• Sonuç bulunamadı

1. Song QK, Wang XL, Zhou XN, Yang HB, Li YC, Wu JP, et al. Breast Cancer Challenges and Screening in China: Lessons From Current Registry Data and Population Screening Studies. Oncologist. 2015;20(7):773-9.

2. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1-22.

3. Florea A-M, Büsselberg D. Breast cancer and possible mechanisms of therapy resistance. Journal of Local and Global Health Science. 2013:2.

4. Zhang J, Zhao X, Chen Q, Yin X, Xin X, Li K, et al. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater.

2017;50:381-95.

5. Lakshma Nayak V, Nagaseshadri B, Vishnuvardhan M, Kamal A.

Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7. Bioorg Med Chem Lett.

2016;26(14):3313-7.

6. Juul N, Szallasi Z, Eklund AC, Li Q, Burrell RA, Gerlinger M, et al.

Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. The Lancet Oncology. 2010;11(4):358-65.

7. Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:137414.

8. Smith L, Watson MB, O'Kane SL, Drew PJ, Lind MJ, Cawkwell L. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Molecular Cancer Therapeutics. 2006;5(8):2115-20.

9. Kibria G, Hatakeyama H, Akiyama K, Hida K, Harashima H. Comparative study of the sensitivities of cancer cells to doxorubicin, and relationships between the effect of the drug-efflux pump P-gp. Biol Pharm Bull.

2014;37(12):1926-35.

10. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer.

2010;127(12):2893-917.

11. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.

12. Chlebowski RT, Manson JE, Anderson GL, Cauley JA, Aragaki AK, Stefanick ML, et al. Estrogen plus progestin and breast cancer incidence and mortality in the Women's Health Initiative Observational Study. J Natl Cancer Inst. 2013;105(8):526-35.

13. Winters S, Martin C, Murphy D, Shokar NK. Breast Cancer Epidemiology, Prevention, and Screening. Prog Mol Biol Transl Sci. 2017;151:1-32.

14. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research.

Breast Cancer Res. 2011;13(4):215.

15. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al.

Triple-negative breast cancer: clinical features and patterns of recurrence.

Clin Cancer Res. 2007;13(15 Pt 1):4429-34.

16. Dawood S. Triple-negative breast cancer: epidemiology and management options. Drugs. 2010;70(17):2247-58.

17. Partridge AH, Hughes ME, Warner ET, Ottesen RA, Wong YN, Edge SB, et al. Subtype-Dependent Relationship Between Young Age at Diagnosis and Breast Cancer Survival. J Clin Oncol. 2016;34(27):3308-14.

18. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26(8):1533-46.

19. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263-302.

20. Ah-Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin-Blank N, et al.

Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20(10):1956-65.

21. Zakharenko A, Luzina O, Koval O, Nilov D, Gushchina I, Dyrkheeva N, et al. Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. J Nat Prod.

2016;79(11):2961-7.

22. Keyvani-Ghamsari S, Rabbani-Chadegani A, Sargolzaei J, Shahhoseini M.

Effect of irinotecan on HMGB1, MMP9 expression, cell cycle, and cell growth in breast cancer (MCF-7) cells. Tumour Biol.

2017;39(4):1010428317698354.

23. Klejewski A, Swierczewska M, Zaorska K, Brazert M, Nowicki M, Zabel M, et al. New and Old Genes Associated with Topotecan Resistance Development in Ovarian Cancer Cell Lines. Anticancer Res.

2017;37(4):1625-36.

24. Chu B, Shi S, Li X, Hu L, Shi L, Zhang H, et al. Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy. Int J Pharm. 2016;513(1-2):118-29.

25. Husaini R, Ahmad M, Zakaria Z. Effectiveness of imatinib mesylate over etoposide in the treatment of sensitive and resistant chronic myeloid leukaemia cells in vitro. Exp Ther Med. 2017;13(6):3209-16.

26. Chewchuk S, Guo B, Parissenti AM. Alterations in estrogen signalling pathways upon acquisition of anthracycline resistance in breast tumor cells.

PLoS One. 2017;12(2):e0172244.

27. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM.

Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther.

2017;31(1):63-75.

28. Gao S, Li X, Ding X, Qi W, Yang Q. Cepharanthine Induces Autophagy, Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Cell Physiol Biochem. 2017;41(4):1633-48.

29. Sharbeen G, McCarroll J, Liu J, Youkhana J, Limbri LF, Biankin AV, et al.

Delineating the Role of betaIV-Tubulins in Pancreatic Cancer: betaIVb-Tubulin Inhibition Sensitizes Pancreatic Cancer Cells to Vinca Alkaloids.

Neoplasia. 2016;18(12):753-64.

30. Filgueiras Mde C, Morrot A, Soares PM, Costa ML, Mermelstein C. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells. PLoS One. 2013;8(4):e63177.

31. Wyatt MD, Wilson DM, 3rd. Participation of DNA repair in the response to 5-fluorouracil. Cell Mol Life Sci. 2009;66(5):788-99.

32. Liu Q, Zhu X, Xu L, Fu Y, Garvey WT. 6-Mercaptopurine augments glucose transport activity in skeletal muscle cells in part via a mechanism dependent upon orphan nuclear receptor NR4A3. Am J Physiol Endocrinol Metab.

2013;305(9):E1081-92.

33. Brockmann H. [ANTHRACYCLINONES AND ANTHRACYCLINES.

(RHODOMYCINONE, PYRROMYCINONE AND THEIR

GLYCOSIDES)]. Fortschr Chem Org Naturst. 1963;21:121-82.

34. Arcamone F, Cassinelli G. Biosynthetic anthracyclines. Curr Med Chem.

1998;5(5):391-419.

35. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines:

molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229.

36. Han AR, Park JW, Lee MK, Ban YH, Yoo YJ, Kim EJ, et al. Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol. 2011;77(14):4912-23.

37. Altan N, Chen Y, Schindler M, Simon SM. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med.

1998;187(10):1583-98.

38. Arcamone F, Franceschi G, Orezzi P, Penco S, Mondelli R. The structure of daunomycin. Tetrahedron Lett. 1968(30):3349-52.

39. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, et al.

Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S.

peucetius var. caesius. Biotechnol Bioeng. 1969;11(6):1101-10.

40. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al.

Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem.

2009;16(25):3267-85.

41. Jurisicova A, Lee HJ, D'Estaing SG, Tilly J, Perez GI. Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death Differ. 2006;13(9):1466-74.

42. Agudelo D, Bourassa P, Berube G, Tajmir-Riahi HA. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. J Photochem Photobiol B. 2016;158:274-9.

43. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Invasive Breast Cancer Version 1.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016;14(3):324-54.

44. Swift LP, Rephaeli A, Nudelman A, Phillips DR, Cutts SM. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death.

Cancer Res. 2006;66(9):4863-71.

45. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70.

46. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, et al. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun. 2013;4:1908.

47. Wang H, Yu Y, Jiang Z, Cao WM, Wang Z, Dou J, et al. Next-generation proteasome inhibitor MLN9708 sensitizes breast cancer cells to doxorubicin-induced apoptosis. Sci Rep. 2016;6:26456.

48. Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, et al.

Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics.

2010;10(1):99-114.

49. Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12:94.

50. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997;9(6):788-99.

51. Domingo-Domenech J, Pippa R, Tapia M, Gascon P, Bachs O, Bosch M.

Inactivation of NF-kappaB by proteasome inhibition contributes to increased

apoptosis induced by histone deacetylase inhibitors in human breast cancer cells. Breast Cancer Res Treat. 2008;112(1):53-62.

52. Zhu W, Zhan D, Wang L, Ma D, Cheng M, Wang H, et al. Proteasome inhibitor MG132 potentiates TRAIL-induced apoptosis in gallbladder carcinoma GBC-SD cells via DR5-dependent pathway. Oncol Rep.

2016;36(2):845-52.

53. Russo LC, Araujo CB, Iwai LK, Ferro ES, Forti FL. A Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. J Proteomics. 2017;151:24-32.

54. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ.

Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34(1):106-35.

55. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer.

2003;97(11):2869-79.

56. Nitiss KC, Nitiss JL. Twisting and ironing: doxorubicin cardiotoxicity by mitochondrial DNA damage. Clin Cancer Res. 2014;20(18):4737-9.

57. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798-811.

58. Lopez-Iglesias B, Perez C, Morales-Garcia JA, Alonso-Gil S, Perez-Castillo A, Romero A, et al. New melatonin-N,N-dibenzyl(N-methyl)amine hybrids:

potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer's disease. J Med Chem.

2014;57(9):3773-85.

59. Li Y, Takahashi Y, Fujii S, Zhou Y, Hong R, Suzuki A, et al. EAF2 mediates germinal centre B-cell apoptosis to suppress excessive immune responses and prevent autoimmunity. Nat Commun. 2016;7:10836.

60. Sadighara M, Amirsheardost Z, Minaiyan M, Hajhashemi V, Naserzadeh P, Salimi A, et al. Toxicity of Atorvastatin on Pancreas Mitochondria: A Justification for Increased Risk of Diabetes Mellitus. Basic Clin Pharmacol Toxicol. 2017;120(2):131-7.

61. Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34(3):165-75.

62. Svandova EB, Vesela B, Lesot H, Poliard A, Matalova E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol.

2017;147(4):497-510.

63. Guicciardi ME, Gores GJ. Life and death by death receptors. Faseb j.

2009;23(6):1625-37.

64. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178-94.

65. Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16(8):539-48.

66. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.

67. Siu WP, Pun PB, Latchoumycandane C, Boelsterli UA. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

Toxicol Appl Pharmacol. 2008;227(3):451-61.

68. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene.

2002;21(8):1299-303.

69. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, et al.

Conversion of Bcl-2 to a Bax-like death effector by caspases. Science.

1997;278(5345):1966-8.

70. Cerutti PA. Prooxidant states and tumor promotion. Science.

1985;227(4685):375-81.

71. Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E, Castro-Obregon S. Function of reactive oxygen species during animal development:

passive or active? Dev Biol. 2008;320(1):1-11.

72. Han X, Han Y, Zheng Y, Sun Q, Ma T, Zhang J, et al. Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo. PLoS One. 2017;12(4):e0175950.

73. Lee CH, Ying TH, Chiou HL, Hsieh SC, Wen SH, Chou RH, et al. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget.

2017;8(29):47425-39.

74. Nastase MV, Janicova A, Wygrecka M, Schaefer L. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling. Antioxid Redox Signal. 2017;27(12):855-73.

75. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases.

Physiol Rev. 2014;94(2):329-54.

76. Ferlazzo N, Visalli G, Cirmi S, Lombardo GE, Lagana P, Di Pietro A, et al.

Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. Environ Toxicol Pharmacol. 2016;43:248-56.

77. Leong SY, Burritt DJ, Hocquel A, Penberthy A, Oey I. The relationship between the anthocyanin and vitamin C contents of red-fleshed sweet cherries and the ability of fruit digests to reduce hydrogen peroxide-induced oxidative stress in Caco-2 cells. Food Chem. 2017;227:404-12.

78. Bauer D, Werth F, Nguyen HA, Kiecker F, Eberle J. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells. Cell Death Dis. 2017;8(2):e2594.

79. Rabbani N, Chittari MV, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ.

Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes.

2010;59(4):1038-45.

80. Delatte B, Jeschke J, Defrance M, Bachman M, Creppe C, Calonne E, et al.

Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci Rep. 2015;5:12714.

81. Jacques CE, Donida B, Mescka CP, Rodrigues DG, Marchetti DP, Bitencourt FH, et al. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation.

Biochim Biophys Acta. 2016;1862(9):1608-16.

82. Shin SK, Kim JH, Lee JH, Son YH, Lee MW, Kim HJ, et al.

Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49(1):e287.

83. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21(6):998-1012.

84. Burlaka AP, Ganusevich, II, Gafurov MR, Lukin SM, Sidorik EP. Stomach Cancer: Interconnection between the Redox State, Activity of 2, MMP-9 and Stage of Tumor Growth. Cancer Microenviron. 2016;MMP-9(1):27-32.

85. Wartenberg M, Ling FC, Muschen M, Klein F, Acker H, Gassmann M, et al.

Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. Faseb j. 2003;17(3):503-5.

86. Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res. 2014;122:1-67.

87. Mendes F, Sales T, Domingues C, Schugk S, Abrantes AM, Goncalves AC, et al. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels. Med Oncol. 2015;32(12):266.

88. Harel S, Mayaki D, Sanchez V, Hussain SNA. NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascul Pharmacol.

2017;92:22-32.

89. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes.

Oxid Med Cell Longev. 2008;1(1):15-24.

90. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617-30.

91. McDonald C, Muhlbauer J, Perlmutter G, Taparra K, Phelan SA.

Peroxiredoxin proteins protect MCF-7 breast cancer cells from doxorubicin-induced toxicity. Int J Oncol. 2014;45(1):219-26.

92. Ravi D, Das KC. Redox-cycling of anthracyclines by thioredoxin system:

increased superoxide generation and DNA damage. Cancer Chemother Pharmacol. 2004;54(5):449-58.

93. Barnabe N, Marusak RA, Hasinoff BB. Prevention of doxorubicin-induced damage to rat heart myocytes by arginine analog nitric oxide synthase inhibitors and their enantiomers. Nitric Oxide. 2003;9(4):211-6.

94. Zhao Y, Miriyala S, Miao L, Mitov M, Schnell D, Dhar SK, et al. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radic Biol Med. 2014;72:55-65.

95. Lee GY, Kim HM, Ma SH, Park SH, Joung YH, Yun CH. Heterologous expression and functional characterization of the NADPH-cytochrome P450 reductase from Capsicum annuum. Plant Physiol Biochem. 2014;82:116-22.

96. Luanpitpong S, Chanvorachote P, Nimmannit U, Leonard SS, Stehlik C, Wang L, et al. Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem Pharmacol. 2012;83(12):1643-54.

97. Martinou JC, Desagher S, Antonsson B. Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol. 2000;2(3):E41-3.

98. Chertkova RV, Brazhe NA, Bryantseva TV, Nekrasov AN, Dolgikh DA, Yusipovich AI, et al. New insight into the mechanism of mitochondrial cytochrome c function. PLoS One. 2017;12(5):e0178280.

99. Mahapatra G, Varughese A, Ji Q, Lee I, Liu J, Vaishnav A, et al.

Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE. J Biol Chem. 2017;292(1):64-79.

100. Zeng L, Wu L, Liu L, Jiang X. Analyzing Structural Properties of Heterogeneous Cardiolipin-Bound Cytochrome C and Their Regulation by Surface-Enhanced Infrared Absorption Spectroscopy. Anal Chem.

2016;88(23):11727-33.

101. Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, et al.

Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta.

2010;1797(6-7):1217-24.

102. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286(1):135-41.

103. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, et al.

Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005;1(4):223-32.

104. Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med.

2004;37(12):1963-85.

105. Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S.

Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437(7059):754-8.

106. Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med. 2009;46(11):1439-53.

107. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. interleukin-1992;356(6372):768-74.

108. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science.

1992;256(5053):97-100.

109. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993;75(4):641-52.

110. Huang W, Jiang T, Choi W, Qi S, Pang Y, Hu Q, et al. Mechanistic insights into CED-4-mediated activation of CED-3. Genes Dev. 2013;27(18):2039-48.

111. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell.

1996;87(2):171.

112. Duan W, Chen S, Zhang Y, Li D, Wang R, Chen S, et al. Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics.

2016;16(1):60-9.

113. Towers AE, Oelschlager ML, Patel J, Gainey SJ, McCusker RH, Freund GG.

Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition.

Metabolism. 2017;71:70-82.

114. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer.

1972;26(4):239-57.

115. Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G. Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity. 2016;44(2):221-31.

116. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, et al. Caspase-9: structure, mechanisms and clinical application. Oncotarget. 2017;8(14):23996-4008.

117. Datta D, McClendon CL, Jacobson MP, Wells JA. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3. J Biol Chem. 2013;288(14):9971-81.

118. Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, et al. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci U S A. 2017;114(7):1542-7.

119. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004;384(Pt 2):201-32.

120. Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol. 2004;200(2):177-200.

121. Singh N, Hassan A, Bose K. Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. Faseb j. 2016;30(1):186-200.

122. Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN.

Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends in Cell Biology. 2017;27(5):322-39.

123. Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, et al. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev. 2015;29(22):2349-61.

124. Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L, et al. Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate. Mol Cell. 2016;61(6):834-49.

125. Fu TM, Li Y, Lu A, Li Z, Vajjhala PR, Cruz AC, et al. Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol Cell.

2016;64(2):236-50.

126. Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell.

2012;47(2):291-305.

127. Majkut J, Sgobba M, Holohan C, Crawford N, Logan AE, Kerr E, et al.

Differential affinity of FLIP and procaspase 8 for FADD's DED binding surfaces regulates DISC assembly. Nat Commun. 2014;5:3350.

128. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-32.

129. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261-3.

130. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43-52.

131. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76(5):2420-4.

132. Dippold WG, Jay G, DeLeo AB, Khoury G, Old LJ. p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells.

Proc Natl Acad Sci U S A. 1981;78(3):1695-9.

133. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature.

2000;408(6810):307-10.

134. Brito H, Martins AC, Lavrado J, Mendes E, Francisco AP, Santos SA, et al.

Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS One.

2015;10(5):e0126891.

135. Ceja-Rangel HA, Sanchez-Suarez P, Castellanos-Juarez E, Penaroja-Flores R, Arenas-Aranda DJ, Gariglio P, et al. Shorter telomeres and high telomerase activity correlate with a highly aggressive phenotype in breast cancer cell lines. Tumour Biol. 2016;37(9):11917-26.

136. Wang HT, Chen TY, Weng CW, Yang CH, Tang MS. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget. 2016;7(49):80450-64.

137. Jakhar R, Paul S, Bhardwaj M, Kang SC. Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis. Cancer Lett. 2016;372(1):89-100.

138. Ghouzzi VE, Bianchi FT, Molineris I, Mounce BC, Berto GE, Rak M, et al.

ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis. 2016;7(10):e2440.

139. Cheng BC, Chen JT, Yang ST, Chio CC, Liu SH, Chen RM. Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. Int J Oncol. 2017;50(3):964-74.

140. Subash-Babu P, Li DK, Alshatwi AA. In vitro cytotoxic potential of friedelin in human MCF-7 breast cancer cell: Regulate early expression of Cdkn2a and pRb1, neutralize mdm2-p53 amalgamation and functional stabilization of p53. Exp Toxicol Pathol. 2017;69(8):630-6.

141. Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20(5):299-309.

142. Yin Y, Shen Q, Zhang P, Tao R, Chang W, Li R, et al. Chk1 inhibition potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric cancer. Am J Cancer Res. 2017;7(3):473-83.

143. Skwarska A, Ramachandran S, Dobrynin G, Leszczynska KB, Hammond EM. The imidazoacridinone C-1311 induces p53-dependent senescence or p53-independent apoptosis and sensitizes cancer cells to radiation.

Oncotarget. 2017;8(19):31187-98.

Benzer Belgeler