• Sonuç bulunamadı

AÇISINDAN ETKİLERİ

SAYISAL TOPRAK HARİTALAMANIN GELİŞİMİ VE UYGULAMALARI

2. SONUÇ ve ÖNERİLER

Son on yılda sayısal toprak haritalamasındaki gelişmelerde birçok farklı eğilim mevcuttur. Deneysel amaçla yapılan ilk çalışmalar genellikle küçük alanlarda gerçekleştirilmiştir. Son zamanlarda yapılan çalışmalarda, sayısal toprak haritalamasında kullanılan tekniklerin artmasının etkileri bariz şekilde görülmektedir. Bu bağlamda, çeşitli sayısal toprak haritalama yöntemlerinin uygulanabilirliğini incelemek ve ilgililerin mekânsal bilgi taleplerini karşılamak için büyük alanlarda yapılan çalışmalar devam etmektedir. Ayrıca, sayısal toprak haritalama modelleri de basitten karmaşığa doğru değişim göstermektedir. Sadece, standart toprak özelliklerini ve az sayıda çevresel faktör ihtiva eden toprak haritalarında; toprak-çevre ilişkisi doğrusaldır. Yani, doğrusal bir regresyon kullanarak bile, değişkenler (örneğin, arazi özellikleri) ve bir toprak değişkeni arasındaki ilişki açıklanabilmektedir. Bununla birlikte, üç veya daha fazla faktörle toprak-çevre ilişkisini açıklamada coğrafi ağırlıklı regresyon veya karar ağaçları modelleri gibi gelişmiş algoritmalarla çalışmalar mümkündür. Dolayısıyla, toprak-çevre ilişkilerinin doğrusal ve durağan olmadığı ortaya konulmuştur. Sayısal toprak haritalama çalışmalarındaki bir diğer eğilim, toprak özellikleri hakkında eksiksiz bilgi sağlamak için haritalama yaklaşımları, 2 boyutludan 3 boyutluya doğru değişim göstermiştir.

Toprak bilimindeki gelişmeler; ekosistemlerin korunması, iklim değişikliğinin etkininin azaltılması ve tarımsal üretimin sürdürülebilirliği gibi konular yeni ilgi alanlarını beraberinde getirmektedir. Toprak oluşumunun ve özelliklerinin hassas

çözünürlükte ve yüksek doğrulukta modellenmesi için daha gelişmiş teknolojilerin tasarlanmasına ihtiyaç vardır. Bununla birlikte, toprak-çevre arasındaki dinamikleri en iyi şekilde ortaya koyacak ve tahmin doğruluğu yüksek modelleri belirlemek de kolay olmayacaktır.

Önümüzdeki yıllarda sayısal toprak haritalamanın çerçevesi, toprak oluşum faktörlerini tahmin etmek için daha karmaşık değişkenleri içeren modeller etrafında şekillenecektir. Sanchez ve ark. (2009), sayısal toprak haritalamanın geleceği hakkındaki tahminleri; sadece mekânsal bilginin sayısal toprak haritalamanın konusu olmayacağı, somut verilere dayalı toprak amenajmanı önerileri, toprak fonksiyon analizini, eski toprak verilerini ve sosyal değişkenleri de içeren bir bilim dalı olacağı yönündedir. Sonuç olarak, geçmişten geleceğe kavramsal toprak haritalama modelleri, dünya yüzeyindeki süreçleri tam olarak anlayarak genişlemektedir.

Poligon tabanlı klasik toprak haritaları, toprak bilgisinin ifadesi ve günümüz ihtiyaçları karşılanmasında yetersiz kalmaya başlamıştır. Toprak rengini, tekstürünü, sıcaklığını ve nemini sergilemek için toprak modellemede sanal gerçeklik ve yapay zekâ teknikleri daha da geliştirilmelidir. Sayısal toprak haritalama alanında yapılması gerekenlerden biri ise toprak fonksiyonlarını doğrudan yansıtabilecek küresel toprak haritalarının üretilmesidir. Ayrıca, bölgesel ve ulusal toprak haritaları küresel sorunların çözümü için birbirlerine uyumlu hale getirilmelidir.

3. KAYNAKÇA

Adhikari, K., Hartemink, A. E., Minasny, B., Bou Kheir, R., Greve, M. B., & Greve, M. H. (2014). Digital mapping of soil organic carbon contents and stocks in Denmark. PloS one, 9(8), e105519.

Alijani, Z., & Sarmadian, F. (2013). Predicting soil map using Jenny equation. J Bio Environ Sci, 3, 125-134.

Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B., Hong, S. Y., ... & Zhang, G. L. (2014). GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Advances in agronomy, 125, 93-134.

Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A. C., Morgan, C. L., ... & Mulder, V. L. (2020). Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Regional, 20, e00255. Barthold, F. K., Wiesmeier, M., Breuer, L., Frede, H. G., Wu, J., & Blank, F. B. (2013). Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia. Journal of arid environments, 88, 194-205.

Baxter, S. J., & Crawford, D. M. (2008). Incorporating legacy soil pH databases into digital soil maps. In Digital Soil Mapping with Limited Data (pp. 311-318). Springer, Dordrecht.

Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., ... & Stum, A. K. (2008). Landsat spectral data for digital soil mapping. In Digital soil mapping with limited data (pp. 193-202). Springer, Dordrecht.

Bouma, J. (1989). Using soil survey data for quantitative land evaluation. In Advances in soil science (pp. 177-213). Springer, New York, NY.

Brungard, C. W., & Boettinger, J. L. (2010). Conditioned latin hypercube sampling: Optimal sample size for digital soil mapping of arid rangelands in Utah, USA. In Digital soil mapping (pp. 67-75). Springer, Dordrecht.

Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards Jr, T. C. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239, 68-83.

Brus, D. J., & Heuvelink, G. B. (2007). Optimization of sample patterns for universal kriging of environmental variables. Geoderma, 138(1-2), 86-95.

Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for validation of digital soil maps. European Journal of Soil Science, 62(3), 394-407.

Brus, D. J., Yang, R. M., & Zhang, G. L. (2016). Three-dimensional geostatistical modeling of soil organic carbon: A case study in the Qilian Mountains, China. Catena, 141, 46-55.

Budak, M., Günal, H., Çelik, İ., Nurullah, A. C. İ. R., & Sirri, M. (2018). Dicle havzası toprak özelliklerinin yersel değişimlerinin jeoistatistik ve coğrafi bilgi sistemleri ile belirlenmesi ve haritalanması. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 103-115. Burrough, P. A. (1993). Soil variability: a late 20th century view. Soils Fert., 56, 529-562.

Chaplot, V., Lorentz, S., Podwojewski, P., & Jewitt, G. (2010). Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity. Geoderma, 157(3-4), 154-164.

Clifford, D., Payne, J. E., Pringle, M. J., Searle, R., & Butler, N. (2014). Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences, 67, 62-68.

De Gruijter, J., Brus, D. J., Bierkens, M. F., & Knotters, M. (2006). Sampling for natural resource monitoring (Vol. 28). Berlin: Springer.

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.

Gasch, C. K., Hengl, T., Gräler, B., Meyer, H., Magney, T. S., & Brown, D. J. (2015). Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70-90.

Geng, X., Fraser, W., VandenBygaart, B., Smith, S., Waddell, A., Jiao, Y., & Patterson, G. (2010). Toward digital soil mapping in Canada: Existing soil survey data and related expert knowledge. In Digital soil mapping (pp. 325-335). Springer, Dordrecht.

Goovaerts, P. (2011). A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. European journal of soil science, 62(3), 371-380.

Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3-4), 195-207.

Grunwald, S., Thompson, J. A., & Boettinger, J. L. (2011). Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal, 75(4), 1201-1213.

Gunal, H., Acir, N., & Budak, M. (2012). Heavy metal variability of a native saline pasture in arid regions of Central Anatolia. Carpathian Journal of Earth and Environmental Sciences, 7(2), 183-193.

Guo, P. T., Li, M. F., Luo, W., Tang, Q. F., Liu, Z. W., & Lin, Z. M. (2015). Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma, 237, 49-59.

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., ... & Gonzalez, M. R. (2014). SoilGrids1km—global soil information based on automated mapping. PloS one, 9(8), e105992.

Hengl, T., Rossiter, D. G., & Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research, 41(8), 1403-1422.

Heung, B., Bulmer, C. E., & Schmidt, M. G. (2014). Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma, 214, 141-154. Heuvelink, G. B. M., & Webster, R. (2001). Modelling soil variation: past, present, and future. Geoderma, 100(3-4), 269-301.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.

Hong, S. Y., Minasny, B., Zhang, Y., Kim, Y., & Jung, K. (2010, August). Digital soil mapping using legacy soil data in Korea. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World (pp. 1-6).

Kerry, R., Goovaerts, P., Rawlins, B. G., & Marchant, B. P. (2012). Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170, 347-358.

Kheir, R. B., Greve, M. H., Bøcher, P. K., Greve, M. B., Larsen, R., & McCloy, K. (2010). Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management, 91(5), 1150-1160.

Kidd, D., Malone, B., McBratney, A., Minasny, B., & Webb, M. (2015). Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Regional, 4, 1-10.

Kumar, S., Lal, R., & Liu, D. (2012). A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma, 189, 627-634.

Kunkel, M. L., Flores, A. N., Smith, T. J., McNamara, J. P., & Benner, S. G. (2011). A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165(1), 1-11.

Lacoste, M., Lemercier, B., & Walter, C. (2011). Regional mapping of soil parent material by machine learning based on point data. Geomorphology, 133(1-2), 90-99.

Lagacherie, P. (2008). Digital soil mapping: a state of the art. Digital soil mapping with limited data, 3-14.

Lagacherie, P., & McBratney, A. B. (2006). Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. Developments in soil science, 31, 3-22.

Lamorski, K., Pachepsky, Y., Sławiński, C., & Walczak, R. T. (2008). Using support vector machines to develop pedotransfer functions for water retention of soils in Poland.

Li, H. Y., Marchant, B. P., & Webster, R. (2016). Modelling the electrical conductivity of soil in the Yangtze delta in three dimensions. Geoderma, 269, 119-125.

Li, H. Y., Webster, R., & Shi, Z. (2015). Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma, 237, 71-77.

Ließ, M., Glaser, B., & Huwe, B. (2012). Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum—application to the tropical mountain soil-landscape of southern Ecuador. Catena, 97, 20-30. Liu, F., Geng, X., Fraser, W., Song, X., & Zhang, G. (2016). Soil polygon disaggregation through similarity-based prediction with legacy pedons. Journal of Arid Land, 8(5), 760-772.

Liu, F., Zhang, G. L., Sun, Y. J., Zhao, Y. G., & Li, D. C. (2013). Mapping the Three‐ Dimensional Distribution of Soil Organic Matter across a Subtropical Hilly Landscape. Soil Science Society of America Journal, 77(4), 1241-1253.

Liu, T. L., Juang, K. W., & Lee, D. Y. (2006). Interpolating soil properties using kriging combined with categorical information of soil maps. Soil Science Society of America Journal, 70(4), 1200-1209.

Lorenzetti, R., Barbetti, R., Fantappiè, M., L'Abate, G., & Costantini, E. A. (2015). Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma, 237, 237-245. Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1-2), 138-152.

McBratney, A. B., Odeh, I. O., Bishop, T. F., Dunbar, M. S., & Shatar, T. M. (2000). An overview of pedometric techniques for use in soil survey. Geoderma, 97(3-4), 293-327.

McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52.

McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203-213.

McKenzie, N. J., & Austin, M. P. (1993). A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 57(4), 329-355.

Mei, C. L., He, S. Y., & Fang, K. T. (2004). A note on the mixed geographically weighted regression model. Journal of Regional Science, 44(1), 143-157.

Mendonça-Santos, M. D. L., Dart, R. D. O., Santos, H. G., Coelho, M. R., Berbara, R. L. L., & Lumbreras, J. F. (2010). Digital soil mapping of topsoil organic carbon content of Rio de Janeiro State, Brazil. In Digital Soil Mapping (pp. 255-266). Springer, Dordrecht.

Minasny, B., McBratney, A. B., & Lark, R. M. (2008). Digital soil mapping technologies for countries with sparse data infrastructures. Digital soil mapping with limited data, 15-30.

Mishra, U., Lal, R., Liu, D., & Van Meirvenne, M. (2010). Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science Society of America Journal, 74(3), 906-914.

Moncada, M. P., Gabriels, D., & Cornelis, W. M. (2014). Data-driven analysis of soil quality indicators using limited data. Geoderma, 235, 271-278.

Moore, I. D., Gessler, P. E., Nielsen, G. A. E., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil science society of america journal, 57(2), 443-452.

Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C., Martin, M. P., & Arrouays, D. (2016). National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 263, 16-34.

Odgers, N. P., Sun, W., McBratney, A. B., Minasny, B., & Clifford, D. (2014). Disaggregating and harmonising soil map units through resampled classification trees. Geoderma, 214, 91-100.

Panagos, P., Jones, A., Bosco, C., & Kumar, P. S. (2011). European digital archive on soil maps (EuDASM): preserving important soil data for public free access. International Journal of Digital Earth, 4(5), 434-443.

Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Bakacsi, Z., & Szabó, J. (2016). Variations for the implementation of SCORPAN’s “S”. In Digital Soil Mapping Across Paradigms, Scales and Boundaries (pp. 331-342). Springer, Singapore. Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83, 36-56.

Piedallu, C., Gégout, J. C., Bruand, A., & Seynave, I. (2011). Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma, 160(3-4), 355-366.

Qi, F., & Zhu, A. X. (2011). Comparing three methods for modeling the uncertainty in knowledge discovery from area-class soil maps. Computers & Geosciences, 37(9), 1425-1436.

Salahat, M., Mohtar, R. H., Braudeau, E., Schulze, D. G., & Assi, A. (2012). Toward delineating hydro-functional soil mapping units using the pedostructure concept: A case study. Computers and electronics in agriculture, 86, 15-25.

Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., ... & Zhang, G. L. (2009). Digital soil map of the world. Science, 325(5941), 680-681. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.

Schuler, U., Herrmann, L., Ingwersen, J., Erbe, P., & Stahr, K. (2010). Comparing mapping approaches at subcatchment scale in northern Thailand with emphasis on the maximum likelihood approach. Catena, 81(2), 137-171.

Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003). Predictive soil mapping: a review. Progress in Physical geography, 27(2), 171-197.

Shahbazi, F., Aliasgharzad, N., Ebrahimzad, S. A., & Najafi, N. (2013). Geostatistical analysis for predicting soil biological maps under different scenarios of land use. European Journal of Soil Biology, 55, 20-27.

Smith, S., Bulmer, C., Flager, E., Frank, G., & Filatow, D. (2010, May). Digital soil mapping at multiple scales in British Columbia, Canada. In Program and Abstracts, 4th Global Workshop on Digital Soil Mapping (Vol. 17).

Sohrabian, B., & Tercan, A. E. (2014). Introducing minimum spatial cross-correlation kriging as a new estimation method of heavy metal contents in soils. Geoderma, 226, 317-331.

Song, X. D., Brus, D. J., Liu, F., Li, D. C., Zhao, Y. G., Yang, J. L., & Zhang, G. L. (2016a). Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma, 261, 11-22.

Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734-748.

Sulaeman, Y., Minasny, B., McBratney, A. B., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192, 77-85.

Sun, X. L., Zhao, Y. G., Wu, Y. J., Zhao, M. S., Wang, H. L., & Zhang, G. L. (2012). Spatio‐temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps. Soil use and management, 28(3), 318-328.

Tóth, G., Gardi, C., Bódis, K., Ivits, É., Aksoy, E., Jones, A., ... & Montanarella, L. (2013). Continental-scale assessment of provisioning soil functions in Europe. Ecological Processes, 2(1), 1-18.

Vasques, G. M., Grunwald, S., Comerford, N. B., & Sickman, J. O. (2010). Regional modelling of soil carbon at multiple depths within a subtropical watershed. Geoderma, 156(3-4), 326-336.

Vaysse, K., & Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20-30.

Veres, M., Lacey, G., & Taylor, G. W. (2015, June). Deep learning architectures for soil property prediction. In 2015 12th Conference on Computer and Robot Vision (pp. 8-15). IEEE.

Wei, C. H., & Qi, F. (2012). On the estimation and testing of mixed geographically weighted regression models. Economic Modelling, 29(6), 2615-2620.

Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394-403.

Yang, L., Jiao, Y., Fahmy, S., Zhu, A. X., Hann, S., Burt, J. E., & Qi, F. (2011). Updating conventional soil maps through digital soil mapping. Soil Science Society of America Journal, 75(3), 1044-1053.

Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., ... & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870-878.

Ye, H., Huang, W., Huang, S., Huang, Y., Zhang, S., Dong, Y., & Chen, P. (2017). Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spatial statistics, 20, 76-91.

Zhang, C., Tang, Y., Xu, X., & Kiely, G. (2011). Towards spatial geochemical modelling: use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 26(7), 1239-1248.

BÖLÜM 4

TARIMDA NESNELERİN İNTERNETİ (IoT) VE