• Sonuç bulunamadı

V(Z) of the surface acoustic wave focusing system

N/A
N/A
Protected

Academic year: 2021

Share "V(Z) of the surface acoustic wave focusing system"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

V(2) OF THE SURFACE ACOUSTIC W X E FOCUSING SYSTEM

A. ATALAR and H . KbYMEN

Electrical and Electronics Engineering Department, Middle East Technical University, 06531 Ankara, TURKEY.

ABSTRACT

It is possible to define a V(Z) function

for the surface acoustic wave (SAW)

focusing system for a class of reflectors similar to that defined in acoustic micros- copy. In this case V(Z) is a function which

relates the transducer output voltage to

the distance between the focal point and the reflection line. It is possible to ex- press V(Z) in an analytical expression using angular spectrum techniques. V(Z) is measured for straight edge reflectors form- ing various angles with the surface. V(2) of straight step reflectors are investi- gated. These curves show a dependence on the type of reflector. The experiments are performed at 1.5 MHz in conjunction with a computerized data acquisition system. The phase information is also recorded in all these measurements in addition to the amp- litude. It is possible to get an inversion

of V(Z) to get the SAW reflection coeffi-

cient at a straight discontinuity. I. Introduction

Acoustic microscopy is becoming a powerful technique in characterization and imaging in material science, biology and thin film

technology [ l ] . It produces acoustic images

of plane surfaces of materials by a spheri- cally converging bulk wave obtained by an

acoustic lens in the form of a spherical

cavity. Images are sensitive to acoustic parameters of the surface material as well as to the thicknesses of the layers close to the surface. Quantitative results about the material parameters can be extracted from the information conveyed by the aco- ustic microscope through the measurement of

what is known as V(Z) curves [ 2 ] , [ 3 1 .

These curves are the plots of transducer

output voltage, V , as a function of lens to

object distance,

Z.

They exhibit a very

atrong dependence on acoustic parameters and layer thicknesses of the object mate- rial. The principal mechanism for material

dependence of V(Z) is the interference of

nonspecular leaky surface acoustic waves ( S A W ) with specularly reflected bulk waves

1 4 1

*

Diffraction limited SAW focusing has been successfully achieved using 'surface aco-

ustic wave focusing axicons' (SAWFAX) [5].

0090-5607/86/0000-0727 $1.00 0

1986

IEEE

In this method almost all the power

available from the transducer is converted

into the SAW for high impedance materials. A detailed analysis of SAWFAX may be found

elsewhere 1 6 1 . SAWFAX has the potential of

providing a new mode o f imaging f o r aco-

ustic microscopes with increased subsurface sensitivity. In this paper we present the

V ( Z ) techniques applied to this method.

Theoretical V ( 2 ) formulas and the results

of the experimental V ( Z ) measurements are

given. It is also shown that the SAW ref-

lection coefficient of various straight

discontinuities can be extracted from V ( Z )

data only with limited success. 11. Theory

V t Z ) for a bulk wave focusing acoustic

microscope lens has been extensively dis-

cussed in the literature. In the SAWFAX, the focused acoustic energy is in the form of SAW as opposed to a bulk wave, and the reflecting planar surface is replaced by a

straight discontinuity. In this case, V ( Z )

shows the variation of the output voltage as a function of the distance between the reflecting straight discontinuity and the SAW focus. In the following derivation we use an angular spectrum approach very simi-

lar to that used in derivation of V ( Z )

formula for the regular acoustic microscope lens [ 7 ] .

In order to find the surface wave field at the focus of the SAWFAX, we consider the geometry drawn in Fig.1. The bulk wave

incident at r-s plane is represented by

ut(r,s). The surface wave field along .y

axis and propagating in + z direction,

uft(x), can be written

+ m + a

f r f

Uf'(X)=

J

1

J

U t ( r , S

- m -al exP

as :

where k~ is real part of the wavenumber of

surface waves and P ( r , s ) is the pupil

function. Eq.1 expresses the field at the focus as the Fourier transform of the

integrated incident field, because the

cylindrical parabolic mirror acts like a Fourier transform operator in one dimension

[ e ] ,

and bulk to surface wave conversion

(2)

S F i g . 1 Geometry f o r V ( Z ) c a l c u l a t i o n . phenomenon a s a n i n t e g r a t o r i n t h e d i m e n s i o n [ 9 1 . P ( r , s ) may b e g i v e n by o t h e r { e x p [ - ( a o t a ~ ) ( f - s t a n O R ) ] - x m < r < x r

.

e x p [

-

j k R S

1 1

o < s < f c o t

e R

o t h e r w i s e ( 2 ) The p u p i l f u n c t i o n h e r e i s f o u n d a s s u m i n g a m i r r o r w i t h r e c t a n g u l a r c r o s s s e c t i o n , w i d t h o f 2x. a n d a h e i g h t o f f c o t O R . The f i r s t e x p o n e n t i a l i s d u e t o t h e l e a k y n a t u r e o f SAW, a n d t h e s e c o n d e x p o n e n t i a l is a l i n e a r p h a s e term a r i s i n g f r o m t h e i n c l i n a t i o n o f i n c i d e n t w a v e f r o n t w i t h r e s p e c t t o r-s p l a n e . C o n v e r s e l y , i f t h e s u r f a c e wave f i e l d a l o n g t h e x a x i s p r o p a g a t i n g i n - z d i r e c t i o n , u f - ( x ) , i s known, o n e c a n c a l c u l a t e t h e f i e l d d i s t r i b u t i o n U - ( r , s ) a t r-s p l a n e a s

I o

P ( r , s ) To t a k e c a r e o f t h e r e f l e c t i o n p r o c e s s w h i c h may be a n g l e d e p e n d e n t , t h e f i e l d s m u s t b e t r a n s f o r m e d i n t o t h e a n g u l a r s p e c t r u m d o m a i n . T h e a n g u l a r s p e c t r u m o f u f ( x ) i s r e p r e s e n t e d by U r ( k x ) : t m - m P [ - ( f / k ~ ) k x , s I d s ( 5 ) I n a n g u l a r s p e c t r u m domain t h e p r o p a g a t i o n i s e a s i l y t a k e n i n t o a c c o u n t by m u l t i p l i c a - t i o n o f t h e e x p [ j k z z l f a c t o r w h e r e k Z = ( k R 2 t k x 2 ) 1 / * i s t h e c o m p o n e n t o f k v e c t o r i n z d i r e c t i o n . Due t o t h e l e a k y n a t u r e o f s u r f a c e w a v e s a n a d d i t i o n a l e x p o - n e n t i a l d e c a y f a c t o r m u s t b e i n c l u d e d i n p r o p a g a t i o n e q u a t i o n . I f a d i s c o n t i n u i t y w i t h a n g l e d e p e n d e n t r e f l e c t i o n c o e f f i c i e n t R ( s i n O R ) i s p r e s e n t a t p l a n e z = Z , o n e c a n w r i t e t h e r e f l e c t e d s p e c t r u m , U t - ( k r ) a t p l a n e z=O a s U r - ( k x )

=

U f t ( k r ) e x p [ j 2 k z Z l e x p [ - 2 ( a n t a L ) k z Z / k n 1 R ( k x / k R ) ( 6 ) w h e r e U r - = F { u f - ) ( 7 ) U s i n g E q . 7 a n d E q . 3 t o g e t h e r , o n e c a n w r i t e t h e f i e l d a t r-s p l a n e , u - ( r , s ) : U - ( r , s ) aL P ( r , s ) U r - [ ( k ~ / f ) r l ( 8 ) W e c a n c o m b i n e E q s . 5 , 6 a n d 8 t o g e t U - ( r , s ) = P ( r , s ) e x p [ j 2 k p Z ( l - r z / f 2 ) ' / 2 ] t m . R ( r / f ) 0 , n f ) z

I

U + ( - r , s ) P(-r,s) d s ( 9 ) - m w h e r e kp

=

kR t j ( a n t Q L ) . The o u t p u t v o l t a g e , V , o f t h e t r a n s d u c e r c a n be d e t e r - m i n e d a s a f u n c t i o n o f t h e r e f l e c t o r p o s i - t i o n , 2 , by i n t e g r a t i n g t h e u + ( r , s ) U - ( r , s ) p r o d u c t o v e r t h e r - s p l a n e t o o b t a i n + m t m V ( 2 )

=

1

[

I

u + ( r , s ) P ( r , s ) ds

l 2

R ( r / f ) e x p [ j 2 k p Z ( 1 - r 2 / f z ) 1 / * 1 dr ( 1 1 ) -m - m 1 1 1 . E x p e r i m e n t a l R e s u l t s M e a s u r e m e n t s a r e made t o o b s e r v e V ( Z ) a s g i v e n by E q . 1 1 . w i t h a s e t - u p i n p u l s e - e c h o a r r a n g e m e n t . The r e s u l t s f o r a s t r a i g h t e d g e i n aluminum a r e p l o t t e d i n F i g . 2 f o r v a r i o u s e d g e a n g l e s . V ( 2 ) c u r v e s f o r 9 0 0 e d g e s i n a l u m i n u m , c o p p e r a n d s t e e l a r e shown i n F i g . 3 . F i g . 4 d e p i c t s t h e V ( Z ) c u r v e s f o r h a l f a n d f u l l SAW w a v e l e n g t h s t e p d i s c o n t i n u i t i e s i n a l u m i n u m . A l l t h e c u r v e s a r e d i f f e r e n t f r o m e a c h o t h e r show- i n g e i t h e r m a t e r i a l o r t o p o l o g y d e p e n d e n c e o f r e f l e c t i o n c o e f f i c i e n t . W e h a v e a l s o c a l c u l a t e d V ( 2 ) u s i n g E q . 1 1 n u m e r i c a l l y w i t h u + ( r , s ) = l . An a n g l e i n d e - p e n d e n t r e f l e c t i o n c o e f f i c i e n t i s a s s u m e d [ 1 0 1 , [ 1 1 1 w i t h i n t h e a n g l e o f c o v e r a g e . The r e s u l t s o f t h i s c a l c u l a t i o n a r e g i v e n i n F i g . 5 . N o t i c e t h a t t h e a g r e e m e n t b e t w e e n t h e c a l c u l a t e d c u r v e s a n d t h e m e a s u r e m e n t r e s u l t s a r e n o t p a r t i c u l a r l y g o o d . W e s u s p e c t t h a t t h i s i s d u e t o u n i f o r m i l l u m i - n a t i o n a s s u m p t i o n a n d i d e a l i z a t i o n s o n t h e p u p i l f u n c t i o n . N e v e r t h e l e s s , t h e g e n e r a l v a r i a t i o n o f c u r v e s a g r e e w i t h t h e e x p e r i -

728

-

1986

ULTRASONICS SYMPOSIUM

(3)

F i g . 2 M e a s u r e d V ( Z ) c u r v e s f o r aluminum f o r 9 0 0 ( s o l i d l i n e ) , 4 0 0 ( d o t t e d ) a n d 300 ( d a s h e d ) e d g e s . F i g . 3 M e a s u r e d V ( Z ) c u r v e s f o r 9 0 0 e d g e o n aluminum ( s o l i d l i n e ) , s t e e l ( d o t t e d ) a n d c o p p e r ( d a s h e d ) . m e n t a l r e s u l t s . I f i t i s p o s s i b l e t o r e v e r s e t h e r e l a t i o n , o n e c a n o b t a i n t h e r e f l e c t i o n c o e f f i c i e n t a s a f u n c t i o n o f a n g l e f r o m t h e m e a s u r e d V ( Z ) d a t a , p r o v i d e d t h a t t h e p h a s e o f V ( Z ) c a n a l s o b e m e a s u r e d . H i l d e b r a n d e t . a l . 1 2 1 c a l c u l a t e d t h e r e f l e c t i o n c o e f f i c i e n t a t a l i q u i d - s o l i d i n t e r f a c e f r o m t h e m e a - s u r e d V ( 2 ) d a t a f o r a s c a n n i n g a c o u s t i c m i c r o s c o p e . W e u s e d a v e r y s i m i l a r a p p r o a c h t o c o n v e r t t h e V ( Z ) r e l a t i o n i n E q . 1 1 w i t h a n a p p r o x i m a t i o n t o a F o u r i e r t r a n s f o r m r e l a t i o n : 0 -30

I

I I I - 5 0 5 Z ( m m ) F i g . 4 M e a s u r e d V ( 2 ) c u r v e s f o r l m m s t e p down ( s o l i d l i n e ) , l m m ( d o t t e d ) a n d 2 m m ( d a s h e d ) s t e p u p s i n a l u m i n u m . 0 (dB) IV(Z1 -10

-

20 -30 - 5 0 5 Z ( m m ) F i g . 5 C a l c u l a t e d V ( Z ) c u r v e s f o r aluminum ( s o l i d l i n e ) a n d s t e e l ( d o t t e d ) . w h e r e z ( x )

=

,

i

i f

I X '

<

l i 2 9 0 o t h e r w i s e A ( Z ) = ( e x p [ - ( a o t a L ) m i n ( O , Z ) ] - e x p [ - ( a ~ t a ~ ) ( f + Z ) l l ~ / [ ( a ~ t a ~ ) ~ t a n * ~ ~ l , ( l - r 2 / f 2 ) 1 / 2 = 1 - t / 2 a n d r l = 2 - 2 ( 1 - x n z / f 2 ) 1 / 2 . The r e f l e c t e d a c o u s t i c s i g n a l i s d i g i t i z e d w i t h a 6 - b i t a c c u r a c y a t 2 5 MHz a n d i t i s s t o r e d i n a c o m p u t e r f o r e v e r y Z v a l u e . I t i s t h e n p o s s i b l e t o e l i m i n a t e t h e c o n t r i - b u t i o n o f o b j e c t i n d e p e n d e n t b a c k g r o u n d s i g n a l b y a s u b t r a c t i o n o p e r a t i o n . The r e s u l t c a n be F o u r i e r t r a n s f o r m e d t o o b t a i n t h e p h a s e s e n s i t i v e V ( 2 ) d a t a a t a p a r t i - c u l a r f r e q u e n c y . H a v i n g o b t a i n e d t h e r e a l a n d i m a g i n a r y p a r t s o f V ( Z ) , t h e r e f l e c - t i o n c o e f f i c i e n t i s e v a l u a t e d by u s i n g a n FFT i n t h e i n v e r s i o n i n t e g r a l . N o t i c e t h a t , t h e e q u a l l y s p a c e d FFT o u t p u t would y i e l d u n e q u a l l y s p a c e d r e f l e c t i o n c o e f f i c i e n t v a l u e s b e c a u s e o f t h e n o n l i n e a r t r a n s f o r m a -

1986

ULTRASONICS SYMPOSIUM

-

729

(4)

tion. The results of the calculation for an aluminum edge is plotted in Fig.6. A non- uniform reflection coefficient is obtained although no variation is expected within the angle of coverage 1111.

Arbitrary

Linear Scale

Fig.6 Reflection coefficient for 90° edge of aluminum as calculated by the inversion of V(Z).

IV. Di scussion

The V(2) curves for SAWFAX have certain amount of material and topology dependence. However, this dependence is not as dramatic as in the case of bulk wave focusing lenses. The probable reason for this is

relatively smooth nature of reflection

coefficient. The function R(.) is quite independent of incidence angle within the

angle of coverage 1111. V ( 2 ) curves are

dependent mainly on the amplitude of the reflection coefficient. Consequently, the

acoustic images obtained with such a

focusing arrangement are easy to interpret and free from phase dependent artifacts. The reflected SAW amplitude variation with respect to edge angle and depth of cracks at normal incidence is reported in the literature [12,13]. Combining this informa- tion along with the SAWFAX images, it may be possible to obtain quantitative evalua- tion.

The inversion relation between the V(Z) and the reflection coefficient is an ill-condi- tioned problem, due to its two-dimensional nature. It is very difficult to obtain reflection coefficient from measured V(Z) data in the presence of any type of errors such as quantization error or measurement noise.

References

1 . Special Issue of IEEE Son.Ultrason.,

v o l . 32, No:2, 1985.

2 . J.A.Hildebrand, K.Liang and S.D.Bennett

"Fourier transform approach to materials

characterization with the acoustic mic-

roscope," J.Appl.Phys.,vol. 54, 7016- 3. 4. 5. 6. 7. 8. 9. 7019,1983.

K.K.Liang, G.S.Kino, and B.T.Khuri-

Yakub, "Material characterization by the inversion of V(z)," IEEE Trans. Son. Ultrason. vol. 32, pp. 213-224, 1985.

W.Parmon, and H.L.Bertoni, "Ray inter-

pretation of the material signature in the acoustic microscope," Elect. Lett.,

H

.

Koymen

,

and A. Atalar

,

"Focusing

surface waves using an axicon, ' I Appl.

Phys. Lett., vol. 47, pp. 1266-1268, 1985.

A.Atalar, and H.Koymen, "Use of a coni- cal axicon as a surface acoustic wave

focusing device," IEEE Trans. Son.

Ultrason. (to be published in January

1987).

A.Atalar, "An angular spectrum approach to contrast in reflection acoustic mic- roscopy," J.Appl.Phys., vol 49, pp.5130- 5139, 1978.

J.W.Goodman Fourier Optics McGraw-Hill, New York, 1968.

H.L.Bertoni "Ray-optical evaluation of

V(Z) in the reflection acoustic micros- cope," IEEE Trans. Son. Ultrason. vol.

vol. 15, pp. 685- 686, 1979.

3 1 , pp.105-116, 1984.

lO.F.C.&ozzo, E.L.Cambiaggio, J-P Damiano,

and E.Rivier, "Influence of elastic

properties on Rayleigh wave scattering

by normal discontinuities, I' IEEE Trans.

on Son. Ultrason. vol. 24, pp.280-289, 1977.

ll.A.K.Gautesen, "Scattering of an oblique- ly incident Rayleigh wave in an elastic quarterspace," Wave Motion, vol. 8 , pp.

12.B.Q.Vu and V.K.Kinra "Diffraction of

Rayleigh waves in a half-space. I.

Normal edge crack, *'

J.

Acoust. Soc.

Am., vol. 77, pp. 1425-1430, 1985.

13. V. K. Ki nra and B. Q. Vu "Di f f raction of

Raylei gh waves in a half-space. 11.

Inclined edge crack," J. Acoust. Soc.

A m . , vol. 79, pp. 1688-1692, 1986. 27-41, 1986.

Referanslar

Benzer Belgeler

We presented valid inequalities, results that give the optimal lifting coefficients of some variables as well as families of facet defining inequalities.. A future research direction is

providing a clear picture of English language teacher educators’ perceptions on a state-of-the-art pedagogy, and its application in pre-service ELT programs. Above all, as

It can be seen from Figure 5 a,b that due to the DNA hybridization on the microtoroid surface, a signi ficant WGM shift ( ∼22 pm) was observed ( Figure 5 , red), whereas the

We take the center of the rhombohedral unit cell of solid cubane as the most favorable position for the dopant atom. We then optimize the structure of this alkali-metal doped

Here we introduced a new algorithm, Hercules, which uses a hidden Markov model based method to correct erroneous long reads using short but accurate Il- lumina data.. Profile HMMs

To see the relationship between the total distribution of critical thinking types in the two languages and the distribution of critical thinking types in two languages within

evolvability. Obviously other quality concerns could be provided here. For this a more focused analysis to each quality concern is required. We have defined a metamodel that aims

Yet, despite the large diversity of cleaning and storage procedures, different research groups 3,5,7–9,21,34,40,41 have consistently reported reproducible elec- trophoretic mobility