• Sonuç bulunamadı

Certain combinatoric convolution sums and their relations to bernoulli and euler polynomials

N/A
N/A
Protected

Academic year: 2021

Share "Certain combinatoric convolution sums and their relations to bernoulli and euler polynomials"

Copied!
29
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

J. Korean Math. Soc. 52 (2015), No. 3, pp. 537–565 http://dx.doi.org/10.4134/JKMS.2015.52.3.537

CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI

AND EULER POLYNOMIALS

Daeyeoul Kim, Abdelmejid Bayad, and Nazli Yildiz Ikikardes

Abstract. In this paper, we give relationship between Bernoulli-Euler polynomials and convolution sums of divisor functions. First, we establish two explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli and Euler polynomials. Second, as ap-plications, we show five identities concerning the third and fourth-order convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli or Euler polynomials.

1. Introduction and statement of main results 1.1. Introduction and notations

The Bernoulli polynomials Bk(x) and the Euler polynomials Ek(x) play an

important and quite mysterious role in mathematics and various places like analysis, number theory and differential topology. Throughout this paper, the symbols N, Z, R and C denote the set of natural numbers, the ring of integers, the field of real numbers and the field of complex numbers respectively. For the rest of this subsection we refer to [6, 21]. The Bernoulli numbers B0, B1, B2, . . .

are defined through the recursion formula

k X j=0 k + 1 j  Bj= 0 with B0= 1.

Received August 18, 2014; Revised November 26, 2014. 2010 Mathematics Subject Classification. 11B68, 11A05, 11K65.

Key words and phrases. Bernoulli polynomials, Euler polynomials, convolution sums, divisor functions.

This work was supported by The Research Fund of Balikesir University, Project No: 2014/32 and by the National Institute for Mathematical Sciences (NIMS) grant funded by the Korean government (B21503-2).

c

2015 Korean Mathematical Society 537

(2)

The Euler numbers E0, E1, E2, . . . are defined by E0= 1 and the recursion relation k X j=0 2|k−j k j  Ej = 0.

For k ∈ {0, 1, 2, . . . , }, the kth Bernoulli polynomial Bk(x) and the kth Euler

polynomial Ek(x) are defined as follows:

Bk(x) = k X j=0  k j  Bjxk−j and Ek(x) = k X j=0 k j E j 2j(x − 1 2) k−j.

Note that both Bk(x) and Ek(x) are monic polynomials with rational

coeffi-cients, Bk = Bk(0) and Ek = 2kEk(12). The Bernoulli polynomials and Euler

polynomials satisfy the following well-known identities:

N X j=0 jn=Bn+1(N + 1) − Bn+1(0) n + 1 (1.1) = 1 n + 1 n X j=0 (−1)j  n + 1 j  BjNn+1−j, (n ≥ 1) (1.2) Bn(x + y) = n X k=0 n k  Bk(x)yn−k and (1.3) En(x + y) = n X k=0  n k  Ek(x)yn−k.

Finally, we need the following number-theoretical functions. For n ∈ N, k ∈ Z and l ∈ {0, 1}, we define the following divisor functions:

σk(n) := X d|n dk, σ∗k(n) := X d|n n dodd dk, σk,l(n; 2) := X d|n d≡l(mod2) dk, e σk(n) := X d|n (−1)d−1dk.

(3)

1.2. Motivation The identity (1.4) n−1X k=1 σ1(k)σ1(n − k) = 5 12σ3(n) + 1 12− 1 2n  σ1(n)

for the basic convolution sum first appeared in a letter from Besge to Liouville in 1862 ([3]). Moreover, it should be noted that Ramanujan [18] introduced

P (q) = 1 − 24 ∞ X n=1 σ1(n)qn, Q(q) = 1 + 240 ∞ X n=1 σ3(n)qn, R(q) = 1 − 504 ∞ X n=1 σ5(n)qn

and obtained that

qdP (q) dq = P2(q) − Q(q) 12 , qdQ(q) dq = P (q)Q(q) − R(q) 3 , qdR(q) dq = P (q)R(q) − Q2(q) 2 .

Observe that the nth coefficient of P2(q) contains the convolution sum n−1X

k=1

σ1(k)σ1(n − k),

whence one can see that the identity qdP (q)dq = P2(q)−Q(q)12 is equivalent to Besge’s formula (1.4).

Many recent works on convolution formulas for divisor functions can be found in B. C. Berndt [2], J. W. L. Glaisher [7], H. Hahn [8], J. G. Huard et al. [9], D. Kim et al. [11], G. Melfi [16] and K. S. Williams [25, 24, 26]. In particular, the problem of convolution sums of the divisor function σ1(n)

and the theory of Eisenstein series has recently attracted considerable interest with the emergence of quasimodular tools. For a similar work, see also [4]. In connection with the classical Jacobi theta and Euler functions, other aspects of the function σ1(n) are explored by Simsek in [19]. For some of the story of

the subject, and for selection of these articles, we mention [15] and [16], and especially [9] and [25]. The study of convolution sums and their applications is classic and they play an important role in number theory (see [4], [9], [25]).

(4)

In this article we are trying to focus on the combinatoric convolution sums. For positive integers l and n, the combinatoric convolution sums

(1.5) l−1 X r=0  2l 2r + 1 n−1X m=1 σ2l−2r−1,1(m; 2)σ2r+1,1(n − m; 2) and (1.6) k−1 X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(m)eσ2s+1(n − m)

can be evaluated explicitly in terms of divisor functions and a sum involving Bernoulli or Euler polynomials. We are motivated by Ramanujan’s recursion formula for sums of the product of two Eisenstein series [2] and its proof, and also the following identities ([10], [25]):

k−1X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1(m)σ2s+1(n − m) (1.7) = 2k + 3 4k + 2σ2k+1(n)+  k 6 − n  σ2k−1(n)+ 1 2k + 1 k X j=2  2k + 1 2j  B2jσ2k+1−2j(n), (1.8) l−1 X r=0  2l 2r + 1 n−1X m=1 σ∗ 2l−2r−1(m)σ2r+1∗ (n − m) = 1 2 σ ∗ 2l+1(n) − nσ∗2l−1(n)  . 1.3. Main results

The aim of this article is to study two combinatoric convolution sums of the analogous type (1.5) and (1.6) in [13]. Using these new formulas and addition theorem of Bernoulli or Euler polynomials, we derive the explicit formulas for the third and fourth-order convolution sums of divisor functions.

More precisely, we prove the following results. Proposition 1. Let k ≥ 1 and n ≥ 2. Then

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2) = 1 4σ2k+1,0(n; 2) + 22k 2k + 1 X d|n d odd B2k+1(d + 1 2 ).

(5)

In the following special cases the above formula in Proposition 1 is simple. Then, for n odd we have

(1.9) (2k + 1) k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2) = 22kX d|n B2k+1( d + 1 2 ). If n = 2a, then k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2) = 1 4σ2k+1,0(2 a; 2). We set  m a1, . . . , ak  = m! a1! · · · ak! , with a1+ · · · + ak= m and a1, . . . , ak ∈ N ∪ {0}.

Corollary 2. Let n ≥ 1 and q be an odd positive integer greater than 2. Then X 1≤k≤n 1≤t≤2k, t odd  2n + 1 + 2k 2k, 2n + 1 − 2k, t, 2k − t  q−1X m=1 σ2k−t,1(m; 2) 22k−t σt,1(q − m; 2) 2t−1 ! = X d|q P2n+1(d) − σ1(q),

where Pn(x) is the Legendre polynomial. If p is an odd positive prime integer,

then X

d|q

Pp(d) ≡ σ1(q) (mod p).

In particular, if p and q are distinct odd positive prime integers, then we have

(1.10) Pp(q)/q ≡ 1 (mod p).

Remark 3. (1) Many interesting results of the Legendre polynomial are in [22, 23]. By (1.10), we give a finding method for a composite number. That is, if Pp(q)/q 6≡ 1 (mod p), then we determine q is a composite number.

(2) If p is an odd positive prime integer, then

k−1 X s=0  2k 2s + 1 p−1X m=1 (σ2k−2s−1,1(m; 2) 22k−2s−1 )( σ2s+1,1(p − m; 2) 22s+1 ) = (p−1)/2 X j=0 j2k. This is an analogous answer of (Question) in [12, p. 336].

Theorem 4. Let k and l be nonnegative integers. Then we have

(1.11) X j+r+v=2k+1 (−1)v 2r+v  2k + 1 j, r, v  Bj· (2l + 1)v= −B2k+1(l + 1).

(6)

Example 5. If p = 2q + 1 is an odd prime, then Pq m=1σ1,1(m; 2)σ1,1(2q + 1 − m; 2) = B3(q+1)3 , (1.12) Pq m=1σ1,1(m; 2)σ3,1(2q + 1 − m; 2) = B5(q+1) 5 , (1.13) P j+r+v=2k+1 (−1)v 2r+v 2k+1 j,r,v  Bj· pv= −B2k+1(p+12 ). (1.14)

Proposition 6. Let k ≥ 1 and n ≥ 2. Then

k−1 X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(m)eσ2s+1(n − m) (1.15) = −1 2eσ2k+1(n) + 1 2eσ2k(n) + neσ2k−1(n) − 1 2 X d|n (−1)d−1E2k(d + 1). Remark 7. (1) (1.15) is a generalization of [8, (4.4), (4.9)].

(2) The Proposition 1 and Proposition 6 can be compare to Theorem 3 and Theorem 4 in [13] as different formulas, respectively. Bernoulli, Euler polynomials and the convolutions for divisor functions are studied by many mathematicians independently. Our results (Propositions 1 and 4) give us two good relations between Bernoulli–Euler polynomials and convolution sum of divisor functions. For example, the well known basic properties (addition, difference, symmetry formulas, . . . , etc) of Bernoulli and Euler polynomials give us a simple and useful computational technique for the third and fourth-order convolution sum of divisor functions. In particular, it is a curious result with respect to same pattern that a certain combinatoric of convolution sums for (Pd|n(−1)d−1d2k−2s−1)(P

d|n(−1)d−1d2s+1) in Proposition 6 is represented

by a linear sum with respect to a Euler sumPd|n(−1)d−1E

2k(d + 1) and three

divisor functions Pd|n(−1)d−1d2k+1−i with i = 0, 1, 2.

As applications of Proposition 1 and Proposition 6, we obtain the following results.

Theorem 8. Let l, n, p, q ∈ N with l, n, p greater than 1. Then (a) X a,b odd 1≤m≤n−1  l a, b, c  σa,1(m; 2)σb,1(n − m; 2)σc,0(2q; 2) = 2 l−2 l + 1 X α|n 2,d|q α [Bl+1(α + d + 1) − Bl+1(α + d) +(−1)l{Bl+1(α − d + 1) − Bl+1(α − d)} + 2 l−1 l + 1 h X d|q α|n,α odd  Bl+1( α + 1 2 + d) + (−1) lB l+1( α + 1 2 − d)  i

(7)

−1 2(σ1,1(n; 2) + σ1( n 2))σl,0(2q; 2). (b) X a,b odd 1≤m≤n−1  l a, b, c  σa,1(m; 2)σb,1(n − m; 2)σ∗c(2q) = 2 l−2 l + 1 X α|n 2 d|q,qd odd α {Bl+1(α + d + 1) − Bl+1(α + d) +(−1)l(Bl+1(α − d + 1) + Bl+1(α − d)) + 2 l−1 l + 1 h X d|q α|n,α odd  Bl+1(α + 1 2 + d) + (−1) lB l+1(α + 1 2 − d)  i −1 2(σ1,1(n; 2) + σ1( n 2))σ ∗ l(2q). (c) X a,b odd 1≤m≤p−1  l a, b, c  e σa(m)eσb(p − m)eσc(q) = 1 2σel(q){eσ1(p) − 2peσ−1(p)} +1 8 X α|p,d|q (−1)α+d α  (2p + α − α2){El(d + α) + El(d − α + 1)} +(2p − α − α2){El(d + α + 1) + El(d − α)}.

Theorem 9. Let m, p, q ∈ N with greater than 1. Then

X 1≤l≤p−1 1≤l′≤q−1 a,b,c,d odd  2m a, b, c, d  σa,1(l; 2)σb,1(p − l; 2)σc,1(l′; 2)σd,1(q − l′; 2) (1.16) = X d|p,d′|q d,d′odd  22m−2 2m + 1  (d + d′)B2m+1  d + d′ 2 + 1  + (d − d′)B2m+1  d′− d 2  −2dB2m+1 d+ 1 2  − 2d′B 2m+1 d + 1 2  −2 2m−2 m + 1  B2m+2  d + d′ 2 + 1  − B2m+2  d′− d 2 

(8)

+ 2 2m−2 2m + 1 X d|p2,d ′ |q d′odd d  B2m+1  d′+ 1 + 2d 2  + B2m+1  d′+ 1 − 2d 2  + 2 2m−2 2m + 1 X d′|q2,d|p d odd d′  B2m+1  d + 1 + 2d′ 2  + B2m+1  d + 1 − 2d′ 2  + 2 2m−3 2m + 1 X d|p 2,d′| q 2 dd′{B2m+1(d + d′+ 1) − B2m+1(d + d′) +B2m+1(d − d′+ 1) − B2m+1(d − d′)} − 2 2m−2 2m + 1   σ1,0(p; 2) X d′|q,d′odd B2m+1  d′+ 1 2  +σ1,0(q; 2) X d|p,d odd B2m+1 d + 1 2   −1 8{σ2m+1,0(q; 2)σ1,1(p; 2) + σ2m+1,0(p; 2)σ1,1(q; 2)} − 1 16{σ2m+1,0(p; 2)σ1,0(q; 2) + σ1,0(p; 2)σ2m+1,0(q; 2)} .

Example 10. Theorem 9 in the special case where p and q are odd positive prime integers, has the following nice and simple statement:

X 1≤l≤p−1,1≤l′≤q−1 a,b,c,d odd  2m a, b, c, d  σa,1(l; 2)σb,1(p − l; 2)σc,1(l′; 2)σd,1(q − l′; 2) = 4 m−1 2m + 1  (p + q)B2m+1 p + q 2 + 1  + (p − q)B2m+1 q − p 2  −2pB2m+1  q + 1 2  − 2qB2m+1  p + 1 2  − 4 m−1 m + 1  B2m+2 p + q 2 + 1  − B2m+2 q − p 2  .

Theorem 11. Letm, p, q ∈ N with greater than 1. Then the triple convolution sum X 1≤l≤p−1,1≤l′≤q−1 a,b,c,d odd  2m a, b, c, d  e σa(l)eσb(p − l)eσc(l′)eσd(q − l′) = − 1 4(eσ1(p) − 2peσ−1(p))  e σ2m+1(q) − eσ2m(q) − 2qeσ2m−1(q)

(9)

+X d′|q (−1)d′−1E2m(d′+ 1)  −1 4(eσ1(q) − 2qeσ−1(q))  e σ2m+1(p) − eσ2m(p) − 2peσ2m−1(p) +X d|p (−1)d−1E2m(d + 1)  +1 8 X d|p,d′|q (−1)d+d′h (2p + d − d 2)(2q + d− d′2) 2dd′ ×nE2m(d + d′+ 1) + E2m(d + d′) + E2m(d − d′) + E2m(d − d′+ 1) o −n (2p + d − d 2) d + (2q + d′− d′2) d′ o E2m(d + d′+ 1) −(2p + d(1 + 2d ′) − 3d2) d E2m(d − d ′) −(2q + d′− d′2) d′ E2m(d − d ′+ 1) + 2{E2m+1(d + d′+ 2) + E2m+1(d′− d + 1) − (d + d′+ 1)E2m(d + d′+ 2) i.

Observe that in the case p and q odd prime numbers, the above formula is very simple.

2. Proofs of first main results

To prove propositions and theorems, we need the following lemma. Lemma 12. Ifn ≥ 2 and k ≥ 1, then

k−1X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1(m)σ2s+1(n − m) = 1 2σ2k+1(n) − 1 2σ2k(n) − nσ2k−1(n) + X d|n B2k+1(d + 1) 2k + 1 . Proof. From (1.7) we see that

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1(m)σ2s+1(n − m) (2.1) = 2k+3 4k+2σ2k+1(n)+ k 6−n  σ2k−1(n)+ 1 2k+1 k X j=2 2k+1 2j  B2jσ2k+1−2j(n) = 2k+3 4k+2σ2k+1(n)+  k 6−n  σ2k−1(n)+ 1 2k+1 2k+1X j=0  2k+1 j  (−1)jBjσ2k+1−j(n)

(10)

− 1 2k + 1   k X j=0 2k + 1 2j + 1  (−1)2j+1B2j+1σ2k−2j(n) + B0σ2k+1(n) +  2k + 1 2  B2σ2k−1(n)  . Using relation (1.1) and

(2.2) B0= 1, B1= − 1 2, B2= 1 6, B2k+1= B2k+1(0) = 0, with k ≥ 1 we deduce that k X j=0 2k + 1 2j + 1  (−1)2j+1B2j+1σ2k−2j(n) = − 2k + 1 1  B1σ2k(n) = 2k + 1 2 σ2k(n), 1 2k + 1 2k+1X j=0  2k + 1 j  (−1)jBjσ2k+1−j(n) = X d|n 1 2k + 1 2k+1X j=0 2k + 1 j  (−1)jB jd2k+1−j = X d|n B2k+1(d + 1) − B2k+1(0) 2k + 1 = 1 2k + 1 X d|n B2k+1(d + 1) (2.3)

with k ≥ 1. Combining (2.1), (2.2) and (2.3), we get this lemma.  Remark 13. The lemma gives new light, to study higher combinatoric convo-lution sums. In fact, we will use it to prove Proposition 6.

In the following proposition, we state a property of combinatoric convolution sums for divisor functions, which will be used in our proofs.

Proposition 14 ([13, (12)]). For k, n ∈ N and n ≥ 2,

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2) = 22k−1σ2k+1( n 2) + 1 4k + 2 k X i=0 2k + 1 2i + 1  ˜ B2k−2iσ2i+1,1(n; 2), where eBk:=Pkj=0 kj2jBj= 2kBk(1/2).

Proof of Proposition 1. By (1.2) we obtain we obtain (2.4) B2k+1( 1 + d 2 ) − B2k+1( 1 − d 2 ) = 1 22k k X i=0  2k + 1 2i  B2i( 1 2)2 2id2k+1−2i.

(11)

We recall that

(2.5) Bn(1 − x) = (−1)nBn(x).

Using (2.4) and (2.5), we deduce that (2.6) B2k+1 d + 1 2  = 1 22k+1 k X i=0 2k + 1 2i + 1  ˜ B2k−2id2i+1.

Equating (2.6) and Proposition 14,

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2) = 1 4σ2k+1,0(n; 2) + 22k 2k + 1 X d|n d odd B2k+1( d + 1 2 )

with k ≥ 1. It is easily checked that σ2k+1,0(n; 2) = 0 with n odd. Thus we

obtain 22k X d|n d odd B2k+1( d + 1 2 ) = (2k + 1) k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(n − m; 2)

with n odd. If n = 2a, then P

d|2a

d oddB2k+1(

d+1

2 ) = B2k+1(1) = 0. This proves

the proposition. 

Proof of Corollary 2. We recall [17, (2.6)] that

(2.7) 1 2P2n+1(2x − 1) = n X k=0 (2n + 2k + 1)! (2k)!(2k + 1)!(2n − 2k + 1)!B2k+1(x) with n ∈ N. Put d = 2x − 1. By (2.7) and (1.9), we derive that

X d|q P2n+1(d) = 2 X d|q n X k=0 (2n + 1 + 2k)! (2k)!(2k)!(2n + 1 − 2k)! B2k+1(d+12 ) 2k + 1 = X d|q d + n X k=1  2n + 1 + 2k 2k, 2k, 2n + 1 − 2k  × k−1 X s=0  2k 2s + 1 q−1X m=1 σ2k−2s−1,1(m; 2) 22k−2s−1 σ2s+1,1(q − m; 2) 22s ! = σ1(q) + X 1≤k≤n 1≤t≤2k, t odd  2n + 1 + 2k 2k, 2n + 1 − 2k, t, 2k − t 

(12)

× q−1 X m=1 σ2k−t,1(m; 2) 22k−t σ2t,1(q − m; 2) 2t−1 ! .

It is easily checked that Pp(1) = 1, σ1(q) = 1 + q and p| 2k,p−2k,t,2k−tp+2k  with

p and q distinct odd prime integers and 1 ≤ k ≤ (p − 1)/2. This proves the

corollary. 

Proof of Theorem 4. For k = 0, by simple computation Theorem 4 holds. By the same method in (2.3), we derive that

− 2 X d|n d odd X 1≤t<d t even t2k= −22k+1 X d|n d odd d−1 2 X l=1 l2k = − 22k+1 X d|n d odd 1 2k + 1 2k X j=0 (−1)j  2k + 1 j  Bj  d − 1 2 2k+1−j = 2k X j=0 (−1)j+1  2k + 1 j  2jB j 2k + 1 X d|n d odd (d − 1)2k+1−j = 2k X j=0 (−1)j+1 2k + 1 j  2jB j 2k + 1 X d|n d odd 2k+1−j X r=0 2k + 1 − j r  (−1)rd2k+1−j−r = 2k X j=0 (−1)j+1  2k + 1 j  2jB j 2k + 1 2k+1−jX r=0  2k + 1 − j r  (−1)rσ2k+1−j−r,1(n; 2) = 2k X j=0 2k+1−jX r=0 (−1)j+r+1  2k + 1 j  2k + 1 − j r  2jB j 2k + 1σ2k+1−j−r,1(n; 2) with k ≥ 1. Therefore, we get

1 4σ2k+1,0(n; 2) + 22k 2k + 1 X d|n d odd B2k+1( d + 1 2 ) = 1 4σ2k+1,0(n; 2) + 1 4k + 2 2k X j=0 2k+1−j X r=0 (−1)j+r 2k + 1 j 2k + 1 − j r  2jBjσ2k+1−j−r,1(n; 2) and X 2l+1|n B2k+1(l + 1) = − X 2l+1|n   X j+r+v=2k+1 (2l + 1)v(−1)v 2k + 1 j, r, v  2−r−vB j   .

(13)

Remark 15. (1.11) is an analogous result in [11, Question]. Lemma 16. Let k ≥ 1 and n ≥ 4. Then we obtain

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1( m 2)σ2s+1( n − m 2 ) = 1 2σ2k+1( n 2) − 1 2σ2k( n 2) − n 2σ2k−1( n 2) + X d|n 2 B2k+1(d + 1) 2k + 1 . Proof. To prove this lemma, we consider

k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1( m 2)σ2s+1( n − m 2 ) = k−1 X s=0  2k 2s + 1 n 2−1 X m=1 σ2k−2s−1(m)σ2s+1( n 2 − m). By Lemma 12, we have k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1(m 2)σ2s+1( n − m 2 ) = 1 2σ2k+1( n 2) − 1 2σ2k( n 2) − n 2σ2k−1( n 2) + X d|n 2 B2k+1(d + 1) 2k + 1 .  Proof of Proposition 6. Let k ≥ 1 and n ≥ 2. Then we obtain

k−1X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(m)eσ2s+1(n − m) = k−1X s=0  2k 2s + 1 n−1X m=1  σ2k−2s−1(m) − 22k−2sσ2k−2s−1(m 2)  ×σ2s+1(n − m) − 22s+2σ2s+1( n − m 2 )  = k−1X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1(m)σ2s+1(n − m) − 2 "k−1 X s=0  2k 2s + 1 n−1X m=1 22s+1σ2k−2s−1(m)σ2s+1( n − m 2 ) + k−1 X s=0  2k 2s + 1 n−1X m=1 22k−2s−1σ2k−2s−1(m 2)σ2s+1(n − m) # + 22k+2 k−1 X s=0  2k 2s + 1 n−1X m=1 σ2k−2s−1( m 2)σ2s+1( n − m 2 ).

(14)

From Proposition 1, Lemma 12 and Lemma 16 we obtain that k−1X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(m)eσ2s+1(n − m) (2.8) = −1 2σ2k+1(n) + 1 2σ2k(n) + nσ2k−1(n) − 1 2k + 1 X d|n B2k+1(d + 1) + 22k+1  1 2σ2k+1( n 2) − 1 2σ2k( n 2) − n 2σ2k−1( n 2) + X d|n 2 B2k+1(d + 1) 2k + 1   + 22kσ2k+1(n 2) + 22k+1 2k + 1 X d|n d odd B2k+1(d + 1 2 ) = −1 2σ2k+1(n) + σ2k+1,0(n; 2) + 1 2σ2k(n) − σ2k,0(n; 2) + nσ2k−1(n) − 2nσ2k−1,0(n; 2) + T, where T := − 1 2k + 1 X d|n B2k+1(d + 1) (2.9) + 2 2k+1 2k + 1   X d|n d odd B2k+1(d + 1 2 ) + X d|n 2 B2k+1(d + 1)    = − 1 2k + 1 X d|n d odd B2k+1(d + 1) + 22k+1 2k + 1 X d|n d odd B2k+1( d + 1 2 ) − 1 2k + 1 X d|n d even B2k+1(d + 1) + 22k+1 2k + 1 X d|n 2 B2k+1(d + 1) = − 1 2k + 1 X d|n d odd  B2k+1(d + 1) − 22k+1B2k+1( d + 1 2 )  − 1 2k + 1 X d|n 2 B2k+1(2d + 1) − 22k+1B2k+1(d + 1).

It is well known that

(2.10) En(x) = (−1)nEn(1 − x) and En(x) = 2 n + 1 n Bn+1(x) − 2n+1Bn+1(x 2) o . (2.11)

(15)

By (2.9), (2.10) and (2.11), we obtain T =1 2   X d|n 2 E2k(−2d) − X d|n d odd E2k(−d)    (2.12) = 1 2   X d|n 2 E2k(2d + 1) − X d|n d odd E2k(d + 1)    = −1 2 X d|n (−1)d−1E 2k(d + 1).

By the definition of eσk, we easily seen that

(2.13) eσk(n) = σk,1(n; 2) − σk,0(n; 2) and σk(n) = σk,1(n; 2) + σk,0(n; 2).

From (2.8), (2.12) and (2.13) we obtain (1.15).  Remark 17. Proposition 6 and Lemma 12 give us two curious formulas replace σs(n) (resp., B2k+12k+1(n), Faulhaber sum) by −eσs(n) (resp., −E2k2(n), alternating

sum). See the table below.

Table 1. Convolution sums of divisor functions

Pk−1 s=1 2k 2s+1  Pn−1 m=1σ2k−2s−1(m)σ2s+1(n − m) =12σ2k+1(n) −12σ2k(n) − nσ2k−1(n) + 1 2k+1 P d|nB2k+1(d + 1) Pk−1 s=1 2k 2s+1  Pn−1 m=1eσ2k−2s−1(m)eσ2s+1(n − m) = −12σe2k+1(n) +12σe2k(n) + neσ2k−1(n) −1 2 P d|n(−1)d−1E2k(d + 1) Corollary 18. Letn ≥ 2. Then

k−1 X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(2m)eσ2s+1(2n − 2m) (2.14) = 1 2[4neσ2k−1(2n) + eσ2k(2n) − eσ2k+1(2n)] − 1 4σ ∗ 2k+1(2n) −1 2 X d|2n (−1)d−1E2k(d + 1).

Proof. Consider the combinatoric convolution sum

k−1 X s=0  2k 2s + 1 n−1X m=1 e σ2k−2s−1(2m)eσ2s+1(2n − 2m) = k−1 X s=0  2k 2s + 1 2n−1X m=1 e σ2k−2s−1(m)eσ2s+1(2n − m) − k−1 X s=0  2k 2s + 1 Xn m=1 σ2k−2s−1(2m − 1)σ2s+1(2n − 2m + 1).

(16)

From [10, (15)] and Proposition 6, we obtain (2.14).  Lemma 19. Let n ≥ 3, m ≥ 2 and x, y ∈ R. Then

(a) [n−1 2 ] X k=1  n 2k + 1  B2k+1(x)yn−(2k+1) = 1 2 Bn(x + y) − (−1) nB n(x − y) − n(2x − 1)yn−1  . (b) [m 2] X k=1 m 2k  E2k(x)ym−2k= 1 2(Em(x + y) + (−1) mE m(x − y)) − ym.

Proof. This lemma follows from (1.2), (2.5) and (2.10).  Proof of Theorem 8. (a) We note that

(2.15) σk,0(2n; 2) = 2kσk(n) and (2.16)  l a, b, c  =  l c  a + b a  . By Proposition 1, (2.15) and (2.16), we obtain

Y2l+1(n, 2q) := l−1 X c=0  2l + 1 2c + 1  (l−c−1X s=0  2l − 2c 2s + 1 n−1X m=1 σ2l−2c−2s−1,1(m; 2)σ2s+1,1(n − m; 2) ) × σ2c+1,0(2q; 2) = l−1 X c=0 2l + 1 2c + 1   14σ2l−2c+1,0(n; 2) + 22l+1−2c−1 2l − 2c + 1   X α|n αodd B2l−2c+1( α + 1 2 )       × 22c+1σ2c+1(q).

Consider the second term of Y2l+1(n, 2q), we obtain

Y2l+1(2) (n, 2q) := 22l+1 l−1 X c=0 h (2l + 1)! (2c + 1)!(2l − 2c)!· 1 2l − 2c + 1 X α|n αodd B2l−2c+1(α + 1 2 ) i σ2c+1(q) = 2 2l+1 2l + 2 X α|n αodd hXl−1 c=0  2l + 2 2c + 1  B2l−2c+1(α + 1 2 )σ2c+1(q) i

(17)

= 2 2l+1 2l + 2 X α|n αodd h X d|q l−1 X c=0  2l + 2 2c + 1  B2l−2c+1( α + 1 2 )d 2c+1 !i = 2 2l+1 2l + 2 X α|n αodd h X d|q l X c=1  2l + 2 2c + 1  B2c+1(α + 1 2 )d 2l−2c+1 !i . By Lemma 19, we get Y2l+1(2) (n, 2q) = 2 2l+1 2l + 2 X α|n αodd h X d|q  1 2  B2l+2( α + 1 2 + d) − B2l+2( α + 1 2 − d)  −(2l + 2)(α + 1 2 − 1 2)d 2l+1 i = 2 2l 2l + 2 h X d|q,α|n α odd  B2l+2( α + 1 2 + d) − B2l+2( α + 1 2 − d)  i − 22l· σ1,1(n; 2)σ2l+1(q).

From the binomial theorem we have (2.17) l−1 X c=0 2l + 1 2c + 1  x2l−2c+1y2c+1= x 2  (x + y)2l+1− (x − y)2l+1 − xy2l+1,

and then we obtain Y2l+1(1) (n, 2q) := 22l−1 X α|n 2,d|q α(α + d)2l+1− (α − d)2l+1 − 22l X α|n 2,d|q αd2l+1.

By the property of Bernoulli polynomial,

(2.18) Bn(x + 1) − Bn(x) = nxn−1, we have Y2l+1(1) (n, 2q) := 2 2l−1 2l + 2 X α|n 2,d|q α {B2l+2(α + d + 1) − B2l+2(α + d) −B2l+2(α − d + 1) + B2l+2(α − d)} −1 2σ1( n 2)σ2l+1,0(2q; 2). Thus, we get Y2l+1(n, 2q) = 22l−1 2l + 2 X α|n 2,d|q α {B2l+2(α + d + 1) − B2l+2(α + d) −B2l+2(α − d + 1) + B2l+2(α − d)}

(18)

+ 2 2l 2l + 2 h X d|q,α|n α odd  B2l+2( α + 1 2 + d) − B2l+2( α + 1 2 − d)  i −1 2(σ1,1(n; 2) + σ1( n 2))σ2l+1,0(2q; 2). Similarly, by Proposition 1, (2.15) and (2.16), we obtain

Y2l(n, 2q) := 2 2l−2 2l + 1 X α|n 2,d|q α {B2l+1(α + d + 1) − B2l+1(α + d) +B2l+1(α − d + 1) − B2l+1(α − d)} + 2 2l−1 2l + 1 h X d|q,α|n α odd  B2l+1( α + 1 2 + d) + B2l+1( α + 1 2 − d)  i −1 2(σ1,1(n; 2) + σ1( n 2))σ2l,0(2q; 2). (b) It is easily checked that σ∗

s(2N ) = 2sσ∗s(N ). Using the same method in

(a), this completes (b).

(c) First, we consider when l is odd. By Proposition 6 and (2.16), we obtain U2l+1(p, q) := l−1 X c=0 2l+1 2c+1 (l−c−1X s=0 2l−2c 2s+1 p−1X m=1 e σ2l−2c−2s−1(m)eσ2s+1(p−m) ) × eσ2c+1(q) = l−1 X c=0  2l+1 2c+1   peσ2l−2c−1(p) +1 2eσ2l−2c(p) − 1 2eσ2l−2c+1(p) −1 2 X α|p (−1)α−1E 2l−2c(α + 1)   eσ2c+1(q).

It is well known that (2.19) l−1 X c=0 2l + 1 2c + 1  x2c+1y2l−2c= 1 2 (x + y) 2l+1+ (x − y)2l+1− x2l+1 and (2.20) 2xn= En(x + 1) + En(x).

From Lemma 19, (2.10), (2.19) and (2.20) we deduce that

l−1 X c=0  2l + 1 2c + 1  peσ2l−2c−1(p)eσ2c+1(q) = p 4 X α|p,d|q (−1)α+d1 α{E2l+1(d + α + 1) + E2l+1(d + α) + E2l+1(d − α + 1)

(19)

+E2l+1(d − α)} − peσ−1(p)eσ2l+1(q), 1 2 l−1 X c=0 2l + 1 2c + 1  e σ2l−2c(p)eσ2c+1(q) = 1 8 X α|p,d|q (−1)α+d{E2l+1(d + α + 1) + E2l+1(d + α) + E2l+1(d − α + 1) +E2l+1(d − α)} − 1 2eσ2l+1(q)eσ0(p), −1 2 l−1 X c=0  2l + 1 2c + 1  e σ2l−2c+1(p)eσ2c+1(q) = −1 8 X α|p,d|q (−1)α+dα {E2l+1(d + α + 1) + E2l+1(d + α) + E2l+1(d − α + 1) +E2l+1(d − α)} + 1 2eσ1(p)eσ2l+1(q), −1 2 l−1 X c=0  2l + 1 2c + 1  X α|p (−1)α−1E2l−2c(α + 1)   eσ2c+1(q) = −1 4 X α|p,d|q (−1)α+d{E2l+1(d + α + 1) + E2l+1(d − α)} + 1 2eσ0(p)eσ2l+1(q). By a routine calculation, we get

U2l+1(p, q) = 1 8 X α|p d|q (−1)α+d α [(2p + α − α 2){E 2l+1(d + α) + E2l+1(d − α + 1)} + (2p − α − α2){E2l+1(d + α + 1) + E2l+1(d − α)}] +1 2eσ2l+1(q){eσ1(p) − 2peσ−1(p)}.

Similarly, when l is even, we have then the result.  Remark 20. In [14, Theorem 3] we recall that

X a+b+c=2l+1 a,b,c odd a  2l + 1 a, b, c  X m1+m2+m3=N m3even (−1)m1+1σ∗ a(m1)σb∗(m2)σ∗c(m3) = (2l + 1)N 32  σ∗2l+1(N ) − 2N σ∗2l−1(N )

(20)

3. Proof of second main results: Theorem 9 and Theorem 11 Before proving Theorem 9 we note some easy lemmas for convolution Bernou-lli polynomials.

Lemma 21. Let m ≥ 2. Then we have (a) m−1X k=1 2m 2k B 2k+1(x) 2k + 1 B2m−2k+1(y) 2m − 2k + 1 = 1 4m + 2{(x + y − 1)B2m+1(x + y) + (x − y)B2m+1(y − x) −(2x − 1)B2m+1(y) − (2y − 1)B2m+1(x)} − 1 4m + 4{B2m+2(x + y) − B2m+2(y − x)} . (b) m−1X k=1  2m 2k  E2k(x)E2m−2k(y) = (1 − x − y)E2m(x + y) + (x − y)E2m(1 − x + y) − E2m(x) − E2m(y) + E2m+1(x + y) + E2m+1(1 − x + y).

Proof. (a) By [5, p. 158], we see that

(3.1) m X k=0 m k B k+1(x) k + 1 Bm−k+1(y) m − k + 1 = (x + y − 1)Bm+1(x + y) m + 1 − Bm+2(x + y) m + 2 − Bm+2(x) (m + 1)(m + 2)− Bm+2(y) (m + 1)(m + 2), (3.2) m X k=0 (−1)k m k B k+1(x) k + 1 Bm−k+1(y) m − k + 1 = (x − y)Bm+1(y − x) m + 1 + Bm+2(y − x) m + 2 + Bm+2(1 − x) (m + 1)(m + 2)+ Bm+2(y) (m + 1)(m + 2)

with m a positive integer. If we set m = 2m in (3.1) and (3.2), summing for (3.1) and (3.2), the result follows. Using [5, p. 150] or [20, (20)], we see that (3.3) m X k=0  m k 

(21)

Set x = 1 − x in (3.3), and using (2.10), we get m X k=0 m k 

(−1)kEk(x)Em−k(y) = 2(x − y)E2m(1 − x + y) + 2E2m+1(1 − x + y).

In a similar way, we get (b). 

Proof of Theorem 9. It is well known that

(3.4)  2m 2k  2k 2s + 1  2m − 2k 2s′+ 1  = (2m)! (2s + 1)!(2k − 2s − 1)!(2s′+ 1)!(2m − 2k − 2s− 1)! =  2m 2s + 1, 2k − 2s − 1, 2s′+ 1, 2m − 2k − 2s− 1  . Now if we set a = 2s + 1, b = 2k − 2s − 1, c = 2s′+ 1, d = 2m − 2k − 2s− 1 and (1.16) becomes (3.5) X 1≤l≤p−1,1≤l′≤q−1 a,b,c,d odd,a+b+c+d=2m  2m a, b, c, d  σa,1(l; 2)σb,1(p − l; 2)σc,1(l′; 2)σd,1(q − l′; 2) = m−1X k=1  2m 2k k−1X s=0  2k 2s + 1 Xp−1 l=1 σ2k−2s−1,1(l; 2)σ2s+1,1(p − l; 2)  × m−k−1X s′=0  2m − 2k 2s′+ 1 q−1X l′=1 σ2m−2k−2s′−1,1(l′; 2)σ2s+1,1(q − l′; 2)  . Thus, from Proposition 1, we consider 4 terms in (3.5) below:

C1: = X d|p,d′|q d,d′odd m−1X k=1  2m 2k  22mB2k+1 d+1 2  2k + 1 · B2m−2k+1  d′+1 2  2m − 2k + 1 , C2: = 1 16 m−1X k=1 2m 2k  σ2k+1,0(p; 2)σ2m−2k+1,0(q; 2), C3: = 1 4 m−1X k=1 2m 2k  22m−2kσ2k+1,0(p; 2) X d′|q d′odd B2m−2k+1  d′+1 2  2m − 2k + 1 , C4: = 1 4 m−1X k=1  2m 2k  22kσ2m−2k+1,0(q; 2) X d|p dodd B2k+1 d+12  2k + 1 .

(22)

Now, first, we consider C1. Set x = (d + 1)/2 and y = (d′+ 1)/2 in Lemma 21. Then we have C1= 22m−2 2m + 1 X d|p,d′|q d,d′odd  (d + d′)B2m+1 d + d′ 2 + 1  + (d − d′)B2m+1 d− d 2  (3.6) −2dB2m+1 d+ 1 2  − 2d′B2m+1 d + 1 2  −2 2m−2 m + 1 X d|p,d′|q d,d′odd  B2m+2  d + d′ 2 + 1  − B2m+2  d′− d 2  .

Second, we consider C2. Using the binomial theorem, the equation (2.15) and

the difference formula of Bernoulli polynomials, then we obtain

m−1X k=1  2m 2k  d2k+1d′2m−2k+1= dd ′ 2 {(d+ d ′)2m+ (d− d)2m} − dd′2m+1− d2m+1d, C2= 22m−2 X d|p 2,d′| q 2 m−1X k=1  2m 2k  d2k+1d′2m−2k+1 (3.7) = 22m−3 X d|p 2,d′| q 2 dd′n(d + d′)2m+ (d − d′)2m− 2d′2m− 2d2mo = 2 2m−3 2m + 1 X d|p2 d′|q2 dd′{B2m+1(d + d′+ 1)−B2m+1(d + d′)+B2m+1(d − d′+ 1) −B2m+1(d − d′)}− 1 16{σ2m+1,0(p; 2)σ1,0(q; 2)+σ1,0(p; 2)σ2m+1,0(q; 2)} . To find a formula of C3, we need an addition formula of Bernoulli polynomials

in (1.2). C3= 22m−1 2m + 1 X d|p 2,d ′|q, d′odd m−1X k=1  2m + 1 2k  d2k+1B2m−2k+1  d′+ 1 2  = 2 2m−1 2m + 1 X d|p 2,d ′|q, d′odd d "m−1 X k=1 2m + 1 2k + 1  B2k+1 d+ 1 2  d2m+1−(2k+1) # .

(23)

Using the formula m−1X k=1 2m + 1 2k + 1  B2k+1(x)y2m+1−(2k+1) = 1 2 B2m+1(x + y) + B2m+1(x − y) − (2m + 1)(2x − 1)y 2m− 2B 2m+1(x) we obtain C3= 2 2m−2 2m + 1 X d|p2,d ′ |q d′odd d  B2m+1  d′+ 1 + 2d 2  + B2m+1  d′+ 1 − 2d 2  (3.8) − 2 2m−2 2m + 1σ1,0(p; 2) X d′|q d′odd B2m+1  d′+ 1 2  −1 8σ2m+1,0(p; 2)σ1,1(q; 2). Since C4 is a symmetric form of C3, we deduce

C4= 2 2m−2 2m + 1 X d′|q2,d|p d odd d′  B2m+1  d + 1 + 2d′ 2  + B2m+1  d + 1 − 2d′ 2  (3.9) − 2 2m−2 2m + 1σ1,0(q; 2) X d|p dodd B2m+1 d + 1 2  −1 8σ2m+1,0(q; 2)σ1,1(p; 2). Summing Ci (i = 1, . . . , 4), we derive the theorem. 

Remark 22. For a positive n ∈ N − {1}, let Sk

a,b(n) := bk+ (a + b)k + (2a +

b)k+ · · · + (a(n − 1) + b)k. We recall [1, (11)] that

(3.10) Sk a,b(n) = ak k + 1  Bk+1(n + b a) − Bk+1  −  Bk+1( b a) − Bk+1  . By (3.10), (1.9) and Example 10, we have

k−1 X s=0  2k 2s + 1 p−1X m=1 σ2k−2s−1,1(m; 2)σ2s+1,1(p − m; 2) = S2,02k( p + 1 2 ) and X 1≤l,l′≤p−1 a,b,c,d odd  2m a, b, c, d  σa,1(l; 2)σb,1(p − l; 2)σc,1(l′; 2)σd,1(p − l′; 2) = p 2S 2m 2,0(p + 1) − pS2,02m( p + 1 2 ) − 1 4S 2m+1 2,0 (p + 1)

(24)

Proof of Theorem 11. By (3.4) and Proposition 6, we get X 1≤l≤p−1,1≤l′≤q−1 a,b,c,d odd a+b+c+d=2m  2m a, b, c, d  e σa(l)eσb(p − l)eσc(l′)eσd(q − l′) (3.11) = m−1X k=1 2m 2k  k−1X s=0  2k 2s + 1 p−1 X l=1 e σ2k−2s−1(l)eσ2s+1(p − l) ! × m−k−1X s′=0 2m − 2k 2s + 1 Xq−1 l′=1 e σ2m−2k−2s′−1(l′)eσ2s+1(q − l′) ! = m−1X k=1  2m 2k  −1 2eσ2k+1(p)+ 1 2eσ2k(p) + peσ2k−1(p)− 1 2 X d|p (−1)d−1E2k(d + 1)   ×  −1 2σe2m−2k+1(q) + 1 2σe2m−2k(q) + qeσ2m−2k−1(q) −1 2 X d′|q (−1)d′−1E2m−2k(d′+ 1)   . We consider the sum

D1:= 1 4 m−1X k=1 2m 2k  X d|p d′|q (−1)d−1(−1)d′−1E 2k(d + 1)E2m−2k(d′+ 1) by Lemma 21(b) we have D1= 1 4 X d|p d′|q (−1)d+d′{−(d + d′+ 1)E2m(d + d′+ 2) + (d − d′)E2m(d′− d + 1)

−E2m(d + 1)−E2m(d′+ 1)+E2m+1(d + d′+ 2)+E2m+1(d′− d + 1)} .

Here, we have X d|p d′|q (−1)d+d′E 2m(d + 1) = ( X d′|q (−1)d′−1· 1) · (X d|p (−1)d−1E 2m(d + 1)) = eσ0(q) X d|p (−1)d−1E2m(d + 1). Hence, D1= 1 4 X d|p d′|q (−1)d+d′{−(d + d′+ 1)E2m(d + d′+ 2) + (d − d′)E2m(d′− d + 1)

(25)

+E2m+1(d + d′+ 2) + E2m+1(d′− d + 1)} −1 4eσ0(q) X d|p (−1)d−1E2m(d + 1) −1 4σe0(p) X d′|q (−1)d′−1E2m(d′+ 1).

By the same method in Theorem 8(c) and Theorem 9, we derive the following 15 terms in (3.11) below: D2:= 1 4 m−1X k=1 2m 2k  e σ2k+1(p)eσ2m−2k+1(q) = 1 8 X d|p d′|q (−1)d+d′dd′(d + d)2m+ (d − d)2m −1 4{eσ2m+1(p)eσ1(q) + eσ2m+1(q)eσ1(p)} , D3:= − 1 4 m−1X k=1  2m 2k  e σ2k+1(p)eσ2m−2k(q) = −1 8 X d|p d′|q (−1)d+d′d(d + d)2m+ (d − d)2m +1 4{eσ2m+1(p)eσ0(q) + eσ2m(q)eσ1(p)} , D4:= − 1 2 m−1X k=1 2m 2k  qeσ2k+1(p)eσ2m−2k−1(q) = −q 4 X d|p d′|q (−1)d+d′ d d′  (d + d′)2m+ (d − d′)2m +q 2{eσ2m+1(p)eσ−1(q) + eσ2m−1(q)eσ1(p)} , D5:= −1 4 m−1X k=1  2m 2k  e σ2k(p)eσ2m−2k+1(q) = −1 8 X d|p d′|q (−1)d+d′d′(d + d′)2m+ (d − d′)2m +1 4{eσ2m+1(q)eσ0(p) + eσ2m(p)eσ1(q)} , D6:= 1 4 m−1X k=1  2m 2k  e σ2k(p)eσ2m−2k(q)

(26)

= 1 8 X d|p d′|q (−1)d+d′(d + d′)2m+ (d − d′)2m −1 4{eσ2m(p)eσ0(q) + eσ2m(q)eσ0(p)} , D7:= 1 2 m−1X k=1 2m 2k  qeσ2k(p)eσ2m−2k−1(q) = q 4 X d|p d′|q (−1)d+d′ 1 d′  (d + d′)2m+ (d − d′)2m −q 2{eσ2m(p)eσ−1(q) + eσ2m−1(q)eσ0(p)} , D8:= − 1 2 m−1X k=1 2m 2k  peσ2k−1(p)eσ2m−2k+1(q) = −p 4 X d|p d′|q (−1)d+d′d ′ d  (d + d′)2m+ (d − d′)2m +p 2{eσ2m+1(q)eσ−1(p) + eσ2m−1(p)eσ1(q)} , D9:= 1 2 m−1X k=1  2m 2k  peσ2k−1(p)eσ2m−2k(q) = p 4 X d|p d′|q (−1)d+d′1 d  (d + d′)2m+ (d − d′)2m −p 2{eσ2m(q)eσ−1(p) + eσ2m−1(p)eσ0(q)} , D10:= m−1X k=1  2m 2k  peσ2k−1(p)qeσ2m−2k−1(q) = pq 2 X d|p d′|q (−1)d+d′ 1 dd′  (d + d′)2m+ (d − d′)2m − pq {eσ2m−1(p)eσ−1(q) + eσ2m−1(q)eσ−1(p)} , D11:= 1 4 m−1X k=1 2m 2k  X d′|q (−1)d′−1σe2k+1(p)E2m−2k(d′+ 1) = 1 8 X d|p d′|q (−1)d+d′d {E2m(d + d′+ 1) + E2m(d′− d + 1)}

(27)

−1 4{eσ1(p) X d′|q (−1)d′−1E2m(d′+ 1) + eσ2m+1(p)eσ0(q)}, D12:= − 1 4 m−1X k=1  2m 2k  X d′|q (−1)d′−1eσ2k(p)E2m−2k(d′+ 1) = −1 8 X d|p d′|q (−1)d+d′{E2m(d + d′+ 1) + E2m(d′− d + 1)} +1 4{eσ0(p) X d′|q (−1)d′−1E2m(d′+ 1) + eσ2m(p)eσ0(q)}, D13:= − 1 2 m−1X k=1 2m 2k  X d′|q (−1)d′−1peσ 2k−1(p)E2m−2k(d′+ 1) = −p 4 X d|p d′|q (−1)d+d′1 d{E2m(d + d ′+ 1) + E 2m(d′− d + 1)} +p 2{eσ−1(p) X d′|q (−1)d′−1E2m(d′+ 1) + eσ2m−1(p)eσ0(q)}, D14:= 1 4 m−1X k=1  2m 2k  X d|p (−1)d−1E2k(d + 1)eσ2m−2k+1(q) = 1 8 X d|p d′|q (−1)d+d′d′{E2m(d + d′+ 1) + E2m(d − d′+ 1)} −1 4{eσ1(q) X d|p (−1)d−1E 2m(d + 1) + eσ2m+1(q)eσ0(p)}, D15:= − 1 4 m−1X k=1  2m 2k  X d|p (−1)d−1E2k(d + 1)eσ2m−2k(q) = −1 8 X d|p d′|q (−1)d+d′{E2m(d + d′+ 1) + E2m(d − d′+ 1)} +1 4{eσ0(q) X d|p (−1)d−1E2m(d + 1) + eσ2m(q)eσ0(p)}, D16:= − 1 2 m−1X k=1 2m 2k  X d|p (−1)d−1qE 2k(d + 1)eσ2m−2k−1(q)

(28)

= − q 4 X d|p d′|q (−1)d+d′ 1 d′ {E2m(d + d ′+ 1) + E 2m(d − d′+ 1)} +q 2{σ−1(q) X d|p (−1)d−1E 2m(d + 1) + eσ2m−1(q)eσ0(p)}.

Summing Di (i = 1, . . . , 16), and then use (2.20), we derive the theorem. 

References

[1] A. Bazs´o, ´A. Pint´er, and H. M. Srivastava, A refinement of Faulhaber’s theorem con-cerning sums of powers of natural numbers, Appl. Math. Lett. 25 (2012), no. 3, 486–489. [2] B. C. Berndt, Ramanujan’s Notebooks. Part II, Springer-Verlag, New York, 1989. [3] M. Besge, Extrait d’une lettre de M. Besge `a M. Liouville, J. Math. Pures Appl. 7

(1862), 256.

[4] B. Cho, D. Kim, and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl. 406 (2013), no. 1, 203–210.

[5] W. Chu and R. R. Zhou, Convolutions of Bernoulli and Euler polynomials, Sarajevo J. Math. 6(19) (2010), no. 2, 147–163.

[6] A. Erd´elyi, Higher Transcendental Functions. Vol 1, McGraw Hill, New York, 1953. [7] J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of

the divisors of the exponents, Messenger Math. 14 (1885), 156–163.

[8] H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593–1622.

[9] J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229–274, A K Peters, Natick, MA, 2002.

[10] D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory Appl. 2013 (2013), 81, 23 pp.

[11] D. Kim and N. Y. Ikikardes, Certain combinatoric Bernoulli polynomials and convolu-tion sums of divisor funcconvolu-tions, Adv. Difference Equ. 2013 (2013), 310, 11 pp. [12] A. Kim, D. Kim, and L. Yan, Convolution sums arising from divisor functions, J.

Korean Math. Soc. 50 (2013), no. 2, 331–360.

[13] D. Kim and Y. K. Park, Bernoulli identities and combinatoric convolution sums with odd divisor functions, Abstr. Appl. Anal. 2014 (2014), Article ID 890973, 8 pages. [14] , Certain Combinatoric convolution sums involving divisor functions product

formulae, Taiwanese J. Math. 18 (2014), no. 3, 973–988.

[15] D. B. Lahiri, On Ramanujan’s function τ (n) and the divisor function σ(n). I, Bull. Calcutta Math. Soc. 38 (1946), 193–206.

[16] G. Melfi, On some modular identities, Number Theory (Eger, 1996), 371–382, de Gruyter, Berlin, 1998.

[17] L. Navas, F. J. Ruiz, and J. L. Varona, Old and new identities for Bernoulli polynomials via Fourier series, Int. J. Math. Math. Sci. 2012 (2012), Article ID 129126, 14 pp. [18] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22

(1916), no. 9, 159–184.

[19] Y. Simsek, Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions, Gen. Math. 15 (2007), no. 3, 3–23.

[20] H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375–380.

[21] Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Dis-crete Appl. Math. 105 (2000), no. 1-3, 193–223.

(29)

[22] , Legendre polynomials and supercongruences, Acta Arith. 159 (2013), no. 2, 169–200.

[23] , Congruences concerning Legendre polynomials. III, Int. J. Number Theory 9 (2013), no. 4, 965–999.

[24] K. S. Williams, The convolution sum Pm<n/8σ(m)σ(n − 8m), Pacific J. Math. 228 (2006), no. 2, 387–396.

[25] , Number Theory in the Spirit of Liouville, London Mathematical Society, Stu-dent Texts 76, Cambridge, 2011.

[26] , The parents of Jacobi’s four squares theorem are unique, Amer. Math. Monthly 120 (2013), no. 4, 329–345.

Daeyeoul Kim

National Institute for Mathematical Sciences Daejeon 305-811, Korea

E-mail address: daeyeoul@nims.re.kr Abdelmejid Bayad

Universit´e d’Evry Val d’Essonne D´epartement de math´ematiques Bˆatiment I.B.G.B.I., 3`eme ´etage 23 Boulevard de France 91037 Evry cedex, France

E-mail address: abayad@maths.univ-evry.fr Nazli Yildiz Ikikardes

Department of Elementary Mathematics Education Necatibey Faculty of Education

Balikesir University 10100 Balikesir, Turkey

Şekil

Table 1. Convolution sums of divisor functions P k−1 s=1 2k 2s+1  P n−1 m=1 σ 2k−2s−1 (m)σ 2s+1 (n − m) = 12 σ 2k+1 (n) − 12 σ 2k (n) − nσ 2k−1 (n) + 2k+11 P d|n B 2k+1 (d + 1) P k−1 s=1 2k 2s+1  P n−1 m=1 eσ 2k−2s−1 (m)eσ 2s+1 (n − m) = − 12 eσ 2k+1 (n)

Referanslar

Benzer Belgeler

Argument Theorem, the generating functions, the Multiplication and the Euler-. Maclauren Theorems are widely used in obtaining the results given in

Moreover, we obtain differential, integro-differential, partial differ- ential equations and shift operators for the extended D Bernoulli polynomials by us- ing the

Ozden, H, Simsek, Y, Srivastava, HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials.. Luo, Q-M: On the

Motivated by the generalizations in () of the classical Bernoulli and Euler polynomials, we introduce and investigate here the so-called generalized two-dimensional q-Bernoulli

Moreover, improved q-exponential function creates a new class of q-Bernoulli numbers and like the ordinary case, all the odd coefficient becomes zero and leads

[r]

The interacting points group is determined depending on the differential equations of the structural element and system rigidity matrix is generated by using

introduced concepts of norms of commutative quaternion matrices and derived two algebraic techniques for finding solutions of least squares for the matrix equations AX ≈ B and AXC ≈