• Sonuç bulunamadı

Sonuç olarak yaptığımız bu çalışmada doksorubisin ile oluşturulan hasarda derecesi tam olarak belirlenememekle beraber nekroptozisin de rolü olabileceği ve Nec-1’in bu yolun dışında apoptozis üzerinden de koruyucu etki göstermiş olabileceği anlaşılmaktadır.

Bu mekanizmaları ortaya koyacak ve aydınlatacak ileri çalışmalara ihtiyaç vardır.

1. Ghosh, J., Das, J., Manna, P., Sil,Bellamy COC, Malcomson RDG, Harrison DJ and Wyllie AH. Cell death in health and disease: the biology and regulation of apoptosis. Seminar in Cancer Biol. 1995; 6: 3-16.

2. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2009; 16: 3–11.

3. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.

4. Bellamy COC, Malcomson RDG, Harrison DJ and Wyllie AH. Cell death in health and disease: the biology and regulation of apoptosis. Seminar in Cancer Biol. 1995; 6: 3-16.

5. Ellis, RE, Yuan, J and Horvitz, HR. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 1991; 7: 663-698.

6. Vaux DL, Korsmeyer SJ. Cell death in development. Cell. 1999; 96:245- 254.

7. Franz TA, Kidson SH. Mapping of interdigital apoptosis in the chick and duck hindlimb. Embryology. 1997; 93(2): 85-94.

8. Ford WCL. Biological mechanisms of male infertility. The Lancet. 2001; 357:21.1223-1224.

9. Marti A, Ritter PM, Jager R. Mouse mammary gland involution is associated with cytochrome-c release and caspase activation. Mech Dev. 2001; 104(1-2):89-98.

10. Blanch A, Liu H, Goodyer C. Caspase-6 role in apoptosis of human neurons, amyloidogenesis and Alzheimer’s disease. J Biol Chem. 1999; 274(33):23426-23436.

11. Kannan K, Jain Sk. Oxidative stress and apoptosis. Pathophysiology. 2000; 7(27):153-163.

12. Adams JM, Cory S. Life or death decions by the Bcl-2 family. Trends. Biochem Sci 2001; 26:61-6.

13. Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochromeseas. Trends Biochem Sci 2001; 26: 390-7.

14. Vousden KH, Lu X. Live or let die: the cells response to p53. Nat Rev Cancer 2002; 2: 594-604.

15. Spierings DC, de Vries EG, Vellenga E. et al: Tissue distribution of the death ligand TRAİL and its receptors. J Histochem Cytochem 2004; 52(6): 821-831.

16. Smaili S. Hsu Y et al. Mitochondria in Ca+2 signaling and apoptosis. J. Bioener and Biomem.2000; 32(1):35-46.

17. Halestrap, A. P. What is the mitochondrial permeability transition pore? J. Mol. Cell Cardiol. 2009; 46,821–831.

18. Galluzzi L, Joza N, Tasdemir E, et al. No death without life: vital function of apoptotic effectors. Cell Death Differ 2009;16:1093–107.

116: 205-219.

20. Norberg E,Orrenius S,Zhivotovsky B.Mitochondrial regulation of cell death: processing of apoptosis-inducing factor(AIF).Biochem Biophys Res Commun 2010; 396: 95-100.

21. Palmer AM. Greengrass PM. Cavalla D. The role of mitochondria in apoptosis. Drug News & Perspectives, Vol. 13, No.6, 2000; 378-384. 22. Curtin JF, Cotter TG. Live and let die: regulatory mechanism in Fas

mediated apoptosis. Cell Signal 2003; 15: 983-92.

23. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis or autophagy. Curr Opin Cell Biol 2004; 16: 663–9.

24. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32: 37-43.

25. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18: 1223–6.

26. Baines, C. P. The mitochondrial permeability transition pore and the cardiac necrotic program. Pediatric Cardiology, 2011; 32(3), 258–62. 27. Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. Cell death in the

pathogenesis of heart disease: mechanisms and significance. Annual

Review of Physiology, 2010; 72, 19–44.

28. Griffiths, E. J., and Halestrap,A.PProtection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J. Mol. Cell

Cardiol. 1993; 25, 1461–1469.

29. Al-Nasser, I. A. In vivo prevention of adriamycin cardiotoxicity by cyclosporin A or FK506. Toxicology 1998; 131, 175–181.

30. Moubarak, R. S., Yuste, V. J., Artus,C., Bouharrour, A., Greer, P. A.,Menissier-de Murcia, J., and Susin,S. A. Sequential activation of poly (ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis- inducing factor-mediated programmed necrosis. Mol. Cell. Biol. 2007; 27, 4844–4862.

31. Vandenabeele, P.; Galluzzi, L.; vanden Berghe, T.; Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell. Biol. 2010; 11, 700–714.

32. Osborn SL, Diehl G, Han SJ, et al. Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis Proc Natl Acad Sci USA 2010; 107: 13034–9.

33. Bell BD, Leverrier S, Weist BM, et al. FADD and caspase-8 control the outcome of autophagic signaling in proliferation T cells. Proc Natl Acad Sci USA 2008; 105: 16677–82.

34. Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135: 1311–23.

35. Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostations. Nat Chem Biol 2008; 4: 313–

21.

36. Fiers W, Beyaert R, Boone E, et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 1995; 47: 67–75.

37. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8- independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1: 489–95.

38. Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J Immunol 1988; 141: 2629–34. 39. Andera L. Signaling activated by the death receptors of the TNFR family.

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153: 173–80.

40. Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009; 138: 229–32.

41. Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulated programmed necrosis and virus induced inflammation. Cell 2009; 137: 1112–23.

42. Han W, Xie J, Li L, Liu Z, Hu X. Necrostatin-1 reverts shikonin induced necroptosis to apoptosis. Apoptosis 2009; 14 :674–86.

43. Havlin K. An overview of anticancer druginduced cardiac complications. Cancer Ther Update 1992; 12: 2-6.

44. Mimotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56: 185-229.

45. Holland J, Frei III E, Bast R, et al. Cancer medicine. Lea and Febiger, Philadelphia, London,1993; 2339-45.

46. Olson RD, Boerth RC, Gerber JG, Nies AS. Mechanism of adriamycin toxicity: evidence for oxidative stress. Life Sci 1981; 29: 1393-1401. 47. Cummings J, Willmott N, Smyth J. The molecular pharmacology of

doxorubicin in vivo. Eur J Cancer 1991; 27: 532-35.

48. Huber SA. Doxorubicin-induced alterations incultured myocardial cells stimulate cytolytic T-lymphocyte responses. Am J Pathol 1990; 137: 449- 56.

49. Jensen RA. Doxorubicin cardiotoxicity: contractile changes after long term treatment in the rat. J Pharmacol Exp Ther 1986; 236: 197-203.

50. Das UN. Possible role of prostaglandins in the pathogenesis of cardiomyopathies. Med Hypotheses 1981; 7: 651-7.

51. Bristow MR, Kantrowitz NE, Harrison WD, Minobe WA, Sageman WS, Billingham ME. Mediation of subacute anthracycline cardiotoxicity in rabbits by cardiac histamine release. J Cardiovasc Pharmacol 1983; 5: 913- 19.

52. Klugman FB, Decorti G, Candussio L et al. Inhibitors of adriamycin- induced histamin release in vitro limit adriamycin cardiotoxicity in vivo. Br J Cancer 1986; 54: 743-48.

doxorubicin is a potent inhibitor of membrane-associated ion pumps: a correlative study of cardiac muscle with isolated memrane fractions. J Biol Chem 1987; 262: 15851-56.

54. Goodman Gilman A.: Goodman & Gilman's The Pharmacological Basis of Therapeutics. Eleventh edition. McGraw-Hill Medical Publishing Division: 2006; chapter: 51; 1358-1359.

55. Jain D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J Nucl Cardiol 2000; 7: 53–62.

56. Bates, SE, Rosing, DR, Lobins RL, Challenges of evaluating the cardiac effects of anticancer agents. Clin Cancer Res 2006; 12: 3871.

57. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998; 339: 900.

58. Menna P, Alberto Sordi F. Antrasiklin Degration in Cardiomyocytes: A Journey to Oxidative Survival, Chem. Res. Toxicol. 2010; 23, 6-10. 59. Berlin V, Hasetline W.A, Reduction of adriamycin to a semiquinonefree

radical by NADPH cytchrome P-450 reductase produces DNA cleavage in reaction mediated by molecular oxygen. J. Biol. Chem. 1981; 256: 4747- 4756.

60. Doroshow JH. Antracycline antibiotic-stimulated superoxide, hydrogen peroxide and hydroxyl radical production by NADH dehydrogenase. Cancer Res 1983; 43: 4543.

61. Li, Ti, Singal, PK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 2000; 102:2105.

62. Xu MF, Tang PL, Qian ZM, Ashraf M. Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci 2001; 68: 889– 901.

63. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V. Anthracyclineinduced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 2009; 61: 154–71.

64. Horenstein MS, Vander Heide RS, L'Ecuyer TJ. Molecular basis of anthracyclineinduced cardiotoxicity and its prevention. Mol Genet Metab 2000; 71: 436–44.

65. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol 1980; 29: 3003–10.

66. Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res 2000; 39: 257–88.

67. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol 2004; 555: 1–13.

68. Kashfi K, Israel M, Sweatman TW, Seshadri R, Cook GA. Inhibition of mitochondrial carnitine palmitoyltransferases by adriamycin and adriamycin analogues. Biochem Pharmacol 1990; 40: 1441–8.

69. Papadopoulou LC, Theophilidis G, Thomopoulos GN, Tsiftsoglou AS. Structural and functional impairment of mitochondria in adriamycin- induced cardiomyopathy in mice: suppression of cytochrome c oxidase II gene expression. Biochem Pharmacol 1999; 57: 481–9.

70. Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA, et al. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology 2010; 270: 92–8.

71. Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-Wolf KE, Piantadosi CA. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 2007; 117: 3730–41.

72. Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard Jr KA, Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 1997; 36: 11293–7.

73. Moens AL, Leyton-Mange JS,Niu X, Yang R, Cingolani O, Arkenbout EK, et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J Mol Cell Cardiol 2009; 47: 576–85.

74. Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS, et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007; 116: 506–14.

75. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10: 179-206.

76. Cave AC, Brewer AC, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8: 691– 728.

77. Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 2008; 51: 319–25.

78. Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 2003; 41: 2164– 71.

79. Gilleron M, Marechal X, Montaigne D, Franczak J, Neviere R, Lancel S. NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun 2009; 388: 727–31.

80. Pacher P, Liaudet L, Bai P, et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin- induced cardiac dysfunction. Circulation 2003; 107: 896–904.

81. Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A, Wojnowski L. Gp91phox containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH. Free Radic Biol Med 2007; 42: 466–73.

82. May PM, Williams GK, Williams DR. Solution chemistry studies of adriamycin–iron complexes present in vivo. Eur J Cancer 1980; 16: 1275–6.

83. Kappus H, Muliawan H, Scheulen ME. In vivo studies on adriamycin- induced lipid peroxidation and effects of ferrous ions. Dev Toxicol Environ Sci 1980; 8: 635–8.

84. Xu X, Persson HL, Richardson DR. Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol 2005; 68: 261–71. 85. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, et

al. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas mediated apoptosis in cardiac myocytes. Cardiovasc Res 2003; 57: 119–28.

86. Liu B, Bai QX, Chen XQ, Gao GX, Gu HT. Effect of curcumin on expression of survivin, Bcl-2 and Bax in human multiple myeloma cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007; 15: 762–6.

87. Ueno M, Kakinuma Y, Yuhki K, Murakoshi N, Iemitsu M, Miyauchi T, et al. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci 2006; 101: 151–8.

88. Youn HJ, Kim HS, Jeon MH, Lee JH, Seo YJ, Lee YJ, et al. Induction of caspase independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 2005; 270: 13–9.

89. Linkermann A, Green DR.Necroptosis.N Engl J Med. 2014 ; 30; 370 (5): 455-65.

90. Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I.L., Korkina, O.,Teng, X., Abbott, D., Cuny, G.D., Yuan, C., Wagner, G., Hedrick,S.M., Gerber, S.A., Lugovskoy, A., Yuan, J., Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 2008; 4, 313–321.

91. Cho YS, Challa S, Moquin D, Genga R, Ray TD, et al. Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009; 137: 1112–1123.

92. Festjens, N.; Vanden Berghe, T.; Cornelis, S.; Vandenabeele, P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 2007; 14, 400–410.

93. Degterev, A.; Huang, Z.; Boyce, M.; Li, Y.; Jagtap, P.; Mizushima, N.; Cuny, G.D.; Mitchison, T.J.;Moskowitz, M.A.; Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 2005; 1, 112–119.

94. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Rad Biol Med 1990; 9: 515–40.

peroxide and hydroxyl radical production by NADH dehydrogenase. Cancer Res 1983; 43: 4543.

96. Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D.Role of necroptosis in the pathogenesis of solid organ injury.Cell Death Dis. 2015; 19;6.

97.

98.

Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010 Feb 9; 121 (5): 675-83. Hetz, C., Vitte, P. A., Bombrun, A.,Rostovtseva, T. K., Montessuit, S.,Hiver, A., Schwarz, M. K.,Church,D. J., Korsmeyer, S. J., Martinou, J. C., and Antonsson, B. Bax channel inhibitors prevent mitochondrion- mediated apoptosis and protect neurons in a model of global brain ischemia. J.Biol. Chem. 2005; 280, 42960–42970.

99.

100.

Hoch E., Kivity S., Offen D., Maulik N., Otani H., Barhum Y., Pannet H., Shneyvays V., Shainberg A., Goldshtaub V., Tobar A., Vidne B.A. Bax ablation protects against myocardial ischemia reperfusion injury in transgenetic mice. Am.J. Physiol. Heart Circ. Physiol 2003;284, H2351- H2359.

Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S. Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 2001; 38: 2063–70.

101. Chapman JG, Magee WP, Stukenbrok HA, Beckius GE, Milici AJ, Tracey WR. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2- methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur J Pharmacol 2002; 456: 59–68.

102. Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A, Wojnowski L. Gp91phox containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH. Free Radic Biol Med 2007; 42: 466–73.

103. Vincent Brauner Sreuther, Fabrizio Montecucco, Mohammed Ashri, Graziano Pelli, Katia Galan, Miguel Frias, Fabienne Burger, Ana Luíza Gomez Quinderé, Christophe Montessuit, Karl-Heinz Krause, François Mach Vincent Jaquet. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology 64. 2013; 99–107.

104. Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-

induced cardiotoxicity. Circulation 2005; 112: 3754–62.

105. James D. McCully, Hidetaka Wakiyama, Yng-Ju Hsieh, Mara Jones, Sidney Levitsky. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury American Journal of Physiology - Heart and Circulatory Physiology Published 1 May 2004 Vol. 286.

106. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin:a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 2007; 21: 227–33.

107. Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 2007; 6, 1641–1649.

108. You Z, Savitz SI, Yang J, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 2008; 28: 1564–73.

109. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res. 2003; 60: 617–25.

1983 yılında Bingöl'ün Genç ilçesinde doğdum. İlkokul öğrenimimi Genç ilçesinde, orta ve lise öğrenimimi ise Ankara' da tamamladım. 2002 yılında Ankara Üniversitesi Eczacılık Fakültesini kazandım ve 2006 yılında mezun oldum. 2010 yılında Dicle Üniversitesi Tıp Fakültesi Farmakoloji Anabilim Dalında yüksek lisansımı tamamladıktan sonra aynı yıl doktora eğitimine başladım. Halen aynı bölümde eğitimime devam etmekteyim. Ayrıca 2007'den bu yana D.Ü. Tıp Fakültesi Hastanesi eczanesinde baş eczacı olarak görev yapmaktayım.

Benzer Belgeler