• Sonuç bulunamadı

· Potasyum persülfat, potasyum dikromat ve potasyum permanganatın grafitin oksidasyonuna etkileri incelenmiştir. XRD sonuçları grafitin oksidasyonunda potasyum permanganatın diğer oksidasyon ajanlarından daha etkili olduğunu göstermiştir.

· Grafitin oksidasyonunda ön oksidasyon işleminin önemli derecede etkili olmadığı gözlenmiştir.

· SEM görüntülerinden, grafitin keskin ve sıkıştırılmış tabakalara sahip bir yapıda olduğunu ve oksidasyon sonrası grafitin keskin ve sıkıştırılmış yapısının değiştiği (azaldığı) gözlenmiştir.

· Termal olarak 950˚C’de işlem görmüş grafen okside ait XRD sonuçları kısmi indirgenmenin olduğunu gösteriyor. SEM görüntüleri incelendiğinde indirgenmiş grafen oksit tabakaları arasındaki mesafenin grafen oksite kıyasla azaldığı gözlenmiştir.

· Hidrazin monohidrat ve termal yöntemle grafen oksitin indirgenmesi işleminde termal yöntemin daha etkili olduğu gözlenmiştir.

· Farklı pH’da yapılan deneylerde aramid fiberlere ait FT-IR spektrumları incelendiğinde, aramid fiberlerin yapısındaki alifatik aminlere spesifik olan 1100cm-1 deki sinyalin şiddetindeki değişimler nötral ve asidik ortamda hidroliz işleminin daha etkili olduğunu göstermiştir.

· Grafen oksit, indirgenmiş grafen oksit, aramid nanofiberler ve bu materyallerle oluşturulan kompozit maddeler ile yüksek yoğunluklu polietilen ve polipropilen polimerleri katkılanarak, kalıplara basılan kompozitlerin gerilme testleri incelendiğinde polimer/kompozit yapısında bulunan hava kabarcıklarının polimerin gerilme özelliğini olumsuz yönde etkilediği gözlenmiştir.

· Yüksek gerilme özelliğine sahip polimer eldesi için bu kabarcıkların oluşumunun engellenmesi gerekmektedir. Bunun için kompozit oluşturulma sırasında vakum destekli kalıpların kullanılması düşünülebilir.

KAYNAKLAR

ANSARI, S., GIANNELIS, E.P., 2009. Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B - Polym Phys, 47, 888.

Raman spectroscopy of graphene edges, Nano Lett. 9(4), 1433–1441.

CHEN, T., ZENG, B., LIU, J.L., DONG, J.H., LIU, X.Q., WU, Z., YANG, X.Z., LI, Z.M., 2009. High Throughput Exfoliation of Graphene Oxide from Expanded Graphite with Assistance of Strong Oxidant in Modified Hummers Method Nat. Nanotechnol, 3, 538.

CHEN, G., WU, C., WENG, W., WU, D., YAN, W., 2003. Preparation of polystyrene/graphite nanosheet composite. Polymer, 44, 1781.

CHING-YUAN, S., ANG-YU L., YANPING X., FU-RONG, CHEN., ANDRE N.

KHLOBYSTOV and LAIN-JONG, LI., 2011. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano 5, 2332-2339.

DANIELA, C.M., DMITRY, V.K., JACOB, M.B., ALEXANDER, S., ZHENGZONG, S., ALEXANDER, SLESAREV, LAWRENCE, B., WEI, L., and JAMES, M.T., 2010. Improved synthesis of graphene oxide, ACS NANO, 4, 4806-4814.

DIKIN, D.A., STANKOVICH, S., ZIMNEY, E.J., 2007. Preparation and characterization of graphene oxide paper, Nature, 448, 7152, 457–460.

DOWNING JR, J. W., , NEWELL, J. A., 2004. Characterization of structural changes in thermally enhanced Kevlar-29 fiberJ. Appl. Polym. Sci, 91, 417-424.

DREYER, R.D., PARK, S., BIELAWSKI, C.W., RUOFF, R. S., 2010. The chemistry of graphene oxide, Chem. Soc. Rev, 39, 228–240.

FERRARI, A.C., ROBERTSON, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B, 61, 14095–107.

FIM, FD.C., GUTERRES, J.M., BASSO, N.R.S., GALLAND, G.B., 2010.

Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A - Polym Chem, 48, 692.

GEIM, A.K., NOVOSELOV, K.S, 2007. The rise of graphene, Nature Materials, 6, 183-191.

GMELINS HANDBUCH DER ANORGANISCHEN CHEMIE; Verlag Chemie, G.M.B.H.: Berlin, 1938.

GO'MEZ-NAVARRO, C., WEITZ, R. T., BITTNER, A. M., SCOLARI, M., MEWS, A., BURGHARD M., KERN, K., 2007. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets, Nano Lett, 7, 3499–3503.

GRAF, D., MOLITOR, F., ENSSLIN, K., STAMPFER, C., JUNGEN, A., HIEROLD, C., LUDGER, W., 2007. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett, 7, 238–42.

GUO, F., ZHANG, Z., LİU, W., SU, F., ZHANG, H., 2009. Effect of Plasma Treatment of Kevlar Fabric on the Tribological Behavior of Kevlar Fabric/Phenolic Composites Tribol. Int. 42, 243-249.

HE, H., KLINOWSKI, J., FORSTER, M., LERF, A., 1998. A new structural model for graphite oxide, Chemical Physics Letters 287,53–56.

HONG-TING, Z., 2010. Comparison and Analysis of Thermal Degradation Process of Aramid Fibers (Kevlar 49 and Nomex) 3, 163-167.

HUANG, Y., QIN, Y., ZHOU, Y., NIU, H., YU, Z.Z., DONG, J.Y., 2010 Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler–

Natta polymerization. Chem Mater, 22, 4096.

IMURO, H. Ve YOSHİDA, N., 1986. Differences between HM-50 and PPTA-Aramides. in 25th International Man Made Fibres Congress. Dornbirn.

JANG, J.Y., KIM, M.S., JEONG, H.M., SHIN, C.M., 2009. Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol, 69, 186.

JIANG, L., SHEN, X.P., WU, J.L., SHEN, K.C., 2010. Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites, J.Appl Polym Sci, 118, 275.

JINCHEN, F., ZXING, S., LU, Z., JIALIANG, W., JIE, Y., 2012. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement 4, 7046-7055.

KALAITZIDOU, K., FUKUSHIMA, H., DRZAL, L.T., 2007. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol, 67, 2045.

KALANTAR, J. AND DRZAL, L. T., 1990. “The Bonding Mechanism of Aramid Fibers to Epoxy Matrices: Part 2: An Experimental Investigation”, Journal of materials and science, 25, 4194-4202.

KARAMA¨ Kİ, E. M., 1938. Epa¨ orgaaniset kemikaalit; K. J. Gummerus Oy:

Jyva¨skyla¨ , 320.

KIM, H., MACOSKO, C.W., 2008. Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules, 41, 3317.

KIM, H., MACOSKO, C.W., 2009. Processing-property relationships of polycarbonate/graphene composites. Polymer, 50, 3797.

KUDIN, K.N., OZBAS, B., SCHNIEPP, H.C., PRUD’HOMME, R.K., AKSAY, I.A., and CAR, R., 2008. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41.

LEE, C., WEI, X., W. KYSAR, J., HONE, J., 2008. Measurement of elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385.

LI, D., MULLER, M.B., GILJE, S., KANER, R.B., WALLACE, G.G., 2008.

Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101–5.

LI, G., ZHANG, C., WANG, Y., LI, P., YU, Y., JIA, X., LIU, H., YANG, X., XUE, Z., RYU, S., 2008. Interface Correlation and Toughness Matching of Phosphoric Acid Functionalized Kevlar Fiber and Epoxy Matrix for Filament Winding Composites,” Compos. Sci. Technol, 68, 3208-3214.

LIANG, J.J., HUANG, Y., ZHANG, L., WANG, Y., MA,Y.F., GUO, T.Y., 2009.

Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297.

LIN, T. K., WU, S. J., LAİ, J. G., SHYU, S. S., 2000. The Effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites Compos. Sci. Technol, 60, 1873- 1878.

MARCANO, D.C., KOSYNKIN, D.V., BERLIN, J.M., SINITSKII, A., SUN, Z., SLESAREV, A.A, LAWRENCE, B., LU, W., AND TOUR, J.M, 2010.

Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814.

MATHUR, A., NETRAVALI, N., 1996. Modification of mechanical properties of Kevlar fibre by polymer infiltration,” J. Mater. Sci. 31, 1265-1274.

MATTEVI, B.C., EDA, G., AGNOLI, S., MILLER, S, MKHOYAN, K.A., CELIK, O., MASTROGIOVANNI, D., GRANOZZI, G., GARFUNKEL, E., AND CHHOWALLA, M., 2009. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583.

MCALLISTER, M.J., LI, J.L., ADAMSON, D.H., SCHNIEPP, H.C., ABDALA, réactions, dégradations, in Traité des Matériaux, P.P.e.U. Romandes, Editor, 393-395.

MORGAN, R.J., PRUNEDA, C.O., BUTLER, N., KONG, F-M, CALEY, L., MOORE, R.L., 1984. The hydrolytic degradation of Kevlar 49 fibers, in Proceedings of the 29th National SAMPE Symposium, 891-900.

NOVOSELOV, K.S., GEIM, A.K., MOROZOV, S.V., JIANG, D., ZHANG, Y., DUBONOS, S.V., GRIGORIEVA, I.V., FIRSOV, A.A, 2004. Electric field effect in atomically thin carbon films, Science, 306, 666-669.

NOVOSELOV K.S., GEIM, A.K., MOROZOV, S.V., JIANG, D., KATSNELSON, M.I., DUBONOS, S.V., GRIGORIEVA, I.V., FIRSOV, A.A, 2005. Two dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200.

NOVOSELOV, K.S. , JIANG, D., SCHEDIN, F., BOOTH, T.J., KHOTKEVICH, V.V., MOROZOV, S.V., and GEIM, A.K., 2005. Two dimensional atomic crystals. PNAS, 102, 10451-10453.

PAN, S., AKSAY, A., 2011. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS NANO, 5, 4073-4083.

PAREDES, J.I., VILLAR-RODIL, S., MART´INEZ-ALONSO, A., TASC ´ON, J.M.D., 2008, Graphene oxide dispersions in organic solvents, Langmuir, 24, 10560–10564.

PARK, S., RUOFF, R.S., 2009. Chemical methods for the production of graphenes.

Nature Nanotechnology, Online publication: DOI: 10.1038,.58.

PARK, S., AN, J., PINER, R.D., JUNG, I., YANG, D., VELAMAKANNI, A., NGUYEN, S.T., RUOFF, R.D., 2008. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater, 20, 6592–4.

PARK, S., AN, J., JUNG, I., PINER, R.D., AN, S.J., LI, X., VELAMAKANNI, A., RUOFF, R.D., 2009. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9(4), 1593–7.

PARK, S.J., SEO, M.K., MA, T.J., LEE, D.R., 2002. Effect of Chemical Treatment of Kevlar Fibers on Mechanical Interfacial Properties of Composites Journal of Colloid and Interface Science, 252, 249-255.

PENN, L., LARSEN, F., 1979. Physicochemical properties of kevlar 49 fiber, Journal of Applied Polymer Science, 23, 59-73.

POTTS, J.R., LEE, S.H, ALAM, T.M., AN, J., STOLLER, M.D., PINER, R.D., RUOFF, R.S., 2011. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization 49, 2615- 2623.

RAJABIAN, M., DUBOIS, C., 2006. Polymerization Compounding of HDPE/Kevlar Composites. I. Morphology and Mechanical Properties,” Polym. Compos, 27, 2, 129-137.

SAIKRASUN, S., AMORNSAKCHAI, T., SIRISINHA, C., MEESIRI, W., BUALEK-LIMCHAROE, S., 1999. Kevlar reinforcement of polyolefin-based thermoplastic elastomer. Polymer, 40, 6437-6442.

SALAVAGIONE, H.J., GOMEZ, MN.A, MARTINEZ, G., 2009. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules, 42, 6331.

SANER, B., DINÇ, F., Yürüm, Y., 2011. Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of AND AKSAY, I.A., 2006. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535–9.

SI, Y., SAMULSKİ, E.T., 2008. Synthesis of water soluble graphene. Nano Lett, 8(6), 1679–82.

SINGH, V., JOUNG, D., ZHAI, L., DAS, S., KHONDAKER, S.I., SEAL, S., 2011. Graphene based materials: Past, present and future. Progress in Materials Science, 56, 1178-1271.

STACH, E.A., RUOFF, R.S., 2011. Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541.

STANKOVICH, S., DIKIN, D.A., DOMMETT, G.H.B., KOHLHAAS, K.M., ZIMNBEY, E.J, STACH, E.A., PINER, R.D., NGUYEN, S.T., RUOFF, R.D.,2006. Graphene-based composite materials. Nature, 442, 282–6.

STANKOVICH S, DIKIN DA, PINER R, KOHLHAAS KM, KLEINHAMMES A, JIA Y, YUE, W., NGUYEN, S.T., RUOFF, R.D., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–65.

SWEENY, W., 1992. Improvements in compressive properties of high modulus fibers by crosslinking, J. Polym. Sci., Part A: Polym. Chem, 30, 1111-1122.

TAPAN, K. D., SMITA, P., 2013. Graphene-Based Polymer Composites and Their Applications, 52, 319–331.

VADUKUMPULLY, S., PAUL, J., MAHANTA, N., VALIYAVEETTIL, S., 2011.

Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon, 49, 198.

VICKERY, J.L., PATIL, A.J., and MANN, S., 2009.Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures, Adv Mater, 21, 2180-2184.

WANG, G., YANG, J., PARK, J., GOU, X., WANG, B., LİU, H., YAO, J., 2008.

'Facile Synthesis and Characterization of Graphene Nanosheets', J. Phys.

Chem. C, 112, 8192–8195. PINER, R. D., STANKOVICH, S., JUNG, I., FIELD, D. A., VENTRICE, C.

A., RUOFF, R. S., 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47, 145–152.

YU, Z., AIT-KADI, A., BRISSON, J., 1991. Nylon/Kevlar Composites. I:

Mechanical Properties, Polym. Eng. Sci., 31, No. 16.

ZHANG, H., ZHANG, J., CHEN, J., HAO, X., WANG, S., FENG, X., GUO, Y., 2006. Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber. Polymer Degradation and Stability, 91, 2761-2767.

ZHAO, X., ZHANG, Q.H., HAO, Y.P., LI, Y.Z., FANG, Y., CHEN, D.J., 2010.

Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules, 43, 9411.

ZHEN, X., CHAO, G., 2010. In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites, Macromolecules 43, 6716–6723.

ZHU, Y., MURALI, S., STOLLER, M.D., GANESH, K.J., CAI, W., FERREIRA, P.J., PIRKLE, A., WALLACE, R.M., CYCHOSZ, K.A., THOMMES, M., SU, D., STACH, E.A., RUOFF, R.S., 2011. Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 332, 1537-1541.

ZHU, Y., STOLLER, M. D., CAI, W., VELAMAKANNI, A., PINER, R. D., CHEN, D., RUOFF, R. S. 2010. Graphene and Graphene Oxide: Synthesis, Properties, and Applications, ACS Nano, 4, 1227–1233.

ÖZGEÇMİŞ

1987 yılında Adana’ da doğdu. İlköğretim hayatını 23 Nisan İlköğretim Okulu’nu, lise eğitimini Adana Erkek (Yabancı Dil Ağırlıklı) Lisesi’nde tamamladı.

2007 yılında Erciyes Üniversitesi kimya bölümünü kazandı ve 2011 yılında mezun oldu. 2012 yılında Çukurova Üniversitesi Kimya Bölümü Analitik Kimya anabilim dalında yüksek lisans eğitimine başladı.

EKLER

Şekil 1. Termokinetik mikser

Şekil 2. Baskı cihazı

Şekil 3. Katkısız PE Şekil 4. PE/GO Şekil 5. PE/İGO

Şekil 6. PE/ANF Şekil 7. PE/ANFGO Şekil 8. PE/ANFİGO

Şekil 12. PP/ANF Şekil 13. PP/ANFGO Şekil 14. PP/ANFİGO

Benzer Belgeler