• Sonuç bulunamadı

Bağışıklık sistemini baskılayan hastalık veya klinik tabloların her geçen gün sıklığının arttığı çağımızda fırsatçı enfeksiyonlarla mücadele etmek de bir gereklilik haline gelmiştir. Fırsatçı mantar enfeksiyonları arasında önemli bir yeri olan Cryptococcus hastalığı ile mücadelede ilk adımlardan birisi olan tarama amaçlı LFA kullanımı çabuk, ucuz, güvenilir ve kolay uygulanabilir bir yöntemdir. HIV-pozitif kişilerde Cryptococcus antijeni varlığı HIV-negatiflere göre anlamlı ölçüde yüksektir.

Çalışmamızda bulunan %11’lik antijenemi prevalansı ülkemizde başka çalışmalar ile desteklenmeli ve ülkemize ilişkin gerçek prevalans belirlenmelidir. Konu üzerinde daha geniş hasta grupları yanında diğer risk gruplarının da dahil edildiği çalışmalara ihtiyaç vardır.

Biz, bu çalışmanın sonuçlarının ülkemizde kriptokokkozun tanısını ve yönetimini geliştireceğine ve standart bir tanı/tedavi protokolüne öncülük edeceğine inanmaktayız. Çalışmamızda beklenmedik bir şekilde yüksek bulunan CrAg prevalansı doğrultusunda ülkemize ait HIV tedavi rehberlerine CrAg taramasının koşulsuz eklenmesi gerektiğini, böylece HIV-ilişkili kriptokokkoza bağlı mortalite ve morbiditenin azaltılabileceğini, ayrıca HIV-pozitif hasta bakımının iyileştirilebileceğini düşünmekteyiz.

KAYNAKLAR

1. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci. Transl. Med., 2012; 4:165rv13.

2. Casadevall A. Don’t forget the fungi when considering global catastrophic biorisks. Health Secur., 2017; 15: 341–342.

3. Savary S, Ficke A, Aubertot JN, Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012; 4: 519–537.

4. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL et al. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012; 484: 186–194.

5. Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals.

mBio, 2010; 1:e00061–10

6. Molloy SF, Chiller T, Greene GS, Burry J, Govender NP, Kanyama C et al. Cryptococcal meningitis: a neglected NTD? PLoS Negl. Trop. Dis., 2017; 11:e0005575.

7. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis., 2017; 17: 873–881.

8. Moran MC, Chapman N, Abela-Oversteegen L, Chowdhary V, Doubell A, Whittall C et al.

G-FINDER: neglected disease research and development: the ebola effect. Policy Cures, 2015; 8:

13–85.

9. Singh K, Ilkit M, Shokohi T, Tolooe A, Malik R, Seyedmousavi S. Cryptococcosis: Emergence of Cryptococcus gattii in animals and zoonotic potential. In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij P, eds. Emerging and Epizootic Fungal Infections in Animals. Springer, Cham, Switzerland. 2018: 249–287.

10. Littman ML. Cryptococcosis,Grune&Stratton 1956: pp.121‒146.

11. Boulware DR, Rolfes MA, Rajasingham R, von Hohenberg M, Qin Z, Taseera K, Schutz C, Kwizera R, Butler EK, Meintjes G, Muzoora C, Bischof JC, Meya DB. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg Infect Dis. 2014; 20: 45‒53

12. Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Medical Mycology, 2019; 57:133

13. Saul N, Krockenberger M, Carter D. Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows. Eukaryot Cell, 2008; 727.

14. Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genetics and Biology, 2018; 111: 92‒107

15. Srikanta D, Santiago-Tirado FH, Doering TL. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast, 2014; 31: 47–60

16. Kwon-Chung K.J, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS.

Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb. Perspect. Med., 2014; 4: a019760.

17. O'Meara TR, Alspaugh, JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin.

Microbiol. Rev., 2012; 25: 387–408.

18. Vecchiarelli A, Monari C. Capsular material of Cryptococcus neoformans: virulence and much more. Mycopathologia, 2012; 173: 375–386.

19. Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 2016; 16:

fov106.

20. García-Rodas R, Cordero RJ, Trevijano-Contador N, Janbon G, Moyrand F, Casadevall A, Zaragoza O. Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. mBio, 2014; 5: e00945–14.

21. Rodrigues ML, Nakayasu, ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell, 2008; 7: 58–67.

22. Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS ONE, 2012; 7: e48570

23. Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell. Microbiol., 2016; 18: 792–799.

24. Sapmak A, Boyce KJ, Andrianopoulos A, Vanittanakom N. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS ONE, 2015; 10: e0122728.

25. Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, Jarvis JN, Gilbert AS, Fisher MC, Harrison TS., May RC, Bicanic T. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J. Clin. Invest., 2014; 124: 2000–2008.

26. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell, 2008; 135: 174–188.

27. Zimmer BL, Roberts GD. Rapid selective urease test for presumptive identification of Cryptococcus neoformans. J. Clin. Microbiol., 1979; 10: 380–381.

28. Feder V, Kmetzsch L, Staats CC, Vidal-Figueiredo N, Ligabue-Braun R, Carlini CR, Vainstein MH. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. FEBS J., 2015; 282: 1406–1418.

29. Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM, Perfect JR, Huffnagle GB. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol., 2004; 164: 1761–1771.

30. Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr.

Opin. Microbiol. 2013; 16: 409–413.

31. Crabtree JN., Okagaki LH., Wiesner DL, Strain AK, Nielsen JN, Nielsen K. Titan cell production enhances the virulence of Cryptococcus neoformans. Infect. Immun., 2012; 80: 3776–

3785.

32. Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog., 2010; 6:

e1000945.

33. Guimarães AJ, Frases S, Cordero RJ, Nimrichter L, Casadevall A, Nosanchuk JD.

Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cell.

Microbiol., 2010; 12: 740–753.

34. Chaturvedi V, Flynn T, Niehaus WG, Wong B. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology, 1996; 142 (Pt 4): 937–943.

35. Liu TB., Kim JC, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, Kim KJ, Xue C. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier.

PLoS Pathog., 2013; 9: e1003247

36. Martinez LR, Casadevall A. Biofilm formation by Cryptococcus neoformans. Microbiol. Spectr., 2015; 3: MB–0006–2014.

37. Martinez LR, Ibom DC, Casadevall A, Fries BC. Characterization of phenotypic switching in Cryptococcus neoformans biofilms. Mycopathologia, 2008; 166: 175–180.

38. Jain N, Guerrero A, Fries BC. Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res., 2006; 6: 480–488

39. Fries BC, Goldman DL, Cherniak R, Ju R, Casadevall A. Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect.

Immun., 1999; 67: 6076–6083.

40. Coelho C, Bocca AL, Casadevall A. The tools for virulence of Cryptococcus neoformans. Adv.

Appl. Microbiol. 2014; 87: 1–41.

41. Kronstad J, Saikia S, Nielson ED, Kretschmer M, Jung W, Hu G, Geddes JM, Griffiths EJ, Choi J, Cadieux B, Caza M, Attarian R. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. Eukaryot. Cell, 2012; 11: 109–118.

42. Mauch RM, Cunha VDO, Dias ALT. The copper interference with the melanogenesis of Cryptococcus neoformans. Rev. Inst. Med. Trop. Sao Paulo, 2013; 55: 117–120.

43. Busse O. Über parasitäre zelleinschlusse und ihre züchtung. Zentralbl Bakteriol, 1894; 16: 175‒

180

44. Buschke A. Über eine durch Coccidien Hervergerufene Krankheit des menschen. Dtch Med Wochenschr, 1895; 21: 14.

45. Sanfelice F. Contribato dei blastomiceti morfologia e biologia dei blastomiceti che si sviluppano nei succhi de alcuni frutti. Ann Igien, 1894; 4:463‒469

46. Barnett JA. A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans.

Yeast, 2010; 27: 875‒904

47. Ellis DH, Pfeiffer TJ. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol, 1990; 28: 1642.

48. Sorrell TC, Chen SC, Ruma P, et al. Concordance of clinical and environmental isolates of Cryptococcus neoformans var. gattii by random amplification of polymorphic DNA analysis and PCR fingerprinting. J Clin Microbiol, 1996; 34:1253.

49. Chen SC, Slavin MA, Heath CH, et al. Clinical manifestations of Cryptococcus gattii infection:

determinants of neurological sequelae and death. Clin Infect Dis, 2012; 55:789

50. Harris J, Lockhart S, Chiller T. Cryptococcus gattii: where do we go from here? Med Mycol, 2012; 50:113.

51. Byrnes EJ 3rd, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect, 2011; 13:895.

52. Igel HJ, Bolande RP. Humoral defense mechanisms in cryptococcosis: substances in normal human serum, saliva, and cerebrospinal fluid affecting the growth of Cryptococcus neoformans. J Infect Dis, 1966; 116: 75.

53. Diamond RD, May JE, Kane MA, et al. The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J Immunol, 1974; 112: 2260.

54. Kwon-Chung KJ, Rhodes JC. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun, 1986; 51: 218.

55. Wong B, Perfect JR, Beggs S, Wright KA. Production of the hexitol D-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun, 1990; 58: 1664.

56. Martin-Blondel G, Ysebaert L. Images in clinical medicine. Disseminated cryptococcosis. N Engl J Med., 2014; 370(18): 1741.

57. Li Q, You C, Liu Q, Liu Y. Central nervous system cryptococcoma in immunocompetent patients:

a short review illustrated by a new case. Acta Neurochir, 2010; 152(1): 129‒136.

58. Shirley RM, Baddley JW. Cryptococcal lung disease. Curr Opin Pulm Med, 2009; 15: 254‒260.

59. İnci R. Kriptokok infeksiyonları. Flora, 2008; 13(2): 61‒71.

60. Jongwutiwes U, Sungkanuparph S, Kiertiburanakul S. Comparison of clinical features and survival between Cryptococcosis in Human Immunodeficiency Virus (HIV)-positive and HIV-negative patients. Jpn J Infect Dis, 2008; 61: 111‒115.

61. Singh N, Gayowsi T, Wagener MM, Marino IR. Clinical spectrum of invasive cryptococcosis in liver transplant recipients receiving tacrolimus. Clin Transplant, 1997; 11: 66‒70.

62. Perfect JR. Cryptococcus neoformans. In: Mandell GL, Bennett JE, Dolin R. Principles and Practice of Infectious Diseases. Churchill Livingstone Philadelphia , 7th eds; 3287‒3303.

63. Siddiqui T.J, Zamani T, Parada JP. Primary cryptococcal prostatitis and correlation with serum prostate spesific antigen in a renal transplant recipient. J Hosp Infect, 2005; 51: e153‒e157.

64. Skiest DJ, Hester LJ, Hardy RD. Cryptococcal immune reconstitution inflammatory syndrome:

report of four cases in three patients and review of the literature. J Infect, 2005; 51(5): e289‒297.

65. Yehia BR, Eberlein M, Sisson SD, Hager DN. Disseminated cryptococcosis with meningitis, peritonitis, and cryptococcemia in a HIV-negative patient with cirrhosis: a case report. Cases J, 2009; 28; 2: 170.

66. WHO. HIV/AIDS verileri, 2017.

67. https://www.ncbi.nlm.nih.gov/books/NBK531449/

68. Spec A, Raval K, Powderly WG. EndStage Liver Disease Is a Strong Predictor of Early Mortality in Cryptococcosis. Open Forum Infect Dis, 2016; 3: ofv197.

69. Bernard C, Maucort-Boulch D, Varron L, et al. Cryptococcosis in sarcoidosis: cryptOsarc, a comparative study of 18 cases. QJM, 2013; 106: 523.

70. Messina JA, Maziarz EK, Spec A, et al. Disseminated Cryptococcosis With Brain Involvement in Patients With Chronic Lymphoid Malignancies on Ibrutinib. Open Forum Infect Dis, 2017; 4:

ofw261.

71. Rosen LB, Freeman AF, Yang LM, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol, 2013; 190: 3959.

72. Saijo T, Chen J, Chen SC, et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio, 2014; 5: e00912.

73. Vidal JE, Boulware DR. Lateral flow assay for cryptococcal antigen: an important advance to improve the continuum of HIV care and reduce cryptococcal meningitis-related mortality. Rev. Inst.

Med. Trop. Sao Paulo, 2015; 57(Suppl. 19): 38‒45.

74. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii:

an atlas of the molecular types. Scientifica (Cairo), 2013; 2013: 657213.

75. Liaw SJ, Wu HC, Hsueh PR. Microbiological characteristics of clinical isolates of Cryptococcus neoformans in Taiwan: serotypes, mating types, molecular types, virulence factors, and antifungal susceptibility. Clin Microbiol Infect., 2010; 16: 696–703.

76. Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol., 2015; 78: 7–15.

77. Viviani MA, Cogliati M, Esposto MC et al. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res., 2006; 6:

614–619.

78. Khayhan K, Hagen F, Pan W et al. Geographically structured populations of Cryptococcus neoformans variety grubii in Asia correlate with HIV status and show a clonal population structure.

PLoS One, 2013; 8: 1–14.

79. Pan W, Khayhan K, Hagen F et al. Resistance of Asian Cryptococcus neoformans serotype A is confined to few microsatellite genotypes. PLoS One, 2012; 7: e32868.

80. Chen SC, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev, 2014; 27:

980‒1024.

81. Galanis E, MacDougall L, Kidd S, Morshed M, British Columbia Cryptococcus gattii Working Group. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999‒2007. Emerg Infect Dis, 2010; 16: 251–257.

82. Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, Marriott D, Pfeiffer T, Parr D, Byth K, Australasian Cryptococcal Study Group. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Clin Infect Dis, 2000; 31: 499–508.

83. Smith AB, Smirniotopoulos JG, Rushing EJ. Central nervous system infections associated with human immunodeficiency virus infection: radiologic-pathologic correlation. Radiographics, 2008;

28: 2033–2058.

84. Sánchez-Portocarrero J, Pérez-Cecilia E. Intracerebral mass lesions in patients with human immunodeficiency virus infection and cryptococcal meningitis. Diagn Microbiol Infect Dis, 1997;

85. Garlipp CR, Rossi CL, Bottini PV. Cerebrospinal fluid profiles in acquired immunodeficiency syndrome with and without neurocryptococcosis. Rev Inst Med Trop Sao Paulo, 1997; 39: 323.

86. Graybill JR, Sobel J, Saag M, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. The NIAID Mycoses Study Group and AIDS Cooperative Treatment Groups. Clin Infect Dis, 2000; 30: 47.

87. Cohen J. Comparison of the sensitivity of three methods for the rapid identification of Cryptococcus neoformans. J Clin Pathol, 1984; 37: 332‒334.

88. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents:

Recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America.

89. Staib F, Seibold M, Antweiler E, Fröhlich B, Weber S, Blisse A. The brown colour effect (BCE) of Cryptococcus neoformans in the diagnosis, control and epidemiology of C. neoformans infections in AIDS patients. Zentralbl Bakteriol Mikrobiol Hyg A, 1987; 266: 167‒177.

90. Staib F, Seibold M, Antweiler E, Fröhlich B. Staib agar supplemented with a triple antibiotic combination for the detection of Cryptococcus neoformans in clinical specimens. Mycoses, 1989;

32: 448‒454.

91. Denning DW, Stevens DA, Hamilton JR. Comparison of Guizotia abyssinica seed extract (birdseed) agar with conventional media for selective identification of Cryptococcus neoformans in patients with acquired immunodeficiency syndrome. J Clin Microbiol, 1990; 28: 2565‒2567.

92. Paliwal DK, Randhawa HS. Evaluation of a simplified Guizotia abyssinica seed medium for differentiation of Cryptococcus neoformans. J Clin Microbiol, 1978; 7: 346‒348.

93. Khan ZU, Ahmad S, Mokaddas E, Chandy R. Simplified sunflower (Helianthus annuus) seed agar for differentiation of Candida dubliniensis from Candida albicans. Clin Microbiol Infect, 2004;

10: 590‒592.

94. Nandhakumar B, Kumar CP, Prabu D, Menon T. Mustard seed agar, a new medium for differentiation of Cryptococcus neoformans. J Clin Microbiol, 2006; 44: 674.

95. Kwon-Chung KJ, Polacheck I, Bennett JE. Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var.

gattii (serotypes B and C). J Clin Microbiol, 1982; 15: 535‒537.

96. Klein KR, Hall L, Deml SM, Rysavy JM, Wohlfiel SL, Wengenack NL. Identification of Cryptococcus gattii by use of ʟ-canavanine glycine bromothymol blue medium and DNA sequencing. J Clin Microbiol, 2009; 47: 3669‒3672.

97. Chaskes S, Frases S, Cammer M, Gerfen G, Casadevall A. Growth and pigment production on D-tryptophan medium by Cryptococcus gattii, Cryptococcus neoformans, and Candida albicans. J Clin Microbiol, 2008; 46: 255‒264.

101. Kozel TR, Bauman SK. CrAg Lateral Flow Assay for Cryptococcosis. Expert Opin Med Diagn, 2012; 6: 245‒51.

102. Meya DB, Manabe YC, Castelnuovo B, Cook BA, Elbireer AM, Kambugu A, et al. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count < or = 100 cells/microL who start HIV therapy in resource-limited settings. Clin Infect Dis., 2010; 51: 448‒55.

103. Rajasingham R, Wake RM, Beyene T, Katende A, Letang E, Boulware DR. Cryptococcal Meningitis Diagnostics and Screening in the Era of Point-of-Care Laboratory Testing. J Clin Microbiol, 2019; 2: 57(1).

104. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis., 2011; 53: 1019‒23.

105. Williams D, Kiiza T, Kwizera R, Kiggundu R, Velamakanni S, Meya DB, et al. Evaluation of fingerstick cryptococcal antigen lateral flow assay in HIV-infected persons: a diagnostic accuracy study. Clin Infect Dis., 2015; 61: 464‒7.

106. Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated cryptococcal meningitis:

implications for improving outcomes. Clin Infect Dis., 2014; 58: 736‒45.

107. Kabanda T, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis., 2014; 58: 113‒6.

108. Govender NP, Meintjes G, Bicanic T, Dawood H, Harrison TS, Jarvis JN, et al. Guideline for the prevention, diagnosis and management of cryptococcal meningitis among HIV-infected persons:

2013 update. S Afr HIV Med., 2013; 14: 76‒86.

109. Musubire AK, Boulware DR, Meya DB, Rhein J. Diagnosis and management of cryptococcal relapse. J AIDS Clin Res., 2013; Suppl 3(3)pii: S3-003.

110. Odabasi Z, Mattiuzzi G, Estey E, et al. β-D-glucan as a diagnostic adjunct for invasive fungal infections: Validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodisplastic syndrome. Clin Infect Dis, 2004; 39: 199‒205.

111. Rhein J, Bahr NC, Morawski BM, et al. Detection of high cerebrospinal fluid levels of (1–3)-β-D-glucan in cryptococcal meningitis. Open Forum Infect Dis, 2014; 1: ofu105.

112. Litvintseva AP, Lindsley MD, Gade L, et al. Utility of (1–3)-β-D-glucan testing for diagnostics and monitoring response to treatment during the multistate outbreak of fungal meningitis and other infections. Clin Infect Dis, 2014; 58: 622–30.

113. Mikulska M, Furfaro E, Del Bono V, et al. (1–3)-β-D-glucan in cerebrospinal fluid is useful for the diagnosis of central nervous system fungal infections. Clin Infect Dis, 2013; 56: 1511–12.

114. Petraitiene R, Petraitis V, Hope WW, et al. Cerebrospinal fl uid and plasma (1–3)-beta-D-glucan as surrogate markers for detection and monitoring of therapeutic response in experimental hematogenous Candida meningoencephalitis. Antimicrob Agents Chemother, 2008; 52: 4121–29.

115. Rhein J, Boulware DR, Bahr NC. 1,3-β-D-glucan in cryptococcal meningitis. The Lancet Infectious Diseases, 2015; 15(10): 1136-1137.

116. Rhein J, Bahr NC, Hemmert AC, et al. Diagnostic performance of a multiplex PCR assay for

117. Leber AL, Everhart K, Balada-Llasat JM, et al. Multicenter Evaluation of BioFire Film Array

Meningitis/Encephalitis Panel for Detection of Bacteria, Viruses, and Yeast in Cerebrospinal Fluid Specimens. J Clin Microbiol, 2016; 54: 2251.

118. Meyer W, Marszewska K, Amirmostofian M, Igreja RP, Hardtke C, Methling K, Viviani MA, Chindamporn A, Sukroongreung S, John MA, Ellis DH, Sorrell TC. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA-a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis, 1999; 20: 1790‒1799.

119. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E; IberoAmerican Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis, 2003; 9: 189‒195.

120. Boekhout T, Theelen B, Diaz M, Fell JW, Hop WC, Abeln EC, Dromer F, Meyer W. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology, 2001; 147: 891‒907.

121. Hanafy A, Kaocharoen S, Jover-Botella A, Katsu M, Iida S, Kogure T, Gonoi T, Mikami Y, Meyer W. Multilocus microsatellite typing for Cryptococcus neoformans var. grubii. Med Mycol, 2008; 46: 685‒696.

122. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, Fisher M, Gilgado F, Hagen F, Kaocharoen S, Litvintseva AP, Mitchell TG, Simwami SP, Trilles L, Viviani MA, Kwon-Chung J. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol, 2009; 47: 561‒570.

123. Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One, 2012; 7:

e37566.

124. Thomaz DY, Grenfell RC, Vidal MS, Giudice MC, Del Negro GM, Juliano L, Benard G, de Almeida Júnior JN. Does the capsule interfere with performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Cryptococcus neoformans and Cryptococcus gattii? J Clin Microbiol, 2016; 54: 474‒477.

125. Diaz MR, Nguyen MH. Diagnostic approach based on capsular antigen, capsule detection, β-glucan and DNA analysis, In Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A (eds.), Cryptococcus: from human pathogen to model yeast. 2011; pp: 547–564. ASM Press:

Washington, DC.

126. Dromer F, Levitz SM. Invasion of Cryptococcus into the central nervous system, In Heitman J, Kozel TR, Kwon-Chung KJ, Perfect J, Casadevall A, (eds). Cryptococcus from human pathogens to model yeasts. 2011; pp: 465‒471. ASM Press: Washington, DC.

127. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis, 2010; 50: 291.

128. Cáceres DH, Zuluaga A, Tabares ÁM, Chiller T, González Á, Gómez BL. Evaluation of a Cryptococcal antigen Lateral Flow Assay in serum and cerebrospinal fluid for rapid diagnosis of cryptococcosis in Colombia. Rev Inst Med Trop Sao Paulo, 2017; 59: e76.

128. Cáceres DH, Zuluaga A, Tabares ÁM, Chiller T, González Á, Gómez BL. Evaluation of a Cryptococcal antigen Lateral Flow Assay in serum and cerebrospinal fluid for rapid diagnosis of cryptococcosis in Colombia. Rev Inst Med Trop Sao Paulo, 2017; 59: e76.

Benzer Belgeler