• Sonuç bulunamadı

1. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105.

2. Aşçı ÇD, Koşar PA, Özçelik N. MikroRNA'lar ve kanser ile ilişkisi. S.D.Ü. Tıp Fak. Derg. 2013; 20(3): 121-7.

3. Erkan EP, Breakefield XO, Saydam O. miRNA signature of schwannomas: possible role (s) of “tumor suppressor” miRNAs in benign tumors. Oncotarget. 2011;2(3):265-70.

4. Becker N, Lockwood CM. Pre-analytical variables in miRNA analysis. Clin Biochem. 2013;46(10-11):861-8.

5. Haybaeck J, Zeller N, Heikenwalder M. The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med Wkly. 2011;141:w13287.

6. Elton TS, Sansom SE, Martin MM. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol. 2010;7(5):540-7.

7. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68-73.

8. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999-3004.

9. Tunalı NE, Tiryakioğlu NO. Kanserde MikroRNA'ların Rolü. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2010; 30(5): 1690.

10. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901- 6.

11. Hutvágner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834-8.

12. Büssing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14(9):400-9.

77

13. Lee EJ, Baek M, Gusev Y, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA. 2008;14(1):35-42. 14. Hung J, Medicus R. Pathway. SABiosciences Corporation, Frederick, MD

USA, 2008.

15. Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846-60.

16. Mirnezami AH, Pickard K, Zhang L, et al. MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol. 2009;35(4):339-47.

17. Saydam F, Değirmenci İ, Güneş HV. MikroRNA’lar ve kanser Dicle Tıp Dergisi. 2011; 38 (1): 113-120.

18. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363-6. 19. Preall JB, He Z, Gorra JM, et al. Short interfering RNA strand selection is

independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol. 2006;16(5):530-5.

20. Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631-40. 21. Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying

microRNA targets. Proc Natl Acad Sci U S A. 2007;104(49):19291-6.

22. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20.

23. Wang B, Love TM, Call ME, et al. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell. 2006;22(4):553-60.

24. Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309(5740):1573-6. 25. Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation

after initiation in mammalian cells. Mol Cell. 2006;21(4):533-42.

26. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997-1006.

78

27. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour‐ associated microRNAs in serum of patients with diffuse large B‐ cell lymphoma. Br J Haematol. 2008;141(5):672-5.

28. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513-8.

29. Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473-7.

30. Chen X, Gao C, Li H, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010;20(10):1128-37.

31. Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655-61.

32. Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442-52. 33. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs

and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9.

34. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.

35. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133-44.

36. Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402-7.

37. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003-8.

38. Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223-33.

79

39. Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423-33.

40. Chen X, Liang H, Zhang J, et al. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012;3(1):28-37.

41. Price JO, Elias S, Wachtel SS, et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am J Obstet Gynecol. 1991;165(6 Pt 1):1731-7.

42. Bianchi DW, Mahr A, Zickwolf GK, et al. Detection of fetal cells with 47, XY,+ 21 karyotype in maternal peripheral blood. Hum Genet. 1992;90(4):368- 70.

43. Simpson JL, Elias S. Fetal cells in maternal blood. Ann N Y Acad Sci. 1994;731:1-8.

44. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485-7.

45. Chen EZ, Chiu RW, Sun H, et al. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS One. 2011;6(7):e21791.

46. Papageorgiou EA, Karagrigoriou A, Tsaliki E, et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med. 2011;17(4):510-3.

47. Pan Q, Chegini N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med. 2008;26(6):479-93.

48. Chakrabarty A, Tranguch S, Daikoku T, et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A. 2007;104(38):15144-9.

49. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W et al. Pregnancy- associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51-61.

50. Miura K, Miura S, Yamasaki K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010;56(11):1767-71.

51. Luo SS, Ishibashi O, Ishikawa G, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 2009;81(4):717-29.

80

52. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation–identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89(2):185-91. 53. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental

microRNAs in maternal plasma. Clin Chem. 2008;54(3):482-90.

54. Ouyang Y, Mouillet JF, Coyne CB, et al. Review: Placenta-specific microRNAs in exosomes–Good things come in nano-packages. Placenta. 2014;35 Suppl:S69-73.

55. Ge Q, Li H, Yang Q, et al. Sequencing circulating miRNA in maternal plasma with modified library preparation. Clin Chim Acta. 2011;412(21-22):1989-94. 56. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the

placenta is associated with fetal growth. PLoS One. 2011;6(6):e21210.

57. Enquobahrie DA, Qiu C, Muhie SY, et al. Maternal peripheral blood gene expression in early pregnancy and preeclampsia. Int J Mol Epidemiol Genet. 2011;2(1):78-94.

58. Zhang Y, Diao Z, Su L, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202(5):466.e1-7.

59. Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol. 2011;91(8):737-43.

60. Fu G, Brkić J, Hayder H, et al. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 2013;14(3):5519-44.

61. Alpini G, Glaser SS, Zhang JP, et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol. 2011;55(6):1339-45. 62. Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on

chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405-13. 63. Kotlabova K, Doucha J, Chudoba D, et al. Extracellular chromosome 21-

derived microRNAs in euploid & aneuploid pregnancies. Indian J Med Res. 2013;138(6):935-43.

64. Pelosi A, Careccia S, Lulli V, et al. miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene. 2013;32(31):3648-54. 65. Cui SY, Huang JY, Chen YT, et al. Let-7c governs the acquisition of chemo-or

81

docetaxel-resistant lung adenocarcinoma. Mol Cancer Res. 2013;11(7):699- 713.

66. Jiang R, Li Y, Zhang A, et al. The acquisition of cancer stem cell-like properties and neoplastic transformation of human keratinocytes induced by arsenite involves epigenetic silencing of let-7c via Ras/NF-κB. Toxicol Lett. 2014;227(2):91-8.

67. Chan HW, Lappas M, Yee SW, et al. The expression of the let-7 miRNAs and Lin28 signalling pathway in human term gestational tissues. Placenta. 2013;34(5):443-8.

68. Gu Y, Sun J, Groome LJ, et al. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013;304(8):E836-43.

69. Xu Y, Li W, Liu X, et al. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene. 2013;530(2):278-86. 70. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific

microRNAs from mouse. Curr Biol. 2002;12(9):735-9.

71. Cai X, Lu S, Zhang Z, et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A. 2005;102(15):5570-5.

72. Shaham L, Binder V, Gefen N, et al. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26(9):2011-8.

73. Dong F, Zhang Y, Xia F, et al. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction. 2014;148(1):33-41.

74. Elton TS, Selemon H, Elton SM, et al. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1-12.

75. Takada S, Berezikov E, Yamashita Y, et al. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res. 2006;34(17):e115.

76. Kornfeld JW, Baitzel C, Könner AC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111-5.

82

77. Sansom SE, Nuovo GJ, Martin MM, et al. miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G632-42.

78. Li XJ, Luo XQ, Han BW, et al. MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer. 2013;109(8):2189-98.

79. Li W, Wang J, Chen QD, et al. Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PLoS One. 2013;8(6):e64924. 80. Cui L, Zhou H, Zhao H, et al. MicroRNA-99a induces G1-phase cell cycle

arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer. 2012;12:546.

81. Li D, Liu X, Lin L, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011;286(42):36677-85.

82. Stark MS, Tyagi S, Nancarrow DJ, et al. Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS One. 2010;5(3):e9685.

83. Persson H, Kvist A, Rego N, et al. Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res. 2011;71(1):78-86.

84. Meiri E, Levy A, Benjamin H, et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 2010;38(18):6234-46.

85. Vaz C, Ahmad HM, Bharti R, et al. Analysis of the microRNA transcriptome and expression of different isomiRs in human peripheral blood mononuclear cells. BMC Res Notes. 2013;6:390.

86. Goff LA, Davila J, Swerdel MR, et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS One. 2009;4(9):e7192.

87. Antonarakis SE, Lyle R, Dermitzakis ET, et al. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5(10):725- 38.

88. Hook, E. Epidemiology of Down syndrome. Pueschel SM, Rynders JE. Down Syndrome. Advances in Biomedicine and the behavioral sciences. Cambridge: Ware Press (pub.), 1982.

83

89. Kafkaslı A. Gebelikte Down Sendromu Tanısı için Tarama Testleri ve Güvenilirlikleri. TJD Uzmanlık Sonrası Eğitim Dergisi. 2004;6:30-35.

90. Henry E, Walker D, Wiedmeier SE, et al. Hematological abnormalities during the first week of life among neonates with Down syndrome: data from a multihospital healthcare system. Am J Med Genet A. 2007;143A(1):42-50. 91. Korenberg, JR. Toward a molecular understanding of Down syndrome. Prog

Clin Biol Res. 1993; 384: 87-115.

92. Korenberg JR, Bradley C, Disteche CM. Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am J Hum Genet. 1992;50(2):294-302.

93. Delabar JM, Theophile D, Rahmani Z, et al. Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Hum Genet. 1993;1(2):114-24.

94. Fong CT, Brodeur GM. Down's syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet. 1987;28(1):55-76.

95. Robison, L. Down syndrome and leukemia. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK, 1992; 6: 5. 96. Zipursky A, Poon A, Doyle J. Leukemia in Down syndrome: a review. Pediatr

Hematol Oncol. 1992;9(2):139-49.

97. Mazzoni DS, Ackley RS, Nash DJ. Abnormal pinna type and hearing loss correlations in Down's syndrome. J Intellect Disabil Res. 1994;38 (Pt 6):549- 60.

98. Wisniewski KE, Wisniewski HM, Wen GY. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann Neurol. 1985;17(3):278-82.

99. OMIM. Down syndrome #190685 [Erişim tarihi: Eylül 2, 2014]; Available from: http://omim.org/clinicalSynopsis/190685.

100. Foundation, L. Down Syndrome (Trisomy 21). [Erişim tarihi: Eylül 10, 2014]; Available from: http://www.lucinafoundation.org/birthdefects-trisomy21.html. 101. Nikolaienko O, Nguyen C, Crinc LS, et al. Human chromosome 21/Down

84

102. Antonarakis SE. Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med. 1991;324(13):872-6.

103. Petersen MB, Adelsberger PA, Schinzel AA, et al. Down syndrome due to de novo Robertsonian translocation t (14q; 21q): DNA polymorphism analysis suggests that the origin of the extra 21q is maternal. Am J Hum Genet. 1991;49(3):529-36.

104. Sherman SL, Freeman SB, Allen EG, et al. Risk factors for nondisjunction of trisomy 21. Cytogenet Genome Res. 2005;111(3-4):273-80.

105. Hattori M, Fujiyama A, Taylor TD, et al. The DNA sequence of human chromosome 21. Nature. 2000;405(6784):311-9.

106. Amano K, Sago H, Uchikawa C, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004;13(13):1333-40.

107. Li CM, Guo M, Salas M, et al. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet. 2006;7:24.

108. Carroll SB, Prud'homme B, Gompel N. Regulating evolution. Sci Am. 2008;298(5):60-7.

109. Crabtree GR, Schreiber SL. SnapShot: Ca2+-calcineurin-NFAT signaling. Cell. 2009;138(1):210, 210.e1.

110. Arbuzova S, Hutchin T, Cuckle H. Mitochondrial dysfunction and Down's syndrome. Bioessays. 2002;24(8):681-4.

111. Lyle R, Béna F, Gagos S, et al. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet. 2009;17(4):454-66.

112. Zhang L, Fu D, Belichenko PV, et al. Genetic analysis of Down syndrome facilitated by mouse chromosome engineering. Bioeng Bugs. 2012;3(1):8-12. 113. McCabe LL, McCabe ER. Call for change in prenatal counseling for Down

syndrome. Am J Med Genet A. 2012;158A(3):482-4.

114. Beksaç MS, Odçikin Z, Egemen A, et al. An intelligent diagnostic system for the assessment of gestational age based on ultrasonic fetal head measurements. Technol Health Care. 1996;4(2):223-31.

85

115. Chen, H. Down syndrome. Atlas of genetic diagnosis and counseling, 2006. P:295-304.

116. Connor JM, Ferguson-Smith MA. Essential medical genetics. Journal of Human Genetics, 1994; 39(4): 453.

117. Aydınlı, K. Prenatal Tanı ve Tedavi. in: Aydınlı K, ed. İstanbul: Prestij Matbaası, 1992. P: 1-90.

118. Yararbaş K. Prenatal tanı. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2006; 26(6): 666-74.

119. Norwitz ER, Schorge JO. Obstetrics and Gynecology at a Glance. John Wiley & Sons, 2013.

120. American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 545: Noninvasive prenatal testing for fetal aneuploidy. Obstet Gynecol. 2012;120(6):1532-4.

121. Aslan H, Baksu B, Başaran S, et al. Maternal Kanda Hücre Dışı Fetal DNA (cffDNA) ile “Non-Invasive Prenatal Test (NIPT)”. Ocak 2014.

122. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet Gynecol. 2007;110(6):1459-67.

123. Snijders RJ, Noble P, Sebire N, et al. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet. 1998;352(9125):343-6.

124. Wald NJ, Watt HC, Hackshaw AK. Integrated screening for Down's syndrome based on tests performed during the first and second trimesters. N Engl J Med. 1999;341(7):461-7.

125. Marteau, TM. Prenatal testing: towards realistic expectations of patients, providers and policy makers. Ultrasound Obstet Gynecol. 2002;19(1):5-6. 126. Petrou S, Mugford M. Should prenatal diagnostic testing be offered to all

pregnant women on economic grounds? Lancet. 2004;363(9405):258-9.

127. Stewart TL, Malone FD. First trimester screening for aneuploidy: nuchal translucency sonography: in Seminars in perinatology. Elsevier, 1999.

128. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. Merck and Co. Inc., 1999.

86

129. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 27: Clinical Management Guidelines for Obstetrician-Gynecologists. Prenatal diagnosis of fetal chromosomal abnormalities. Obstet Gynecol. 2001;97(5 Pt 1):suppl 1-12.

130. Bıyık İ, Karataş A, Köse SA. Yüksek Riskli Gebelikleri Belirlemede Down Sendromu Tarama Belirteçleri ve HLA-G. Konuralp Tıp Dergisi 2013;5(3):76- 82.

131. Filly, RA. Obstetrical sonography: the best way to terrify a pregnant woman. J Ultrasound Med. 2000;19(1):1-5.

132. Daya S, Woods S, Ward S, et al. Early pregnancy assessment with transvaginal ultrasound scanning. CMAJ. 1991;144(4):441-6.

133. Benson CB, Doubilet PM. Sonographic prediction of gestational age: accuracy of second- and third-trimester fetal measurements. AJR Am J Roentgenol. 1991;157(6):1275-7.

134. Haddow JE, Palomaki GE, Knight GJ, et al. Screening of maternal serum for fetal Down's syndrome in the first trimester. N Engl J Med. 1998;338(14):955- 61.

135. Lo, YM. Fetal DNA in maternal plasma: biology and diagnostic applications. Clin Chem. 2000;46(12):1903-6.

136. Göksu, AY. Anne Kanında Fetüse Ait Hücreler; Girişimsel Olmayan Doğum Öncesi Tanıda Kullanımı? Türkiye Klinikleri Tıp Bilimleri Dergisi. 2005;25(2): 238-52.

137. Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal/maternal lymphocyte transfer. Lancet. 1969;1(7606):1119- 22.

138. Grosset L, Barrelet V, Odartchenko N. Antenatal fetal sex determination from maternal blood during early pregnancy. Am J Obstet Gynecol. 1974;120(1):60- 3.

139. Schröder J, Schröder E, Cann HM. Fetal cells in the maternal blood. Hum Genet. 1977;38(1):91-7.

140. De Grouchy J, Trebuchet C. Fetomaternal transfusion of blood lymphocytes and identification of the sex of the fetüs: in Annales de génétique, 1971.

87

141. Herzenberg LA, Bianchi DW, Schröder J, et al. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A. 1979;76(3):1453-5.

142. Tharapel AT, Jaswaney VL, Dockter ME, et al. Inability to detect fetal metaphases in flow-sorted lymphocyte cultures based on maternal-fetal HLA differences. Fetal Diagn Ther. 1993;8(2):95-101.

143. Bischoff FZ, Sinacori MK, Dang DD, et al. Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for first and second trimester non-invasive prenatal diagnosis. Hum Reprod Update. 2002;8(6):493-500. 144. Ho SS, O'Donoghue K, Choolani M. Fetal cells in maternal blood: state of the

art for non-invasive prenatal diagnosis. Ann Acad Med Singapore. 2003;32(5):597-603.

145. Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768-75.

146. Lun FM, Chiu RW, Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54(10):1664-72.

147. Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med. 2011 Nov;13(11):913-20.

148. Ashoor G, Syngelaki A, Poon LC, et al. Fetal fraction in maternal plasma cell- free DNA at 11-13 weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol. 2013;41(1):26-32.

149. Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol. 2012;119(5):890-901.

150. Nicolaides KH, Syngelaki A, Ashoor G, et al. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol. 2012;207(5):374.e1-6.

151. Benn P, Cuckle H, Pergament E. Non‐ invasive prenatal diagnosis for Down syndrome: the paradigm will shift, but slowly. Ultrasound Obstet Gynecol. 2012;39(2):127-30.

88

152. Nicolaides KH, Syngelaki A, Gil M, et al. Validation of targeted sequencing of single‐ nucleotide polymorphisms for non‐ invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn. 2013;33(6):575-9.

153. Nussbaum, R, McInnes RR, Willard HF. Thompson & Thompson genetics in medicine. Elsevier Health Sciences, 2007.

154. Merkezi, B.G.T. Prenatal Sitogenetik. [Erişim tarihi: Eylül 15, 2014]; Available from: http://www.burclab.com/tr/genetik/bolumlerimiz/prenetal- sitogenetik.

155. Lim HJ, Kim YJ, Yang JH, et al. Amniotic fluid interphase fluorescence in situ hybridization (FISH) for detection of aneuploidy; experiences in 130 prenatal cases. J Korean Med Sci. 2002;17(5):589-92.

156. Hultén MA, Dhanjal S, Pertl B. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR. Reproduction. 2003;126(3):279-97. 157. Wyandt HE, Tonk VS, Huang XL, et al. Correlation of abnormal rapid FISH

Benzer Belgeler