5nmthicknesspriortoSEMimaging.

Raman spectra of the samples were recorded on a WITec alpha300S Confocal Raman spectrometer. The near-infrared 785nmlinewasusedforexcitation.Forallpresentedspectra,the laserpoweronthesample didnot exceed3mW, and 10scans werecollectedin15s.Allspectrawererecordedwithaspectral resolutionof4cm−1.

2.6. Removalanalysis

Duringtheincubationperiod,a3mLsamplewastakendaily fromeachflask.Sampleswerecentrifugedtoprecipitatesuspended biomass at 10.000g for 5min.Cell free nutrient brothmedium wasusedastheblank.TheconcentrationsofNi(II)inthe super-natantwasdeterminedspectrophotometricallyat340nmbyusing sodiumdiethyl dithiocarbamate (from Merck) as a complexing agent. Residual Cr(VI) in the supernatant was measured using the 1,5-diphenylcarbazide (from Alfa Aesar, A Johnson Mathey Company,USA)methodat540nmbyUVspectrophotometer.The concentrationofdye(RB5)ineachaqueoussolutionwasmeasured

onanUV–visspectrophotometer whiletakingtheabsorptionat 597nm.Alltestswereperformedintriplicate.

2.7. Adsorptionisothermsandkineticsstudies

Adsorption coefficients were estimated via seven isotherm models (Langmuir, Langmuir with linear partitioning, Fre-undlich, Freundlich with linear partitioning, Generalized Langmuir–Freundlich, Toth, Linear) using the isotherm param-eter fitting software IsoFit [35]. The mean of three individual determinationswasusedtocalculatecellcounts.

3. Resultsanddiscussion

3.1. Electrospinningofbacteriaencapsulatedcyclodextrinfibers (bacteria/CD-F)andbacteria-freeCD-F

TheelectrospinningofpureCD-Fwithoutcontainingbacteria wasperformedtoobtaincontrolsample.TherepresentativeSEM imagesofelectrospunbacteria-freeCD-FareshowninFig.S1a–b. TheaveragefiberdiameteroftheelectrospunCD-Fwascalculated as605±205nmbymeasuringabout100fibersfromdifferentSEM images.Inordertoachievecontinuousfiberproductionby electro-spinning,oneoftheimportantoptimizationparameterisfinding theoptimalbacteriaamountforencapsulationprocess.Regardto this,theoptimizationofbacteriaamountforencapsulationinCD fiberswasinvestigatedbyusing0.25%,0.5%,1%and2%(w/w)of bac-teriaandthemorphologiesofthefibers’structureswereanalyzed bySEM.

SEMmicrographofthebacteriumisshowninFig.S2.InFig.2, SEMimagingconfirmedthesuccessfulelectrospinningofCD aque-ous solution into bead-free and uniform fibers having smooth morphology.TheincorporationofLysinibacillussp.NOSKintoCD solutiondid not significantlyaffect theelectrospinning process and in all bacteria concentrationused, fiberswere successfully produced(Fig.2a–d).However,wehadsomedifficultiesforthe electrospinningofCDsolutioncontaining2%(w/w)ofbacteria,the electrospinningjetwasdisturbedfrequently(Fig.2d).Therefore, wedecidedthat1%(w/w)ofbacteriawasanoptimal concentra-tionforthecontinuouselectrospinningofbacteria/CD-Ftoobtain homogenouslydistributedfibrouswebs(Fig.2c).Inacloserlook, thebacterialcells werecompletelyencapsulatedwithintheCD fibermatrix,forminglocalwideningofthefiber.Enlargementand wideningofsomeregionsinthefibersforthebacteria/CD-F sam-pleswaspreliminaryevidenceforbacterialincorporationinside theCD-FasdepictedinFig.2a–d.FromFig.2athruFig.2d,itwas alsoevidentthatwhenbacterialnumberwasincreasedinthe elec-trospinningsolution,theencapsulatedcellnumberwasincreased aswellintheelectrospunCD-Fmatrix.

3.2. Viability

ViabilityofLysinibacillussp.NOSKcellswasdeterminedas num-berofcolony-formingunits(CFU)inCDsolutionandinCD-Fweb atrefrigerationtemperature(4◦C)atdifferenttimeintervals(24h to7days)(Fig.3).Over a periodof time,bacterialcell viability wasdecreased,onlyasignificantpercentageofbacteriaretained theirviabilityattheendof7days.Thecellviabilityof Lysinibacil-lussp. NOSKwasfoundto be2.5×103 CFU/mLin CD solution

priortoencapsulation,whichwasdecreasedto6.0×102CFU/mLin

bacteria/CD-Fstoredat4◦Conday1.Thebacterialcellwasfurther decreasedto3.0×102CFU/mLuponthebacteria/CD-Fsstorageat

4◦Cfor7days.Further,fluorescencestainingtechniquewas per-formedinordertogetanaccuratecellviabilityassessmentand cellcount.Thelossincellviabilitycouldbeattributedtotheeffect ofelectrostaticfieldgeneratedduringtheelectrospinningprocess

(4)

Fig.2.RepresentativeSEMimagesofcyclodextrin-fiber(CD-F)encapsulating(a)0.25%(w/w)(b)0.5%(w/w)(c)1%(w/w)and(d)2%(w/w)ofbacteria.Thecirclesshow someoftheencapsulatedbacteriumintotheelectrospunfibermatrix.

Fig.3.ViabilityofLysinibacillussp.NOSKasnumberofcolony-formingunits(CFU) inCDsolutionandbacteria/CD-Fat4◦Canddifferentstoragetimes(1dayto7days).

Insetphotographsshowsbacteriacountontheagarsurface.

duetotheapplicationofhighvoltagebetweenthemetalcapillary andthecollector[8,9].Furthermore,rapidevaporationof water duringelectrospinningprocessisalsoanticipatedtocausedrastic changesintheosmoticenvironmentofthebacteria.Theeffectof storageontheviabilityofencapsulatedbacteriaisofgreatconcern fortheirpotentialapplicationinindustrial-scaleprocesses,since applicationofthesenovelbioactivebiocompositesrequirestobe intactandfunctionalatthetimeofuseindesiredsite.

3.3. Characterization

InadditiontotheSEMimage,presenceofLysinibacillussp.NOSK wasfurthersupportedbyfluorescencemicroscopyimages.Fig.4a clearlyindicatesthatthestainedLysinibacillussp.NOSKbacterial cellsemitgreenfluorescenceowingtotheirviabilitynaturewhich confirmstheirsuccessfulencapsulationinCD-Fmatrix(Fig.4b). Althoughbacterialcellsweregenerallylocalizedindividuallyinside thefibermatrix,somemoreagglomeratedcellswerealsoobserved incertainareasofthefibrousweb.

Raman spectroscopy is considered to be an molecular fin-gerprinting technique for studying structure of polymers and microorganisms[36].RamanspectraofpristineCD-F,pristine bac-teriaandbacteria/CD-FwithmainRamanshiftsandassignments oftheRamanbandsaregiveninFig.5.Theobservedpeaksaround 851cm−1intheRamanspectrumofpristineCD-Fisduetoskeletal CCH.PristinebacteriaRamanspectrashowstheamideIvibrationat 1650cm−1,andtheCH2deformationvibrationat1420cm−1.After

encapsulationprocess,presenceofproteinsinthebacteria/CD-F wasconfirmedfromthepeakaround1005cm−1andaswelltwo prominentpeaksi.e.,∼1048and∼995cm−1observedat polysac-charideregion(1200–900cm−1)couldbearisingfromvibrationsin thepeptidoglycanofbacterialcellwall26whichfurtherconfirmed

thepresenceofthebacterialcellsinthefibrousmatrix. 3.4. Removalanalysis

Theheavymetalremovalcapabilityofthebacteria/CD-Fwas investigatedinabatchsystemwithregardtotheinitialpHand Ni(II)concentrations.Uninoculatederlenmeyerflaskscontaining heavymetals,reactivedyeandCD-Fwereusedascontrol

(5)

sam-Fig.4. Fluorescencemicroscopyimagesofbacteria(a)beforeencapsulationprocess(b)afterencapsulationinCD-Fmatrix.

Fig.5. Ramanspectraof(a)pristineCD-F(b)pristinebacteriaand(b)bacteria/CD-F.InsetsshowthemicrographofpristineCD-F,pristinebacteriaandbacteria/CD-F.

plestoobserveanyreactionsofthemediawithheavymetaland dye(Fig.S3).Inthesesamples,removalyieldwas0.8%forNi(II), 0.3%forCr(VI)and%0.5forRB5.Therewasnosignificantdifference inthebioremovalyieldofNi(II),Cr(VI)andRB5bypristineCD-F, respectively.

Thepercentageuptakeofheavymetalsandreactivedyewere calculatedfromthedifferencebetweentheinitialandfinalvalues usingEq.(A.1)

Removal(%)=(C0−Ceq)/C0×100 (A.1)

HereC0andCeqaretheinitialandequilibriumconcentrationsof

heavymetalsandreactivedye(mgL−1),respectively.Theremoval capacity canbe determinedby themass balance principle(Eq. (A.2)).

qm=(C0−Cf)/Xm×100 (A.2)

Inthesetwoequations,qm(themaximumheavymetalanddye

uptake)representsthemaximumamountofheavymetal/dyeper unitofdryweightofmicrobialcells(mgL−1),Xmrepresentsthe

maximumdriedcellmass(gL−1),andC0andCfrepresenttheinitial

andfinalconcentrations(mgL−1),respectively.

TheinitialpHvalueofthesolutionisanimportantparameterto investigatehigherremovalcapacities.TheRB5andCr(VI)removal yieldsofthebacterialcellsweresimilarlyhighatpH8.0asfound inourpreviousstudy[35].Furthermore,inthisstudy,theeffect ofpHwasexaminedafter24hofbacterialincubationforthe sam-plesataninitialNi(II)concentrationof30mgL−1,butatdifferent initialpHvalueswithintherangeof4–9.AsshowninFig.6,the removalefficienciesafter24hwerefoundas%77.0,%77.5,%78.0, %76.1,%72.1and%71.7atpHvaluesof4.0,5.0,6.0,7.0,8.0and9.0, respectively.TheoptimalpHrangeforNi(II)removalwasfoundto be4.0–6.0.Anear-neutralpHconditionispreferablesince

(6)

opera-Fig.6. TheeffectofpHontheNi(II)removalyieldofthefreebacteriaat10mgL−1

ofinitialNi(II)concentration(T:30◦C;stirringrate:100rpm).Errorbarsrepresent

standarddeviationofthemeanvaluesforindependentreplicates(n=3).

Fig.7.Theeffectofinitial(a)Ni(II)(b)Cr(VI)and(c)ReactiveBlack5concentration ontheremovalyieldofthefreebacteriaandbacteria/CD-Fafter1dayand7days storageat4◦Cduringthe24hincubationperiod(T:30C;stirringrate:100rpm).

Errorbarsrepresentstandarddeviationofthemeanvaluesforindependentreplicates (n=3).

tionundernear-neutralconditionscaneasilybeappliedtomost wastewatersystems[37].

TheeffectofinitialNi(II),Cr(VI)andRB5concentrationsonthe bioremovalperformance wasevaluated usingfree-bacteria and bacteria/CD-Fafter24hstorageat4◦C,andafter7daysstorageat 4◦Catdifferentinitialheavymetalsanddyeconcentrations(30mg L−1thru100mgL−1).AsseeninFig.7a,theaverageNi(II)removal yield was calculated as 25.5±0.3% for the free-bacteria. After encapsulationprocess,theNi(II)removalyieldofbacteria/CD-Fwas

around70±0.2%.After7daysstorageat4◦C,Ni(II)removalyieldof bacteria/CD-Freducedto48.07±0.4%.TheNi(II)removal capabili-tiesofthebacteria/CD-Fwerehigherthanthatofthefree-bacteria forallthesampleshavingdifferentinitialNi(II)concentrations. WhenCD-Fmatrixwasdissolvedinthemedium,bacteriausedCD asanextracarbonsourceandachievedanenhancedgrowthrate (OD600nm:2.09).However,sincethefreebacteriahadnoextra

car-bonsource,theirgrowthratewasnotenhanced(OD600nm:1.03)

(Fig.S4).

TheeffectoftheinitialconcentrationofCr(VI)ontheremovalof Cr(VI)isshowninFig.7b.Lysinibacillussp.NOSKcouldreduceCr(VI) 50±1.2%,23±1.3%and9.8±1.3%fromthemediumcontains30,50 and100mgL−1,respectively.Afterencapsulationprocess,the max-imumremovalyieldsofbacteria/CD-F were58±1.4%,26±0.9% and12±0.7%for30,50and100mgL−1Cr(VI)concentrations.After 7days storage at4◦C, Cr(VI) removalyields weredecreased to 23±1.2%,12±1.6%and3.5±1.2%for30,50and100mgL−1Cr(VI). Itisclearthat,after7daysstoragewithdecreaseinbacterialcount, theremovalperformancesofbacteria/CD-Fdecrease.

Fig.7cillustrates the evolution of the dyeremoval yield as a function of the initial dye concentration. At the end of the incubationperiod,themaximumremoval yieldswere78±1.1% at 30mgL−1. The removal capacities of Lysinibacillus sp. NOSK werefoundtoberangingbetween64% and47%in mediawith increasing RB5 concentrations. The pattern of the changes in removalefficiencyofbacteria/CD-Fwasfoundtobequite differ-ent.Bacteria/CD-Fremovedthedyeefficiently,inspiteofincreasing dyeconcentrationsupto300mgL−1level,withthehighestyieldof 82±0.8%.Removalefficiencydecreased,whenthedye concentra-tionincreasedinalloftheothertrialsperformedwithbacteria. After 7days storage, the decolorization of RB5 was 79±1.2%, 34±1.5%and21±2.3%forbacteria/CD-F.

3.5. Adsorptionisothermsandorderofreactions

Inordertoinvestigatetheadsorptionprocessesofheavymetals anddyeonbacteriaandbacteria/CD-F,fivekineticmodelswere used.Adsorptionkineticsparameters andstatistical parameters ofall isothermstested forNi(II)removal arelistedinTable S1. Whilebacteria/CD-F fitswellforeach ofthetestedmodel,only bacteriadoesnotfitanyofthetestedmodels,hencetheestimated adsorptionisothermcoefficientsofthissamplewasnotdiscussed. NolinearcomponentwasfoundinNi(II)removalbybacteria/CD-F afterstorageat4◦Cfor1dayand7days.Linearityassessmentsfor Ni(II)werefoundasnonlinearinLangmuirandFreundlichmodels. Inaddition,Ry2valuesoflinearisothermsarelowerthantheRy2

valuesofotherisotherms.ThebestfittingmodelforNi(II)removal wasLangmuirmodelforbacteria/CD-Fafterboth1daystorageat 4◦C(Ry20.993)and7dstorageat4C(Ry20.924).Sincethe

high-estcorrelationsobservedinLangmuirisotherms,Ni(II)removalis likelytobemonolayericbybacteria/CD-F.Themaximumremoval capacities(Qmax)ofbacteria/CD-Fafterstoragefor1dayand7days

undertheLangmuirmodelwereestimatedtobe45.95mgg−1and 30.95mgg−1,respectively.

TableS2showstheadsorptionkineticsparametersand statis-tical parametersof allisotherms tested forCr(VI) removal.The Langmuirequationcorrelates theCr(VI)adsorption equilibrium datausingbacteria/CD-Fboth1daystorageat4◦C(Ry20.993)and

7daystorageat4◦C(Ry20.944)verywellandsuggestsitsremoval

is likely tobe monolayeric. However, theLangmuir–Freundlich adsorptionmodelsdonotfitthedataaswellastheLangmuir equa-tiondoes.

Adsorptionkineticsparameters and statisticalparameters of allisothermstestedforRB5removalarelistedinTableS3.Toth generalizedmodelswerefoundtobethebestfittingmodelsfor RB5removalusingbothbacteria/CD-F1daystorageat4◦C(Ry2

(7)

0.977)and 7daystorageat 4◦C (Ry2 0.999). Thehighest

corre-lationsobservedinTothisothermsuggestsitsremovalisrather heterogenousandmultilayericbybacteria/CD-F.

3.6. Discussion

Electrospun nanofibers have high surface area and porous structurecomparetofilmbasedmaterials,so,suchnanofibrous materialsprovidesbetterperformanceandhigherefficiency. More-over, during the electrospinning process, the additives suchas drugs,foodadditivesandmicroorganismscanbemore homoge-nouslydistributedthrough thefibermatrix.On theotherhand, theelectricalpowerappliedduringtheelectrospinningcanhave somesideeffectsespeciallyonlivingmicroorganisms.This prob-lemmightbetolerated byincreasingthenumberof livingcells intheelectrospinningsolutionpriortoelectrospinning,suchthat, sufficientamountofviablecellscouldbeachievedevenafterthe electrospinningprocess.

In this study,CD-F serves as an extra carbon source which promotesthegrowthrateofbacteria,sotheutilizationof free-standingCD-Fbasedfibrousmaterialsasencapsulationmatrixis anattractiveapproachforthelateronuseofthese microorgan-isms.However,CDcannotformafilmstructureandresultedina powdermaterialafterdryingofitssolutionwithoutany encapsu-lationofbacteriawhichcancreatechallengesduringthepractical applications.Onthecontrary,CD-Fnanofibrousmatcanbe eas-ilyhandledandfoldedasfree-standingmaterialwhichprovides certainadvantagesduringitspractices.

AsobservedinthefluorescencemicroscopyandSEMimages, eventhesizeofbacteriaisbiggerthanthenanofiberdiameter, bac-teriaweredispersedprettyhomogenousthroughthefibermatrix. Here,microorganismswereencapsulatedinCD-Fhavingdifferent concentrations(0.25,0.5,1and2%(w/w))andtheremediationtests wereperformedbyusing1%(w/w)concentratedCD-Fsincethere weresomedifficultiesfortheelectrospinningofCDsolution con-taining2%(w/w)ofbacteria.Nevertheless,asitcanbeobserved fromtheresultsofremovaltests,contaminantswereremediatedby highefficiencyfromtheirliquidenvironment(70±0.2%,58±1.4% and82±0.8%for 30mgL−1 concentratedsolutionsof theNi(II), Cr(VI)andReactiveBlack5,respectively).30mgL−1concentration isalreadyabovetheacceptablelimitsofenvironmentalconcerns. Therefore,itcanbeconcludedthattheencapsulationefficiencyof CD-Fisquitewellenoughfortheintendedapplications.

4. Conclusions

Inthisstudy,wehaveshownsuccessfulencapsulationofstrain Lysinibacillussp.NOSKinCD-Fbyusingelectrospinningprocess. TheCD, which isa cyclic oligosaccharideobtainedfromstarch, wasusedasanencapsulation matrixanda feedingsourcethus facilitateaneasyrevivalofbacteria.Thesuitableconditionsofthe electrospinningprocessforencapsulationofbacteriaand maintain-ingtheirviabilitywereoptimized.Althoughthe%loadingofthe bacteriawaslimited becauseofthedifficultyofelectrospinning offibers,theobservedresultsconfirmedthatsignificantamount ofcellssurvivedandretainedbiologicalfunctionalityduringthe processeveninthedrasticosmoticchangeandelectrostaticfield generatedduringelectrospinningprocess.Moreover,Lysinibacillus sp.NOSKremainedviablewithintheCD-Fsfor7daysat refriger-atorconditions(4◦C).Electrospunfiberencapsulationtechnology alsoofferssignificantadvantagesforstudyingthebehaviorofcells under confinement.Cells, either bacterial or mammalian,were foundtoaltertheirbehaviorinaconfinedenvironment.Webelieve thatthebioactivityofencapsulatedLysinibacillussp.NOSKcells remainssameintheCD-Fthatcanallowaneasyrecoveryof

bac-terialcells duringapplication.Theobtainedresultssuggestthat theCD-Fbiocompositesystemwellsuitableforpotential applica-tioninNi(II),Cr(VI)andReactivedyebioremovalfromwastewater systems.Therefore,electrospinning techniquemayrepresentan excellentalternativetolyophilizationforthepreservationof organ-ismsforstraincollections,andforapplicationssuchaswastewater treatment.

Acknowledgements

The Scientific and Technological Research Council of Turkey (TUBITAK, project #114Y264) is acknowledged for funding the research.Dr.UyaracknowledgesTheTurkishAcademyofSciences - Outstanding Young Scientists Award Program (TUBA-GEBIP) for partialfundingof theresearch. A. Celebiogluacknowledges TUBITAKproject#113Y348forapostdoctoralfellowship.O.F. Sar-iogluacknowledges TUBITAKBIDEB(2211-C)for NationalPh.D. Scholarship.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.colsurfb.2017.10. 047.

References

[1]A.Kumar,B.S.Bisht,V.D.Joshi,T.Dhewa,Int.J.Environ.Stud.Sci.1(6)(2011) 1079.

[2]N.Ali,A.Hameed,S.Ahmed,J.Hazard.Mater.164(1)(2009)322.

[3]S.Klein,J.Kuhn,R.Avrahami,S.Tarre,M.Beliavski,Biomacromolecules10(7) (2009)1751.

[4]M.L.Bruschi,M.L.C.Cardoso,M.B.Lucchesi,M.P.D.Gremião,Int.J.Pharm.264 (1)(2003)45.

[5]T.Ishizaka,K.Endo,M.J.Koishi,Pharm.Sci.70(4)(1981)358. [6]M.C.Mauguet,J.Legrand,L.Brujes,G.Carnelle,C.Larre,Y.Popineau,J.

Microencapsulation19(3)(2002)377.

[7]D.T.Birnbaum,J.D.Kosmala,D.B.Henthorn,L.Brannon-Peppas,Controlled Release65(3)(2000)375.

[8]T.Uyar,E.Kny,ElectrospunMaterialsforTissueEngineeringandBiomedical Applications:Research,DesignandCommercialization,Elsevier,Woodhead PublishingSeriesinBiomaterials,2017(ISBN:9780081010228).

[9]M.F.Canbolat,A.Celebioglu,T.Uyar,ColloidsSurf.B:Biointerfaces115(2014) 15.

[10]A.Fernandez,S.Torres-Giner,J.M.Lagaron,FoodHydrocolloids23(5)(2009) 1427.

[11]F.Kayaci,Y.Ertas,T.Uyar,J.Agric.Food.Chem.61(34)(2013)8156. [12]Z.Aytac,S.I.Kusku,E.Durgun,T.Uyar,Mater.Sci.Eng.C63(2016)231. [13]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing,

andApplications,JohnWiley&Sons,2012.

[14]S.Ramakrishna,K.Fujihara,W.E.Teo,T.C.Lim,Z.Ma,AnIntroductionto ElectrospinningandNanofibers,WorldScientificPublishingCompany,2005. [15]S.Agarwal,J.H.Wendorff,A.Greiner,Macromol.RapidCommun.31(15)

(2010)1317.

[16]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,ACSNano4(9) (2010)5121.

[17]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besembacher,P.Kingshott,J. Membr.Sci.332(2004)129.

[18]M.Botes,T.EugeneCloete,Crit.Rev.Microbiol.36(1)(2010)68.

[19]S.Ramakrishna,R.Jose,P.S.Archana,A.S.Nair,R.Balamurugan,J.Venugopal, W.E.S.J.Teo,Mater.Sci.45(23)(2010)6283.

[20]A.Senthamizhan,B.Balusamy,A.Celebioglu,T.Uyar,J.Mater.Chem.A4 (2016)2484.

[21]O.F.Sarioglu,A.Celebioglu,T.Tekinay,T.Uyar,J.Environ.Sci.Technol.1(8) (2016)2057.

[22]O.F.Sarioglu,A.Celebioglu,T.Tekinay,T.Uyar,RSCAdv.5(124)(2015) 102750.

[23]M.Gensheimer,M.Becker,A.Brandis-Heep,J.Wendorff,R.K.Thauer,Adv. Mater19(18)(2007)2480.

[24]N.O.San,A.Celebioglu,Y.Tümtas¸,T.Uyar,T.Tekinay,RSCAdv.4(61)(2014) 32249.

[25]W.Salalha,J.Kuhn,Y.Dror,E.Zussman,Nanotechnology17(18)(2006)4675. [26]W.Y.Fung,K.H.Yuen,M.T.J.Liong,J.Agric.Food.Chem.59(15)(2011)8140. [27]Y.Liu,M.H.Rafailovich,R.Malal,D.Cohn,Proc.Natl.Acad.Sci.106(34)(2009)

14201.

[28]A.Vajdai,B.Szabó,K.Süvegh,R.Zelkó,G.Újhelyi,Int.J.Pharm.429(1)(2012) 135.

(8)

[29]S.W.Lee,A.M.Belcher,NanoLett.4(3)(2004)387.

[30]O.F.Sarioglu,N.O.S.Keskin,A.Celebioglu,T.Tekinay,T.Uyar,ColloidsSurf.B. Biointerfaces157(2017)245.

[31]A.Celebioglu,T.Uyar,Chem.Commun.46(37)(2010)6903. [32]A.Celebioglu,T.Uyar,Nanoscale4(2012)621.

[33]A.Celebioglu,T.Uyar,J.ColloidInterfaceSci.404(2013)1.

[34]A.Celebioglu,T.Uyar,RSCAdv.3(2013)22891.

[35]N.O.SanKeskin,A.Celebioglu,O.F.Sarioglu,A.D.Ozkan,T.Uyar,T.Tekinay, RSCAdv.5(106)(2015)86867.

[36]E.B.Hanlon,R.Manoharan,T.Koo,K.E.Shafer,J.T.Motz,M.Fitzmaurice,Phys. Med.Biol.45(2)(2000)1.

[37]T.Granato,A.Katovic,K.M.Valkaj,A.Tagarelli,G.J.Giordano,PorousMater.16 (2)(2009)227.

Şekil

Fig. 1. Schematic view of encapsulation of bacteria in electrospun fibers by electro- electro-spinning process (CD: Cyclodextrin, F: Fiber).
Fig. 3. Viability of Lysinibacillus sp. NOSK as number of colony-forming units (CFU) in CD solution and bacteria/CD-F at 4 ◦ C and different storage times (1 day to 7 days).
Fig. 4. Fluorescence microscopy images of bacteria (a) before encapsulation process (b) after encapsulation in CD-F matrix.
Fig. 7. The effect of initial (a) Ni(II) (b) Cr(VI) and (c) Reactive Black 5 concentration on the removal yield of the free bacteria and bacteria/CD-F after 1 day and 7 days storage at 4 ◦ C during the 24 h incubation period (T: 30 ◦ C; stirring rate: 100

Referanslar

Benzer Belgeler

dir yayene n dir yayene nalayene nalayene lengayene lengayene nimitene nimitene peysayene peysayene sawitene sawitene kulhayene kulhayene pawitene pawitene viyartene

Similarly the levels of TSS decreased significantly during storage in the present study, irrespective of the 1-MCP treatment or fresh-cut processing, which is a trend different

To the best of our knowledge, this paper reports for the first time the chemical composition essential oil aerial part of Senecio vernalis collected from Eastern Anatolian region

The objective of this study was to determine the essential oil composition of two Gundelia tournefortii varities reported in Flora of Turkey and to supply contributions to the

As can be seen the figure, the device has been shown that the measure capacitance decreases with increasing frequency and capacitance decreases with decreasing voltage at

This study aimed to determine the outlier values in live-weight performance data of Japanese quails.. Japanese quails were grown under the same conditions, and,

Particularly, it is shown that stock market return volatility has a significant persistency and the variability of the volatility is higher in these economies as compared to

gamification on the production of space, I will tackle the question of how the spread of game logic alters the elements of the spatial triad individually..