• Sonuç bulunamadı

GÖRÜNÜR IŞIK HABERLEŞMESİ SİSTEMLERİNDE M-CSK-OFDM İÇİN

TİO 2 /BİVO 4 FOTOKATALİZÖRLERE GENEL BİR BAKIŞ

6. Perspektif ve gelecek

Bu bölümde, on birkaç yıldaki görünür ışık odaklı BiVO4 tabanlı fotokatalistler hakkındaki gelişmelere kapsamlı bir bakış açısı sunulmuştur. Bir fotokatalizör olarak BiVO4, dar bant aralığı, düşük üretim maliyeti, toksik olmayan ve görünür ışık aktif fotokataliz alanında umut verici uygulamalar bulabilen yüksek fotokararlılık gibi birçok avantaja sahiptir. Ne yazık ki, fotokatalitik aktivite, fotojenerasyonlu yük taşıyıcılarının yeniden birleşmesi nedeniyle hala tatmin edici değildir.

Fotokatalitik aktiviteyi geliştirmek için, asil bir metal ile yükleme, bir yarı iletken ile kombinasyon yoluyla heteroyapıların oluşturulması, karbon bazlı malzemelerle modifikasyon gibi stratejiler benimsenmiştir.

Önemli ilerleme kaydedilmiş olmasına rağmen, bu fotokatalist sınıfının (özellikle TiO2/BiVO4 heteroyapılı olanlar) kullanımını daha da geliştirmek için daha fazla çaba gösterilmesi gerekmektedir. Gelecekteki çalışmalar aşağıdaki yönlere odaklanmalıdır.

Morfoloji kontrolü, fotokatalitik verimliliğin iyileştirilmesi ve atık su arıtma işlemi için BiVO4 bazlı fotokatalizör uygulamaları üzerinde durulmalıdır. TiO2/BiVO4 yapıların sentezlenmesinde nanofiber yapıların üretilmesi üzerinde daha çok durulabilir. BiVO4 bazlı fotokatalist güneş ışığı altında etkinleştirilebilir; bu nedenle, toz sistemlerine kıyasla birçok

avantaj sunan fiber mat formunda tasarlanan BiVO4 malzemeleri, hava ve yüzey sularındaki kirleticilerin temizlenmesinde toz formundaki yapılar gibi herhangi bir filtrasyona gerek duyulmadan temizlenebilir ve bu durumda maliyetlerin düşmesini olumlu yönde etkileyeceği düşünülmektedir. Su bölme işlemlerinde ve güneş pillerinde elektrot olarak da kullanılabilen bu tür bir malzemeler, özellikle BiVO4 tabanlı sistemler hakkında bilgi derinleşirse, özellikle pilot ölçekli testin tasarımı için daha da önem kazanacaktır.

Bu çalışma Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FKB-2019-9139 nolu proje kapsamında desteklenmiştir” (“This work has been supported by Erciyes University Scientific Research Projects Coordination Unit under grant number FKB-2019-9139 ”)

REFERANSLAR

[1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.

[2] K. Demeestere, J. Dewulf, and H. Van Langenhove, “Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art,” Critical Reviews in Environmental Science and Technology, vol. 37, no. 6. pp. 489–538, Nov-2007.

[3] A. Malathi, J. Madhavan, M. A.-A. C. A., and undefined 2018, “A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications,” Elsevier.

[4] A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., vol. 95, no. 3, pp. 735–758, May 1995.

[5] A. Kudo, K. Omori, and H. Kato, “A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties,” J. Am. Chem. Soc., vol.

121, no. 49, pp. 11459–11467, Dec. 1999, doi: 10.1021/ja992541y.

[6] C. Manolikas, S. A.-P. S. S. A, A. Research, and undefined 1980,

“Ferroelastic domains in BiVO4,” inis.iaea.org.

[7] W. I. F. David and I. G. Wood, “Ferroelastic phase transition in BiVO4:

VI. Some comments on the relationship between spontaneous deformation and domain walls in ferroelastics,” J. Phys. C Solid State Phys., vol. 16, no. 26, pp. 5149–5166, 1983, doi: 10.1088/0022-3719/16/26/009.

[8] M. S. Jangs and S. H. Choh, “Ferroelastic phase transition of BiVO4 studied by 51V NMR,” Ferroelectrics, vol. 94, no. 1, pp. 389–394, Jun.

1989.

[9] A. Bhattacharya, K. Mallick, A. H.-M. Letters, and undefined 1997,

“Phase transition in BiVO4,” Elsevier.

[10] K. Hirota, G. Komatsu, M. Yamashita, H. T.-M. research, and undefined 1992, “Formation, characterization and sintering of alkoxy-derived bismuth vanadate,” Elsevier.

[11] L. Jie, W. Huijuan, and L. Guofeng, “TiO2 Photocatalysis: A Historical Overview and Future Prospects Synergistic Decolouration of Azo Dye by Pulsed Streamer Discharge Immobilized TiO 2 Photocatalysis,” Jpn.

J. Appl. Phys., vol. 44, no. 12, pp. 8269–8285, Dec. 2005.

[12] K. R. Gopidas, M. Bohorquez, and P. V. Kamat, “Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium titania and cadmium

sulfide-silver(I) iodide systems,” J. Phys. Chem., vol. 94, no. 16, pp. 6435–6440, Aug. 1990.

[13] S. Sakthivel and H. Kisch, “Daylight Photocatalysis by Carbon-Modified Titanium Dioxide,” Angew. Chemie - Int. Ed., vol. 42, no. 40, pp. 4908–

4911, Oct. 2003.

[14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. T.- science, and undefined 2001, “those from N 2p to Ti d xy,” science.sciencemag.org, 2001.

[15] P. Lee, B. Choi, M. K.-, “Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk,” Elsevier, Chemosphere, and undefined 2015.

[16] Y. Yokosuka, K. Oki, H. Nishikiori, … Y. T.-R. on C., and undefined 2009, “Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol–gel process,” Springer.

[17] P. Kamat, M. F.-C. physics letters, and undefined 1983,

“Photosensitization of TiO2 colloids by erythrosin B in acetonitrile,”

Elsevier.

[18] Y. Zhu and Y. Dan, “Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 10, pp. 1658–1664, Oct. 2010.

[19] J. Augustynski, N. Vlachopoulos, P. Liska, and M. GräTzel, “Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films,” J. Am. Chem. Soc., vol. 110, no. 4, pp. 1216–1220, Feb. 1988.

[20] A. Mills, S. L. H.-J. of photochemistry and photobiology A, and undefined 1997, “An overview of semiconductor photocatalysis,”

Elsevier.

[21] I. Konstantinou, T. A.-A. C. B. Environmental, and undefined 2004,

“TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Elsevier.

[22] S. Ahmed, M. Rasul, R. Brown, and M. Hashib, “Atık sudaki pestisitlerin ve fenolik kirleticilerin heterojen fotokatalitik yıkımı üzerindeki parametrelerin etkisi: kısa bir derleme,” Çevre Derg., 2011.

[23] U. Akpan, B. H.-T. M. Dergisi, and undefined 2009, “TiO2 bazlı fotokatalizörler kullanarak boyaların fotokatalitik degradasyonunu etkileyen parametreler: bir inceleme,” Elsevier.

[24] M. Saquib, M. Tariq, M. Faisal, M. M.-T. Arındırma, and undefined 2008, “Titanyum dioksitin sulu süspansiyonlarında seçilen iki boya türevinin fotokatalitik bozulması,” Elsevier.

[25] S. Chakrabarti, B. D.-T. maddeler dergisi, and undefined 2004, “Yarı iletken katalizör olarak ZnO kullanılarak atık sudaki model tekstil boyalarının fotokatalitik bozulması,” Elsevier.

[26] S. Liu, J. Yang, and J. Choy, “Mikro poröz SiO2 – TiO2 nanosolleri, metil portakalın fotokatalitik ayrışması için sütunlu montmorillonit,”

Fotokimya ve Fotobiyoloji Derg., 2006.

[27] J. Sun, L. Qiao, S. Sun, and G. Wang, “Turuncu G’nin görünür ışık ve güneş ışığı ışınlaması altında azot katkılı TiO2 katalizörleri üzerinde fotokatalitik bozulması,” Tehlikeli maddeler Derg., 2008.

[28] “Malzeme Araştırma Ekspresi-IOPscience.”. A:

https://iopscience.iop.org/journal/2053-1591. [Accessed: 10-Mar-2020].

[29] I. Konstantinou and T. Albanis, “Sulu çözeltide azo boyalarının TiO2 destekli fotokatalitik bozunması: kinetik ve mekanik araştırmalar: bir inceleme,” Uygulamalı Katal. B Çevresel, 2004.

[30] N. SERPONE, G. Sauvé, undefined R, undefined Koch, H. Tahiri, and ... P. P., “Heterojen fotokatalizde proses verimlilikleri ve aktivasyon parametrelerinin standardizasyon protokolü: bağıl fotonik verimlilikler arasında fotokimyanın., 1996.

[31] J. Grzechulska, A. M.-U. K. B. Çevresel, and undefined 2002, “Azo-boya asit siyahı 1’in modifiye titanyum dioksit üzerinde suda fotokatalitik ayrışması,” Elsevier.

[32] M. Huang et al., “Doğal zeolit üzerine yüklenmiş Pt modifiye TiO2 ile metil turuncu çözeltisinin fotokatalitik renksizleşmesi,” Elsevier.

[33] W. Baran, A. Makowski, and W. Wardas, “Katyonik ve anyonik boya çözeltilerinin UV radyasyon emiliminin TiO2 varlığında fotokatalitik bozunmaları üzerindeki etkisi,” Boyalar ve Pigment., 2008.

[34] W. Chao-Hai, X.-H. Tang, J.-R. Liang, and S.-Y. Tan, “Preparation, characterization and photocatalytic activities of boron-and cerium-codoped TiO2,” 2007.

[35] M. Sun et al., “Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds Related content,” iopscience.iop.org, 2010, doi: 10.1088/0957-4484/21/35/355601.

[36] S. Lee and S. Obregón-Alfaro, “Sonokimyasal işlemle hazırlanan köpüklü atık cam üzerindeki gümüş-TiO2 nanokompozitlerinin fotokatalitik kaplamaları,” Fotokimya Derg., 2011.

[37] J. A.-E. Acta and undefined 1993, “The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2,”

Elsevier.

[38] M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem.

Rev., vol. 93, no. 1, pp. 341–357, 1993, doi: 10.1021/cr00017a016.

[39] D. F. Ollis, “Contaminant degradation in water,” Environ. Sci. Technol., vol. 19, no. 6, pp. 480–484, Jun. 1985, doi: 10.1021/es00136a002.

[40] “Nanophotocatalysis using nanoparticles of titania: Mineralization and finite element modelling of Solophenyl dye decolorization,” Elsevier.

[41] X. Yu, C. Li, Y. Ling, T. A. Tang, Q. Wu, and J. Kong, “First principles

calculations of electronic and optical properties of Mo-doped rutile TiO2,” J. Alloys Compd., vol. 507, no. 1, pp. 33–37, Sep. 2010, doi:

10.1016/j.jallcom.2010.07.195.

[42] “Nanosize Ti–W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation,”

Elsevier.

[43] A. Corma, “Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions,” Chem. Rev., vol. 95, no. 3, pp. 559–614, 1995, doi: 10.1021/cr00035a006.

[44] R. Wang et al., “Light-induced amphiphilic surfaces [4],” Nature, vol.

388, no. 6641. Nature Publishing Group, pp. 431–432, 1997, doi:

10.1038/41233.

[45] W. Zhou et al., “Ultrathin Ti/TiO2/BiVO4 nanosheet heterojunction arrays for photoelectrochemical water oxidation,” Elsevier.

[46] S. Sun, W. Wang, L. Zhou, and H. Xu, “Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO 4,” Ind. Eng.

Chem. Res., vol. 48, no. 4, pp. 1735–1739, Feb. 2009.

[47] G. L. Wang, L. W. Shan, Z. Wu, and L. M. Dong, “Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–

gel method,” Rare Met., vol. 36, no. 2, pp. 129–133, Feb. 2017.

[48] B. X. Lei, P. Zhang, S. N. Wang, Y. Li, G. L. Huang, and Z. F. Sun,

“Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts,”

Mater. Sci. Semicond. Process., vol. 30, pp. 429–434, Feb. 2015.

[49] W. Yin, W. Wang, M. Shang, L. Zhou, S. Sun, and L. Wang, “BiVO 4

Hollow Nanospheres: Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis,” Eur. J. Inorg. Chem., vol. 2009, no.

29–30, pp. 4379–4384, Oct. 2009.

[50] L. Zong, P. Cui, F. Qin, K. Zhao, Z. Wang, and R. Yu, “Heterostructured bismuth vanadate multi-shell hollow spheres with high visible-light-driven photocatalytic activity,” Mater. Res. Bull., vol. 86, pp. 44–50, Feb. 20171.

[51] Y. Lu, Y. S. Luo, H. M. Xiao, and S. Y. Fu, “Novel core-shell structured BiVO4 hollow spheres with an ultra-high surface area as visible-light-driven catalyst,” CrystEngComm, vol. 16, no. 27, pp. 6059–6065, Jul.

2014.

[52] F. Li, C. Yang, Q. Li, W. Cao, and T. Li, “The pH-controlled morphology transition of BiVO4 photocatalysts from microparticles to hollow microspheres,” Mater. Lett., vol. 145, pp. 52–55, Apr. 2015.

[53] L. Chen, D. Meng, X. Wu, J. Wang, Y. Wang, and Y. Liang, “Shape-controlled synthesis of novel self-assembled BiVO4 hierarchical structures with enhanced visible light photocatalytic performances,”

Mater. Lett., vol. 176, pp. 143–146, Aug. 2016.

[54] H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, and J. Deng, “Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol,”

Appl. Catal. B Environ., vol. 105, no. 3–4, pp. 326–334, Jun. 2011.

[55] X. Wu et al., “Carbon dot and BiVO4 quantum dot composites for overall water splitting: Via a two-electron pathway,” Nanoscale, vol. 8, no. 39, pp. 17314–17321, Oct. 2016.

[56] R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, “Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO 3 nanoparticles,” J. Phys. Chem. C, vol. 114, no. 49, pp. 21390–21396, Dec. 2010.

[57] Shun Li, Jianming Zhang, Md Golam Kibria, Zetian Mi, Mohamed Chaker, Dongling Ma, Riad Nechache, Federico Rosei , “Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light,” Chem Commun (Camb), 2013

[58] P. Ju, Y. Wang, Y. Sun, and D. Zhang, “Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation,” Dalt. Trans., vol.

45, no. 11, pp. 4588–4602, 2016.

[59] S. Shenawi-Khalil, V. Uvarov, E. Menes, I. Popov, and Y. Sasson, “New efficient visible light photocatalyst based on heterojunction of BiOCl-bismuth oxyhydrate,” Appl. Catal. A Gen., vol. 413–414, pp. 1–9, Jan.

2012.

[60] X. Meng, L. Zhang, H. Dai, Z. Zhao, … R. Z.-M. C. and, and undefined 2011, “Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single,” Elsevier.

[61] S. Sun, W. Wang, D. Li, L. Zhang, and D. Jiang, “Solar Light Driven Pure Water Splitting on Quantum Sized BiVO 4 without any Cocatalyst,”

ACS Catal., vol. 4, no. 10, pp. 3498–3503, Oct. 2014.

[62] R. Sharma, S. Singh, A. Verma, M. K.-J. of P. and, and undefined 2016,

“Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals,” Elsevier.

[63] S. S. M. Bhat and H. W. Jang, “Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting,”

ChemSusChem, vol. 10, no. 15. Wiley-VCH Verlag, pp. 3001–3018, 2017.

[64] S. Usai, S. Obregón, A. I. Becerro, and G. Colón, “Monoclinic–

Tetragonal Heterostructured BiVO 4 by Yttrium Doping with Improved Photocatalytic Activity,” J. Phys. Chem. C, vol. 117, no. 46, pp. 24479–

24484, Nov. 2013, doi: 10.1021/jp409170y.

[65] H. Jiang et al., “High-performance porous spherical or octapod-like

[54] H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, and J. Deng, “Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol,”

Appl. Catal. B Environ., vol. 105, no. 3–4, pp. 326–334, Jun. 2011.

[55] X. Wu et al., “Carbon dot and BiVO4 quantum dot composites for overall water splitting: Via a two-electron pathway,” Nanoscale, vol. 8, no. 39, pp. 17314–17321, Oct. 2016.

[56] R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, “Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO 3 nanoparticles,” J. Phys. Chem. C, vol. 114, no. 49, pp. 21390–21396, Dec. 2010.

[57] Shun Li, Jianming Zhang, Md Golam Kibria, Zetian Mi, Mohamed Chaker, Dongling Ma, Riad Nechache, Federico Rosei , “Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light,” Chem Commun (Camb), 2013

[58] P. Ju, Y. Wang, Y. Sun, and D. Zhang, “Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation,” Dalt. Trans., vol.

45, no. 11, pp. 4588–4602, 2016.

[59] S. Shenawi-Khalil, V. Uvarov, E. Menes, I. Popov, and Y. Sasson, “New efficient visible light photocatalyst based on heterojunction of BiOCl-bismuth oxyhydrate,” Appl. Catal. A Gen., vol. 413–414, pp. 1–9, Jan.

2012.

[60] X. Meng, L. Zhang, H. Dai, Z. Zhao, … R. Z.-M. C. and, and undefined 2011, “Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single,” Elsevier.

[61] S. Sun, W. Wang, D. Li, L. Zhang, and D. Jiang, “Solar Light Driven Pure Water Splitting on Quantum Sized BiVO 4 without any Cocatalyst,”

ACS Catal., vol. 4, no. 10, pp. 3498–3503, Oct. 2014.

[62] R. Sharma, S. Singh, A. Verma, M. K.-J. of P. and, and undefined 2016,

“Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals,” Elsevier.

[63] S. S. M. Bhat and H. W. Jang, “Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting,”

ChemSusChem, vol. 10, no. 15. Wiley-VCH Verlag, pp. 3001–3018, 2017.

[64] S. Usai, S. Obregón, A. I. Becerro, and G. Colón, “Monoclinic–

Tetragonal Heterostructured BiVO 4 by Yttrium Doping with Improved Photocatalytic Activity,” J. Phys. Chem. C, vol. 117, no. 46, pp. 24479–

24484, Nov. 2013, doi: 10.1021/jp409170y.

[65] H. Jiang et al., “High-performance porous spherical or octapod-like

single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light,” Elsevier.

[66] W. Yin, W. Wang, L. Zhou, S. Sun, L. Z.-J. of H. Materials, and undefined 2010, “CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation,” Elsevier.

[67] L. Shi et al., “Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation,” J. Mater. Sci., vol. 53, no. 16, pp. 11329–11342, Aug. 2018, doi: 10.1007/s10853-018-2442-x.

[68] A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, and S.-H. Wei, “Band Edge Electronic Structure of BiVO 4 : Elucidating the Role of the Bi s and V d Orbitals,” Chem. Mater., vol. 21, no. 3, pp. 547–551, Feb. 2009, doi: 10.1021/cm802894z.

[69] K. E. Kweon and G. S. Hwang, “Structural phase-dependent hole localization and transport in bismuth vanadate,” Phys. Rev. B - Condens.

Matter Mater. Phys., vol. 87, no. 20, May 2013, doi:

10.1103/PhysRevB.87.205202.

[70] R. Munprom, P. A. Salvador, and G. S. Rohrer, “Polar Domains at the Surface of Centrosymmetric BiVO 4,” Chem. Mater., vol. 26, no. 9, pp.

2774–2776, May 2014, doi: 10.1021/cm501087j.

[71] G. Zhao, W. Liu, J. Li, Q. Lv, W. Li, and L. Liang, “Facile synthesis of hierarchically structured BiVO 4 oriented along (010) facets with different morphologies and their photocatalytic properties,” Appl. Surf.

Sci., vol. 390, pp. 531–539, Dec. 2016, doi:

10.1016/j.apsusc.2016.08.126.

[72] A. Kudo, K. Omori, H. K. the A. C. Society, and undefined 1999, “of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties,” ACS Publ.

[73] X. Zhang et al., “Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases,” Elsevier.

[74] G. Z. Wu, D. H. Son, Y. E. Jin, G. D. Lee, and S. S. Park,

“Hydrothermal synthesis of metal-doped BiVO4 powder and its thermochromic properties,” Appl. Chem. Eng., vol. 26, no. 6, pp. 681–

685, Dec. 2015, doi: 10.14478/ace.2015.1097.

[75] Z. Zhang, W. Wang, M. Shang, W. Y. communications, and undefined 2010, “Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst,” Elsevier.

[76] M. Shang, W. Wang, J. Ren, S. Sun, and L. Zhang, “A novel BiVO4 hierarchical nanostructure: Controllable synthesis, growth mechanism, and application in photocatalysis,” CrystEngComm, vol. 12, no. 6, pp.

1754–1758, Jun. 2010, doi: 10.1039/b923115c.

[77] J. Su, L. Guo, N. Bao, and C. A. Grimes, “Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting,”

Nano Lett., vol. 11, no. 5, pp. 1928–1933, May 2011, doi:

10.1021/nl2000743.

[78] J. Yang, D. Wang, X. Zhou, and C. Li, “A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution,” Chem. - A Eur. J., vol. 19, no. 4, pp. 1320–1326, Jan. 2013.

[79] Y. Liu et al., “Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst,” Elsevier.

[80] A. Yoosefi Booshehri, S. Chun-Kiat Goh, J. Hong, R. Jiang, and R. Xu,

“ Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water , Journal of materials Chemistry A, 2014, 17.

[81] Q. Yuan et al., “Cu2O/BiVO4 heterostructures: Synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light,” Chem. Eng. J., vol. 255, pp.

394–402, Nov. 2014.

[82] W. Cui, W. An, L. Liu, J. Hu, Y. L.-J. of hazardous materials, and undefined 2014, “Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant,”

Elsevier.

[83] S. Shamaila, A. Sajjad, F. Chen, J. Z. colloid and interface science, and undefined 2011, “WO3/BiOCl, a novel heterojunction as visible light photocatalyst,” Elsevier.

[84] M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, and H. Fu, “Long-lived, visible-light-excited charge carriers of TiO 2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting,” Adv. Energy Mater., vol. 4, no. 5, Apr. 2014.

[85] X. Song, Y. Li, Z. Wei, S. Ye, and D. D. Dionysiou, “Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light,” Chem. Eng. J., vol. 314, pp. 443–452, 2017.

[86] Y. Hu et al., “Hydrothermal synthesis of BiVO4 /TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation,” Appl. Surf. Sci., vol. 436, pp. 319–326, Apr. 2018, doi:

10.1016/j.apsusc.2017.12.054.

[87] M. Samsudin, S. Sufian, N. Mohamed, R. B.-M. Letters, and undefined 2018, “Enhancement of hydrogen production over screen-printed TiO2/BiVO4 thin film in the photoelectrochemical cells,” Elsevier.

[88] R. Kalan, S. Yaparatne, … A. A.-A. C. B., and undefined 2016, “P25 titanium dioxide coated magnetic particles: Preparation, characterization and photocatalytic activity,” Elsevier.

[89] T. Doll, F. F.-W. Research, and undefined 2005, “Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and

Hombikat UV100 in the presence of natural organic matter (NOM) and,”

Elsevier.

[90] E. Hussain et al., “Titania-Supported Palladium/Strontium Nanoparticles (Pd/Sr-NPs@P25) for Photocatalytic H2 Production from Water Splitting,” J. Phys. Chem. C, vol. 120, no. 31, pp. 17205–17213, Aug.

2016, doi: 10.1021/acs.jpcc.6b04695.

[91] M. Ye, X. Wang, E. Liu, J. Ye, and D. Wang, “Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface-Alkalinized Titanium Carbide MXene as Cocatalyst,”

ChemSusChem, vol. 11, no. 10, pp. 1606–1611, May 2018.

[92] N. Wetchakun, S. Chainet, S. Phanichphant, and K. Wetchakun,

“Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites,” Ceram. Int., vol. 41, no. 4, pp. 5999–

6004, May 2015.

[93] W. Luo, Z. Li, T. Yu, and Z. Zou, “Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO 4,” J. Phys. Chem. C, vol. 116, no. 8, pp. 5076–5081, Mar. 2012.

[94] S. Berglund, A. Rettie, … S. H.-P. C., and undefined 2012,

“Incorporation of Mo and W into nanostructured BiVO 4 films for efficient photoelectrochemical water oxidation,” pubs.rsc.org.

[95] W. Yao and J. Ye, “Photophysical and Photocatalytic Properties of Ca 1-

x Bi x V x Mo 1- x O 4 Solid Solutions,” J. Phys. Chem. B, vol. 110, no. 23, pp. 11188–11195, Jun. 2006.

[96] H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, and A. J. Bard,

“Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation,” J. Phys.

Chem. C, vol. 115, no. 36, pp. 17870–17879, Sep. 2011.

[97] X. Song, Y. Li, Z. Wei, S. Ye, D. D.-C. E. Journal, and undefined 2017,

“Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light,” Elsevier.

[98] G. Odling and N. Robertson, “BiVO 4 -TiO 2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method,”

ChemPhysChem, vol. 17, no. 18, pp. 2872–2880, Sep. 2016.

[99] W. Li et al., “Visible-light-induced dendritic BiVO4/TiO2 composite photocatalysts for advanced oxidation process,” Elsevier.

[100] Z. Guo et al., “One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity,” Elsevier.

[101] P. P. Liu, X. Liu, X. H. Huo, Y. Tang, J. Xu, and H. Ju, “TiO2-BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing,” ACS Appl. Mater. Interfaces, vol. 9, no. 32, pp.

27185–27192, Aug. 2017.

[102] Y. Hu et al., “BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene,” Elsevier.

[103] B. Y. Cheng, J. S. Yang, H. W. Cho, and J. J. Wu, “Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation,” ACS Appl. Mater. Interfaces, vol. 8, no. 31, pp. 20032–20039, Aug. 2016.

[104] A. P. Singh, N. Kodan, B. R. Mehta, A. Held, L. Mayrhofer, and M.

Moseler, “Band Edge Engineering in BiVO4/TiO2 Heterostructure:

Enhanced Photoelectrochemical Performance through Improved Charge Transfer,” ACS Catal., vol. 6, no. 8, pp. 5311–5318, Aug. 2016.

[105] S. Ho-Kimura, S. J. A. Moniz, A. D. Handoko, and J. Tang, “Enhanced photoelectrochemical water splitting by nanostructured BiVO 4-TiO2 composite electrodes,” J. Mater. Chem. A, vol. 2, no. 11, pp. 3948–3953, Mar. 2014.

[106] J. Bian, Y. Qu, X. Zhang, N. Sun, D. T.-… of M. C. A, and undefined 2018, “Dimension-matched plasmonic Au/TiO 2/BiVO 4 nanocomposites as efficient wide-visible-light photocatalysts to convert CO 2 and mechanistic insights,” Journal of Materials Chemistry A, 15, 2018.

[107] Y. J. Hwang, A. Boukai, and P. Yang, “High density n-S/n-TiO 2 core/shell nanowire arrays with enhanced photoactivit,” Nano Lett., vol.

9, no. 1, pp. 410–415, Jan. 2009.

[108] H. Jung, S. Y. Chae, C. Shin, B. K. Min, O.-S. Joo, and Y. J. Hwang,

“Effect of the Si/TiO 2 /BiVO 4 Heterojunction on the Onset Potential of

“Effect of the Si/TiO 2 /BiVO 4 Heterojunction on the Onset Potential of