• Sonuç bulunamadı

Euler and De Moivre's Formulas for Fundamental Matrices of Commutative Quaternions

N/A
N/A
Protected

Academic year: 2021

Share "Euler and De Moivre's Formulas for Fundamental Matrices of Commutative Quaternions"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

DOI:HTTPS://DOI.ORG/10.36890/IEJG.768821

Euler and De Moivre’s Formulas for

Fundamental Matrices of Commutative

Quaternions

Hidayet Hüda Kösal

*

and Tuçe Bilgili

(Communicated by Bülent Altunkaya)

ABSTRACT

In this study, Euler and De Moivre’s formulas for fundamental matrices of commutative quaternions are obtained. Simple and effective methods are provided to find the powers and roots of these matrices with the aid of De Moivre’s formula obtained from the fundamental matrices of commutative quaternions. Moreover, our results are supported by pseudo-codes and some examples.

Keywords: Commutative quaternions; fundamental matrices; Euler and De Moivre’s formulas.

AMS Subject Classification (2020): 11R52 ; 15A24; 17A35.

1. Introduction

In 1892, Segre introduced the concept of commutative quaternions [1]. This number system is sometimes referred to as reduced bi-quaternions [2]. The set of commutative quaternions is a commutative ring under a combination law and commutative law of a four-dimensional Clifford algebra. Also, this set contains non-trivial idempotents, zero-divisors and nilpotent elements [3]. The commutative quaternions play an important role in neural networks, control and system theory, digital signal and image processing, etc. Thus, there is a considerable of literature on commutative quaternions and their matrices in recent years. Pei et al. presented digital image processing based on commutative quaternions [2]. Also, the authors defined a simplified commutative quaternion polar form to represent the color image. In [4], Pei et al. first introduced the eigenvalues, eigenvectors, singular value decomposition and generalized inverse of a commutative quaternion matrix. In [5], Isokawa et al. presented two types of multistate Hopfield neural networks using commutative quaternion. In [6], Kosal et al. developed some explicit expression of the solution of the Kalman-Yakubovich- conjugate commutative quaternions matrix equations. In [7], Yuan et al. studied the Hermitian solutions of commutative quaternion matrix equation(AXB, CXD) = (E, G). In [8], Kosal and Tosun constructed universal similarity factorization equalities over the commutative quaternions and their matrices. Also, the authors studied some algebraic properties of commutative quaternions and commutative quaternion matrices. In [9], Kosal derived the expressions of minimal norm least-squares solution for the commutative quaternion matrix equation AX = B. Moreover, the author investigated their applications in colour image restoration.

In [10], Zhang et al. introduced concepts of norms of commutative quaternion matrices and derived two algebraic techniques for finding solutions of least squares for the matrix equations AX ≈ B and AXC ≈ B in commutative quaternion matrix algebra.

In this study, Euler and De Moivre’s formulas for fundamental matrices of commutative quaternions are obtained. A simple and effective methods is provided to find the powers and roots of these matrices with the aid of De Moivre’s formula obtained from the fundamental matrices of commutative quaternions.

Received : 15-06-2020, Accepted : 17-09-2020

* Corresponding author

(2)

Throughout this paper, the following notations will be used. Let N, Z, R and H denote the set of natural number, integer numbers, real numbers and commutative quaternions, respectively. Also, all computations are performed on an Intel i7-3630QM@2.40GHz/16 GB computer using MATLAB R2016a software.

2. Algebraic Properties of Commutative Quaternions

The set of commutative quaternions can be represented as

H= {a = a0+ a1i + a2j + a3k : a0, a1, a2, a3R andi, j, k /R} (2.1) where

i2= −1, j2= 1, k2= −1, ij = ji = k, jk = kj = i, ki = ik = −j. (2.2) From (2.2), the operation of multiplication on the set of commutative quaternions H is commutative. There are three types of conjugates of the a = a0+ a1i + a2j + a3k ∈H. They are 1a = a0− a1i + a2j − a3k, 2a = a0+ a1i − a2j − a3kand3a = a0− a1i − a2j + a3k.The norm of thea ∈H is defined as

kak =p4

a (1a) (2a) (3a) = 4 q

[(a0+ a2)2+ (a1+ a3)2][(a0− a2)2+ (a1− a3)2]. (2.3) Ifkak 6= 0fora ∈H thenahas multiplicative inverses. Inverse ofais defined by

a−1=

1a 2 a 3

a kak4 . Also, every commutative quaterniona ∈H (kak 6= 0)can be written by

a = kak (cos φ + i sin φ) (cosh θ + j sinh θ) (cos ψ + k sin ψ) (2.4) whereφandψare Euclidean angle,θis the hyperbolic angle. Alsoφ, ψandθare called principal arguments.

Principal arguments fora ∈H are equal to

φ = 12tan−1

2(a

0a1−a2a3) a20−a21−a22+a23

 ,

θ = 12tanh−12(a

0a2+a1a3) a20+a21+a22+a23

 ,

ψ = 12tan−12(a

0a3−a1a2) a20+a21−a22−a23

 .

(2.5)

The equality in (2.4) is called the polar representation of thea ∈H.

Sincei2= k2= −1andj2= 1for anya ∈H (kak 6= 0) ,also we can express generalization of Euler’s formula for commutative quaternions as follows

eφi+θj+ψk=h

1 − φ2!2 +φ4!4 − ... + i

φ −φ3!3 +φ5!5 − ... i h

1 + θ2!2 +θ4!4 + ... + j

θ + θ3!3 +θ5!5 + ... i h

1 −ψ2!2 +ψ4!4 − ... + k

ψ − ψ3!3 +ψ5!5 − ...i

= (cos φ + i sin φ ) (cosh θ + j sinh θ) (cos ψ + k sin ψ) for any realφ, θandψ.Thus anya ∈H (kak 6= 0)can be written by

a = kak eφi+θj+ψk. (2.6)

The equality in (2.6) is called the Euler form of the commutative quaterniona ∈H [11].

Theorem 2.1. [11] Leta = kak (cos φ + i sin φ)(cosh θ + j sinh θ)(cos ψ + k sin ψ) = kak eφi+θj+ψk.Then we have an= kakn(cos nφ + i sin nφ)(cosh nθ + j sinh nθ)(cos nψ + k sin nψ) = kaknenφi+nθj+nψk

for every integern.

(3)

Theorem 2.2. [4] Leta ∈H.Then the equationxn = ahasn2nthroots for∀n ∈N.

Theorem 2.3. [8] Leta ∈H.Thenasatisfy the following Universal Similarity Factorization Equality (USFE)

P diag a,1a,¯ 2¯a,3¯a P−1=

a0 −a1 a2 −a3 a1 a0 a3 a2 a2 −a3 a0 −a1

a3 a2 a1 a0

 where

P = 1 2

1 1 1 1

−i i −i i

j j −j −j

−k k k −k

 andP−1 =1 2

1 i j k

1 −i j −k

1 i −j −k

1 −i −j k

.

In here, ϕ (a) =

a0 −a1 a2 −a3

a1 a0 a3 a2

a2 −a3 a0 −a1

a3 a2 a1 a0

 is called fundamental matrix of a ∈H. USFE over the commutative quaternions clearly reveals three basic facts:

1. a ∈H is algebraically isomorphic to

H0=





a0 −a1 a2 −a3

a1 a0 a3 a2 a2 −a3 a0 −a1 a3 a2 a1 a0

: a0, a1, a2, a3R





⊂R4×4

through the bijective mapa ∈H defined as

a = a0+ a1i + a2j + a3k → ϕ (a) =

a0 −a1 a2 −a3 a1 a0 a3 a2 a2 −a3 a0 −a1

a3 a2 a1 a0

.

2. Everya ∈H has a real matrix representation

ϕ (a) =

a0 −a1 a2 −a3

a1 a0 a3 a2

a2 −a3 a0 −a1

a3 a2 a1 a0

over the R.

3. All real matrices in H0 can uniformly be diagonalized over the commutative quaternions.

Theorem 2.4. [11] Leta, b ∈H andλ ∈R. Then the following identities are satisfied:

1. ϕ (a + b) = ϕ (a) + ϕ (b) , 2. ϕ (ab) = ϕ (a) ϕ (b) , 3. ϕ (ϕ (a) b) = ϕ (a) ϕ (b) , 4. ϕ (λa) = λϕ (a) , 5. (ϕ (a))T = ϕ 1a

,

6. trace (ϕ (a)) = a +1a +2a + 3a, 7. kak4= |det (ϕ (a))| .

(4)

3. Euler’s and De Moivre’s Formulas for the Fundamental Matrices of Commutative

Quaternions

Now, we introduce the Euler and De Moivre’s formulas for fundamental matrix ϕ(a) of a ∈H (kak 6= 0) . Depending on the casual character of commutative quaternions, we can express fundamental matrixϕ(a)as follows:

ϕ(a) = p4

(det (ϕ(a))) (cos φ I4+ ϕ (i) sin φ) (cosh θ I4+ ϕ (j) sinh θ ) (cos ψ I4+ ϕ (k) sin ψ ) (3.1) whereI4is the4 × 4unit matrix,

cos φ I4+ ϕ (i) sin φ =

cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 cos φ − sin φ

0 0 sin φ cos φ

,

cosh θ I4+ ϕ (j) sinh θ =

cosh θ 0 sinh θ 0

0 cosh θ 0 sinh θ

sinh θ 0 cosh θ 0

0 sinh θ 0 cosh θ

and

cos ψ I4+ ϕ (k) sin ψ =

cos ψ 0 0 − sin ψ

0 cos ψ sin ψ 0

0 − sin ψ cos ψ 0

sin ψ 0 0 cos ψ

.

The equality in the (3.1) is called the polar form of the fundamental matrixϕ(a). Theorem 3.1. Letφ, θ, ψ ∈R andn ∈Z.Then following identities are satisfied:

a. (cos φ I4+ ϕ (i) sin φ)n= cos nφ I4+ ϕ (i) sin nφ,

b. (cosh θ I4+ ϕ (j) sinh θ)n= cosh nθ I4+ ϕ (j) sinh nθ,

c. (cos ψ I4+ ϕ (k) sin ψ)n= cos nψ I4+ ϕ (k) sin nψ.

Proof. We use induction on positive integern.Suppose that

(cos φ I4+ ϕ (i) sin φ)k=

cos kφ − sin kφ 0 0

sin kφ cos kφ 0 0

0 0 cos kφ − sin kφ

0 0 sin kφ cos kφ

.

Using the identities

cos φ cos nφ − sin φ sin nφ = cos (n + 1) φ cos φ sin nφ + sin φ cos nφ = sin (n + 1) φ

we get

(5)

(cos φ I4+ ϕ (i) sin φ)k+1= (cos φ I4+ ϕ (i) sin φ)k(cos φ I4+ ϕ (i) sin φ)

=

cos kφ − sin kφ 0 0

sin kφ cos kφ 0 0

0 0 cos kφ − sin kφ

0 0 sin kφ cos kφ

cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 cos φ − sin φ

0 0 sin φ cos φ

=

cos (k + 1) φ − sin (k + 1) φ 0 0

sin (k + 1) φ cos (k + 1) φ 0 0

0 0 cos (k + 1) φ − sin (k + 1) φ

0 0 sin (k + 1) φ cos (k + 1) φ

= cos (k + 1) φ I4+ ϕ (i) sin (k + 1) φ.

Hence the first formula is true for∀n ∈N. Also the formula hold for all integern,since

ϕ(a)−1= 1

p4

(det (ϕ(a)))(cos φ I4− ϕ (i) sin φ) (cosh θ I4− ϕ (j) sinh θ ) (cos ψ I4− ϕ (k) sin ψ) . The accuracy of b and c are also shown in a similar way.

Corollary 3.1. (De Moivre’s Formula): Letϕ (a)be fundamental matrix ofa ∈H( kak 6= 0) .Then, we have

ϕ(a)n= p4

(det (ϕ (a)))n

(cos nφ I4+ ϕ (i) sin nφ) (cosh nθ I4+ ϕ (j) sinh nθ ) (cos nψ I4+ ϕ (k) sin nψ)

for everyn ∈Z.

Theorem 3.2. Let ϕ (a)be fundamental matrix of commutative quaternion a = a0+ a1i + a2j + a3k. The equation Xn= ϕ (a)hasn2nthroots for∀n ∈N and these roots are in this form

X = (ϕ(a))n1 = (det (ϕ (a0+ a2+ (a1+ a3) i)))4n1 ϕ cosφ+2πkn 1 + i sinφ+2πkn 1n1

ϕ 1+j2  + (det (ϕ (a0− a2+ (a1− a3) i)))4n1 ϕ

cosφ0+2πkn 2+ i sinφ0+2πkn 2n1

ϕ 1−j2  .

where k1, k2= 0, 1, ..., n − 1 and φ, φ0 are arguments of complex numbers a0+ a2+ (a1+ a3) i and a0− a2+ (a1− a3) i,respectively.

Proof. We can express the commutative quaterniona = a0+ a1i + a2j + a3kas follows a = (a0+ a1i) + (a2+ a3i) j

= (a0+ a2+ (a1+ a3)i)1+j2 + (a0− a2+ (a1− a3)i)1−j2 . In this case, we have

ϕ(a) = ϕ (a0+ a2+ (a1+ a3) i) ϕ 1+j2 

+ ϕ (a0− a2+ (a1− a3) i) ϕ 1−j2 

= (det (ϕ (a0+ a2+ (a1+ a3) i)))14ϕ (cos φ + i sin φ) ϕ 1+j2  +(det (ϕ (a0− a2+ (a1− a3) i)))14ϕ (cos φ0+ i sin φ0) ϕ 1−j2  .

(3.2)

In here,ϕ 1+j2  andϕ 1−j2  matrices are idempotent and∀n ∈N

 ϕ

1 + j 2

n

=

 ϕ

1 + j 2

n1

= ϕ

1 + j 2

 ,

 ϕ

1 − j 2

n

=

 ϕ

1 − j 2

n1

= ϕ

1 − j 2

 .

In this case, we get

(ϕ(a))n1 = (det (ϕ (a0+ a2+ (a1+ a3) i)))4n1 ϕ(cos φ + i sin φ)n1ϕ 1+j2 n1

+(det (ϕ (a0− a2+ (a1− a3) i)))4n1 ϕ(cos φ0+ i sin φ0)n1ϕ 1−j2 n1

= (det (ϕ (a0+ a2+ (a1+ a3) i)))4n1 ϕ(cos φ + i sin φ)n1ϕ 1+j2  +(det (ϕ (a0− a2+ (a1− a3) i)))4n1 ϕ(cos φ0+ i sin φ0)n1ϕ 1−j2 

.

(3.3)

(6)

Since the complex numbers (cos φ + i sin φ)n1 and (cos φ0+ i sin φ0)n1 will have at most n roots, the equation Xn= ϕ (a)hasn2nthroots for∀n ∈N.

3.1. Euler’s Formula for Fundamental Matrix of Commutative Quaternions

LetA = ϕ (i) ϕ (j) ϕ (k) .Obviously,(ϕ (i))2= −I4, (ϕ (j))2= I4, (ϕ (k))2= −I4.Since eϕ(i)φ= I4+ ϕ (i)φ +(ϕ(i)φ)2! 2 +(ϕ(i)φ)3! 3 +(ϕ(i)φ)4! 4 + ...

= I4+ ϕ (i)φ −φ2!2I4− ϕ (i)φ3!3 +φ4!4I4+ ...

=

1 − φ2!2 +φ4!4 − ...

I4+ ϕ (i)

φ −φ3!3 +φ5!5 − ...

= cos φ I4+ ϕ (i) sin φ,

eϕ(j)θ = I4+ ϕ (j) θ +(ϕ(j)θ)2! 2 +(ϕ(j)θ)3! 3 +(ϕ(j)θ)4! 4 + ...

= I4+ ϕ (j) θ +θ2!2I4+ ϕ (j)θ3!3 +θ4!4I4+ ...

=

1 + θ2!2 +θ4!4 + ...

I4+ ϕ (j)

θ + θ3!3 +θ5!5 + ...

= cosh θ I4+ ϕ (j) sinh θ and

eϕ(k)ψ= I4+ ϕ (k) ψ +(ϕ(k)ψ)2! 2 +(ϕ(k)ψ)3! 3 +(ϕ(k)ψ)4! 4+ ...

= I4+ ϕ (k) ψ −ψ2!2I4− ϕ (k)ψ3!3 +ψ4!4I4+ ...

=

1 −ψ2!2 +ψ4!4 − ...

I4 + ϕ (k)

ψ − ψ3!3 +ψ5!5 − ...

= cos ψ I4+ ϕ (k) sin ψ , we have

eϕ(i)φ+ϕ(j)θ+ϕ(k)ψ = (cos φ I4+ ϕ (i) sin φ) (cosh θ I4+ ϕ (j) sinh θ) (cos ψ I4+ ϕ (k) sin ψ) .

Thus, every fundamental matrix of commutative quaterniona (kak 6= 0)can be written by ϕ (a) =p4

(det (ϕ(a)))eϕ(i)φ+ϕ(j)θ+ϕ(k)ψ. (3.4)

This equality is called the Euler formula of the fundamental matrixϕ (a) . Corollary 3.2. Let ϕ (a) =p4

(det (ϕ (a)))eϕ(i)φ+ϕ(j)θ+ϕ(k)ψ and ϕ (b) =p4

(det (ϕ (b)))eϕ(i)φ0+ϕ(j)θ0+ϕ(k)ψ0 are fundamental matrices of commutative quaternionsa, b (kak 6= 0, kbk 6= 0) .Then we have

ϕ(a)n=p4

(det (ϕ (a)))n enϕ(i)φ+nϕ(j)θ+nϕ(k)ψ, n ∈Z, ϕ(a)−1= 4

q

(det (ϕ (a)))−1e−ϕ(i)φ−ϕ(j)θ−ϕ(k)ψ,

and

ϕ (a) ϕ (b) =p4

det (ϕ (ab))eϕ(i)(φ+φ0)+ϕ(j)(θ+θ0)+ϕ(k)(ψ+ψ0).

(7)

3.2. Numerical algorithms for Power and Root Calculation of Fundamental Matrices

We now give the numerical algorithms for obtaining the power and root of fundamental matrices based on our results.

Algorithm 1.

1. Begin

2. Enter the fundamental matrix and the power to calculate the fundamental matrix

3. Calculate the determinant of the fundamental matrix

4. Calculate fi, teta, psi angles according to equation (2.5)

5. Calculate Euler’s formula according to equation (3.4)

6. Calculate the power of the fundamental matrix according to Corollary3.2.

7. Write power

8. Stop.

Algorithm 2.

1. Begin

2. Enter the fundamental matrix and the root of the basic matrix to be calculated

3. Rewrite the fundamental matrix according to the equation (3.2)

4. Calculate the roots of the fundamental matrix according to Theorem3.2

5. Write Roots

6. Stop.

The graph below shows the time elapsed when calculating the power of a randomly generated fundamental matrix with the matrix multiplication and the algorithm 1 in MATLAB.

(8)

Figure 1.Comparison of ordinary matrix product and algorithm 1 methods.

It is clear from the graph that the algorithm 1 used to calculate the power of the fundamental matrix reaches the result in a shorter time than the ordinary matrix multiplication.

3.3. Numerical Examples

Example 3.1. Let us find the 100th power of the fundamental matrix

A =

1

212 12 12

1 2

1

212 12

1 2

1 2

1 212

12 12 12 12

 according to the Corollary3.2.

The determinant of matrixAis 1. Let us now obtain the Euler formula of the matrixA. Since φ = 12tan−12(a

0a1−a2a3) a20−a21−a22+a23



= 12tan−1 10

= π4, θ = 12tanh−12(a

0a2+a1a3) a20+a21+a22+a23



=12tanh−1(0) = 0 and

ψ = 12tan−12(a

0a3−a1a2) a20+a21−a22−a23



= 12tan−1 −10 

= π4 the Euler formula of matrixAis

A = p4

det (A)eϕ(i)φ+ϕ(j)θ+ϕ(k)ψ= eϕ(i)π4+ϕ(k)π4. Therefore we get

A100= e100ϕ(i)π4+100ϕ(k)π4 = e100ϕ(i)π4e100ϕ(k)π4 = (−I4) (−I4) = I4 according to Corollary3.2whereI4is the4 × 4unit.

Example 3.2. Let us find the square root of the fundamental matrix

A =

1

212 12 12

1 2

1

212 12

1 2

1 2

1 212

12 12 12 12

(9)

according to the Theorem3.2.

We can express matrixAas follows:

A =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ϕ

1 + j 2

 +

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

ϕ

1 − j 2



Then we get

A = ϕ (cos 0 + i sin 0) ϕ

1 + j 2

 + ϕ

 cosπ

2 + i sinπ 2

 ϕ

1 − j 2

 .

As a result, the following result is obtained

A12 = ϕ

 cos

2πk

1

2

 + i sin

2πk

1

2



ϕ

1 + j 2

 + ϕ

 cos

π

2 + 2πk2 2

 + i sin

π 2 + 2πk2

2



ϕ

1 − j 2

 ,

wherek1, k2= 0, 1.

According to Theorem3.2, the equationX2= Ahas4square roots and these roots are in this form

A12 = ±

2+ 2

4

2 4

2− 2 4

2

4 2 4

2+ 2

4

2 4

2− 2 4 2−

2 4

2 4

2+ 2

4

2 4

2 4

2− 2 4

2 4

2+ 2 4

A12 = ±

2− 2 4

2 4

2+ 2

4

2 4

2 4

2− 2 4

2 4

2+ 2 4 2+

2

4

2 4

2− 2 4

2

4 2 4

2+ 2

4

2 4

2− 2 4

 .

Acknowledgments

The authors would like to thank the anonymous referees for their helpful suggestions and comments which improved significantly the presentation of the paper.

References

[1] Segre, C.: The real representations of complex elements and extension to bicomplex. Systems. Math. Ann., 40, 413, (1892).

[2] Pei, S. C., Chang, J. H., Ding, J. J.: Commutative reduced biquaternions and their fourier transform for signal and image processing applications.

IEEE Trans. on Signal Proces., 52(7), 2012-2031, (2004).

[3] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The mathematics of minkowski space-time with an introduction to commutative hypercomplex numbers. Birkhauser Verlag AG, Berlin, (2008).

[4] Pei S., Chang J., Ding J., Chen M.: Eigenvalues and singular value decompositions of reduced biquaternion matrices. IEEE Trans. Circ. Syst. I., 55(9), 1549-8328, (2008).

[5] Isokawa, T., Nishimura, H., Matsui, N.: Commutative quaternion and multistate hopfield neural networks. In Proc. Int. Joint Conf. Neural Netw., Barcelona, Spain, 1281-1286, (2010).

[6] Kosal H. H., Akyigit M., Tosun M.: Consimilarity of commutative quaternion matrices. Miskolc Math. Notes, 16(2), 965-977, (2015).

[7] Yuan, S. F., Tian,Y., Li, M. Z.: On Hermitian solutions of the reduced biquaternion matrix equation (AXB, CXD) = (E, G). Linear Multilinear Algebra, 1-19 (2018). DOI: 10.1080/03081087.2018.1543383.

[8] Kosal H. H., Tosun M.: Universal similarity factorization equalities for commutative quaternions and their matrices. Linear Multilinear Algebra, 67(5), 926-938, (2019).

[9] Kosal H. H.: Least-squares solutions of the reduced biquaternion matrix equation AX = B and their applications in colour image restoration. J.

Modern Opt., 66(18), 1802-1810, (2019).

[10] Zhang D., Guo Z., Wang G., Jiang T.: Algebraic techniques for least squares problems in commutative quaternionic theory. Math Meth Appl Sci., 43, 3513-3523, (2020).

[11] Catoni, F., Cannata, R., Zampetti, P.: An introduction to commutative quaternions. Adv. Appl. Clifford Algebras, 16, 1-28, (2006).

(10)

Affiliations

HIDAYETHUDAKOSAL

ADDRESS:Sakarya University, Dept. of Mathematics, 54050, Sakarya-TURKEY.

E-MAIL:hhkosal@sakarya.edu.tr ORCID ID: 0000-0002-4083-462X TUCEBILGILI

ADDRESS:Sakarya University, Dept. of Mathematics, 54050, Sakarya-TURKEY.

E-MAIL:tuce.bilgili1@ogr.sakarya.edu.tr ORCID ID: 0000-0002-9554-65027

Referanslar

Benzer Belgeler

we optimized a novel high performance liquid chromatography method on a Diol chromatography column for accurate, rapid, economic, and environmentally friendly

As shown in the inset, the two doped regions display 2.4 eV difference in the binding energy position under + 2 V reverse bias, traversing across the gold electrodes.. Traversing

maddesinde; “ kamu sosyal güvenlik sisteminin tamamlayıcısı olarak, bireylerin emekliliğe yönelik tasarrufları- nın yatırıma yönlendirilmesi ile emeklilik döneminde ek bir

Türkiye Büyük Millet Meclisi 14 Mayıs 1950 seçimlerinden sonra yeni bir döneme girmiştir. Bu dönem ülkedeki insanların yeni oluşan meclisten çok şey beklediği bir dönme

Gelişim kavramı insanın bütün yönlerini ilgilendiren bir kavramdır. Dolayısıyla bireyin dînî algısıyla da ilişki içindedir. Bireyin dînî gelişimi hakkında bilgi

Türk insanı için vatan çok ayrı bir yere sahip olduğu için İbrahim Zeki Burdurlu, pek çok şiirinde, efsanesinde ve romanında Türk insanının vatan, bayrak ve Atatürk

Key words: Coverage probability; Stress-strength reliability; Gompertz distri- bution; Minimum variance unbiased estimation; Maximum likelihood estima- tion; Confidence interval..

Bürsa reji müdürü Edip Beyin kızı.. İstanbul milletvekili Adnan Adıvarın