• Sonuç bulunamadı

[1] Garboczi EJ., Computation materials science of cement-based mate-rials. Mater Struc, 26:191–5, 1993.

[2] Mindess S, Young JF., Concrete. Englewood Cliffs, N.J.: Prentice-Hall Inc 1981.

[3] Bilodeau A., Sivasundaram V., Painter K.E., Malhotra V.M. 1994. Durabil-ity of concrete incorporating high volumes of fly ash from sources inU.S., ACI Mater. J.

91, 3–12, 1994.

[4] Alasali M.M., Malhotra V.M. “Role of structural concrete incorporat-ing high volumes of fly ash in controlling expansion due to alkali-aggregate reaction”, ACI Mater. J. 88, 159–163, 1991.

[5] Lee S.H., Sakai E., Daimon M., Bang W.K. “Characterization of fly ash directly collected from electrostatic precipitator” Cem. Concr. Res. 29(11). 1791-1797, 1999.

[6] Liv S., Cooke R.A., Wang L., Ma F., Bhattarai R. “Characterization of fly ash ceramic pellet for phosphorus removal” J. Environ. Manage. 189. 67-74, 2017.

[7] Bernard S.A., Juenger M.C., Ke X., Matthes W., Lothenbach B., De Belie N., Provis J.L. Characterization of supplementary cementitious materials by thermal analysis, Mater. Struct. 50(1), 26, 2017.

[8] Mármol G., Savastano H., Monzó J.M., Borrachero M.V., Soriano L., Payá J. 2016.

“Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement” Constr. Build. Mater. 124, 208-218, 2016.

[9] Aruntaş H.Y., “ Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli” J. Fac.

Eng. Arch. Gazi Univ. Vol 21, No 1, 193-203, 2006.

[10] ASTM, C 618, Standard Specification for Coal Fly Ashand Rawor Calcined Natural Puzzolan for use as a Mineral Admixture in Portland Cement Concrete.

Annual book of ASTM Standards, New York, 141-148, 1994.

[11] Şahmaran M., Yıldırım G., Erdem T.K.,Self-healing capability of cementitious composites incorporating different supplementary cementitious materials, Cem.

Concr. Compos. 35(1), 89-101, 2013.

[12] Yıldırım G., Sahmaran M., Ahmed H.U., “Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites” J. Mater. Civ. Eng. 27(6), 1-11, 2014.

[13] Şahmaran M., Yıldırım G., Noori R., Ozbay E., Lachemi M., “Repeatability and pervasiveness of self-healing in engineered cementitious composites” ACI Mater.

J. 112(4), 513-522, 2015.

[14] Yıldırım G., Sahmaran M., Balcikanli M., Ozbay E., Lachemi M., “Influence of cracking and healing on the gas permeability of cementitious composites” Constr.

Build. Mater. 85, 217-226, 2015.

[15] Yeşilmen S., Al-Najjar Y., Balav M.H., Şahmaran M., Yıldırım G., Lachemi M.,

“Nano-modification to improve the ductility of cementitious composites” Cem.

Concr. Res. 76, 170-179, 2015.

[16] Lane, R.O., Best, J .F., “Properties and Use of Fly Ash in Cement Concrete”

Concrete International, V.4, No.7, pp.81-92, 1982.

[17] Shaikh F.U., Supit S.W., “Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA)” Constr.

Build. Mater. 82, 192-205, 2015.

[18] Shaikh F.U., “Effect of ultrafine fly ash on the properties of concretes containing construction and demolition wastes as coarse aggregates”, Struct. Concr. 17(1), 116-122, 2016.

[19] Bentz D.P., Garboczi E.J., Haecker C.J., Jensen O.M., “Effects of cement particle size distribution on performance properties of Portland cement-based materials” Cem. Concr. Res. 29(10), 1663-1671, 1999.

[20] Aiqin W., Chengzhi Z., Ningsheng Z., “The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement”, Cem.

Concr. Res. 29(11) 1721-1726, 1999.

[21] Bentz D.P., Jensen O.M., Hansen K.K., Olesen J.F., Stang H., Haecker C.J.,

“Influence of Cement Particle Size Distribution on Early Age Autogenous Strains and Stresses in Cement Based Materials” J. Am. Ceram. Soc. 84(1), 129-135, 2001.

[22] Slanička S., “The influence of fly ash fineness on the strength of concrete” Cem.

Concr. Res. 21(2-3), 285-296, 1991.

[23] Monzo J., Paya J., Peris-Mora E., “A preliminary study of fly ash granulometric influence on mortar strength” Cem. Concr. Res. 24(4), 791-796, 1994.

[24] Erdoğdu K., Türker P., “Effects of fly ash particle size on strength of Portland cement fly ash mortars” Cem. Concr. Res. 28(9), 1217-1222, 1998.

[25] Lee S.H., Kim H.J., Sakai E., Daimon M., “Effect of particle size distribution of fly ash–cement system on the fluidity of cement pastes” Cem. Concr. Res. 33(5), 763-768, 2003.

[26] Bentz D.P., Ferraris C.F., Filliben J.J., Optimization of particle sizes in high volume fly ash blended cements, US Department of Commerce, National Institute of Standards and Technology, 2011.

[27] Bentz D.P., Hansen A.S., Guynn J.M., “Optimization of cement and fly ash particle sizes to produce sustainable concretes” Cem. Concr. Compos. 33(8), 824-831, 2011.

[28] Sevim O., Demir I., “Optimization of fly ash particle size distribution for cementitious systems with high compactness” Constr. Build. Mater. 195, 104-114, 2019.

[29] Sevim O., Demir I., “Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution” Cem. Concr. Compos. 96, 266-273, 2019.

[30] Feret, R., “Sur la compacité des mortiers hydrauliques” Annales des Ponts et Chaussees. Vol.4(7), 5-161 (in French), 1892.

[31] Fuller, W.B. and Thompson, S.E., “The laws of proportioning concrete.” ASCE J.

Transport., Vol. 59, pp. 67-143, 1907.

[32] Zhao J., Wang D., Yan P., “Design and experimental study of a ternary blended cement containing high volume steel slag and blast-furnace slag based on Fuller distribution model” Constr. Build. Mater. 140, 248-256, 2017.

[33] Corominas-Gonzalez A., Etxeberria M., Poon C.S., “Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates” Cem. Concr. Compos. 71, 77-84, 2016.

[34] Ye H., Gao X., Wang R., Wang H., “Relationship among particle characteristic, water film thickness and flowability of fresh paste containing different mineral admixtures” Constr. Build. Mater. 153, 193-201, 2017.

[35] Kovářík T., Rieger D., Kadlec J., Křenek T., Kullová L., Pola M., Belsky P., France P., Říha J. 2017. “Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler” Constr. Build.

Mater. 143, 599-606, 2017.

[36] ASTM, C618, Standard Specification for Coal Fly Ash and Rawor Calcined Natural Puzzolan for use as a Mineral Admixture in Portland Cement Concrete.

Annual book of ASTM Standards, New York, 141-148, 1994.

[37] ASTM, C125, Standard Terminology Relating to Concrete and Concrete Aggregates. ASTM Standards, New York, 64-65, 1994.

[38] Massazza, F., Pozzolanic Cements. Cement and Concrete Composites, 15, 185- 214, 1993.

[39] Haque, M., Langan, B., Ward, M., High Fly Ash Concretes. ACI Materials Journal, 81,54-60, 1984.

[40] Malhotra, V., Durability of Concrete Incorporating High-Volume of Low-Calcium (ASTM class F) Fly Ash. Cement and Concrete Composites, 12, 271–277, 1990.

[41] Bouzoubaa, N., Zhang, M. H., Malhotra, V. M., Mechanical Propertiesand Durability of Concrete Madewith High-Volume Fly Ash Blended Cements Using a Coarse Fly Ash. Cementand Concrete Research, 31 (10), 1393–402, 2001.

[42] Malhotra V.M., Mehta P.K., Pozzolanic and cementitious materials. Advances in concrete technology, Ottawa: Gordon and Breach Publishers, 1996.

[43] Mehta P.K., Monteiro P.J.M., Concrete – microstructure properties and materials. 3rd ed. McGraw-Hill, 2006.

[44] Mehta, P.K., Pozzolanic and Cementitiousby-Products as Mineral Admixtures for Concrete: A Critical Review, Theuse of flyash, silicafume, slagandother mineral by-products in concrete. American Concrete Institute special publication, Detroit, 1983.

[45]  TS EN 197‐1, Çimento‐Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk  Kriterleri, 2012. 

 

[46] Erdoğan, T.Y., Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim, Ankara, 2003.

[47] Guleria, S.P., Dutta, R.K., Tension and compression behavi or of fly ash-lime-gypsum composite mixed with treated tyrechips. ISRN Civil Engineering, doi:10.5402/2011/310742, 2011.

[48] Neville, A.M., Properties of Concrete. Longman Scientific and Technical, New York, 1981.

[49] TS EN 450, Uçucu kül, betonda kullanılan tarifler, özellikler ve kalite Referansü.

Türk Standartları Enstitüsü, Ankara, 1998.

[50] TMMOB Makina Mühendisleri Odası Oda Raporu, Türkiye’de Termik Termik Santraller. Ankara, 2017.

[51] Tokyay, M., Betonda Uçucu Kül Kullanımı (Türkiye Deneyimi). End. Atıkların İnşaat Sektöründe Kullanımı Semp., 29-36, 18-19 Kasım, Ankara, 1993.

[52] McCarthy, M.J., Dhir, R.K., Towards Maximising the Use of Fly Ash as a Binder.

Fuel, 78, 2, 121-132, 1999.

[53] Li, S., Cooke, R. A., Wang, L., Ma, F., Bhattarai, R., Characterization of fly ash ceramic pellet for phosphorusremoval. Journal of Environmental Management, 189, 67-74, 2017.

[54] Bernal, S. A., Juenger, M. C., Ke, X., Matthes, W., Lothenbach, B., De Belie, N., Provis, J. L., Characterization of supplementary cementitious materials bythermal analysis. Materials and Structures, 50(1), 26, 2017.

[55] Mármol, G., Savastano, H., Monzó, J. M., Borrachero, M. V., Soriano, L., Payá, J., Portland cement, gypsum and fly ash binder systems character ization forlignocellulosic fiber-cement. Construction and Building Materials, 124, 208-218.

2016.

[56] ASTM, C 618, Standard Specification for Coal Fly Ash and Rawor Calcined Natural Puzzolan for use as a Mineral Admixture in Portland Cement Concrete.

Annual book of ASTM Standards, New York, 141-148, 1994.

[57] TS EN 197-1, Çimento-Bölüm 1: Genel Çimentolar-Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, 2002.

.[58] ASTM C 618, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, Annual Book of ASTM Standard, No. 04.02, 2000.

[59] Wang, W., Lu, C., Yuan, G., Zhang, Y., Effects of pore water saturation on theme chanical properties of flyash concrete. Construction and Building Materials, 130, 54-63, 2017.

[60] Nagalia, G., Park, Y., Abolmaali, A., Aswath, P., Compressive Strengt hand Microstructural Properties of Fly Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 28(12), 2016.

[61] Valencia Saavedra, W. G., Angulo, D. E., Mejía de Gutiérrez, R., Fly Ash SlagGeopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. Journal of Materials in Civil Engineering, 28(12), 2016.

[62] Gluth, G. J., Rickard, W. D., Werner, S., Pirskawetz, S., Acoustice mission and microstructural changes in fly ash geopolymer concrete exposed to simulated fire. Material sand Structures, 49(12), 5243-5254, 2016.

[63] Zhao, Q., He, X., Zhang, J., Jiang, J., Long-agewetcuring effect on performance of carbonation resistance of fly ash concrete. Construction and Building Materials, 127, 577-587, 2016.

[64] Zhao, Q., He, X., Zhang, J., Jiang, J., Long-agewetcuring effect on performance of carbonation resistance of fly ash concrete. Construction and Building Materials, 127, 577-587, 2016.

[65] Singh, N., Singh, S. P., Carbonation resistance and microstructural analysis of Lowand High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Construction and Building Materials, 127, 828-842, 2016.

[66] Chousidis, N., Ioannou, I., Rakanta, E., Koutsodontis, C., Batis, G., Effect of fly ash chemical composition on therein for cementcorrosion, thermal diffusion and strength of blended cement concretes. Construction and Building Materials, 126, 86-97, 2016.

[67] Shehab, H. K., Eisa, A. S., Wahba, A. M., Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Construction and Building Materials, 126, 560-565, 2016.

[68] Dąbrowski, M., Glinicki, M. A., Gibas, K., Jóźwiak-Niedźwiedzka, D., Effects of calcareous fly ash in blended cements on chlorideions migration and strength of airentrained concrete. Construction and Building Materials, 126, 1044-1053, 2016.

[69] Zhang, D., Cai, X., Shao, Y., Carbonation curing of precast fly ash concrete. Journal of Materials in Civil Engineering, 28(11), 2016.

[70] Gong, J., Cao, J., Wang, Y. F., Effects of sulfate attack and dry-wetcirculation on creep of fly-ash slag concrete. Construction and Building Materials, 125, 12-20, 2016.

[71] Shabab, M. E., Shahzada, K., Gencturk, B., Ashraf, M., Fahad, M., Synergistic effect of fly ash and bentonite as partial replacement of cement in massconcrete. KSCE Journal of CivilEngineering, 20(5), 1987-1995, 2016.

[72] Zhang, G., Li, G., Effects of mineral admixtures and additional gypsum on the expansion performance of sulph oaluminate expansiveagent at simulation of mass concrete environment. Construction and Building Materials, 113, 970-978, 2016.

[73] Kim, S. J., Yang, K. H., Moon, G. D., Hydration characteristics of low-heat cement substituted by fly ash and lime stonepowder. Materials, 8(9), 5847-5861, 2015.

[74] Zhao, Z. F., Mao, K. K., Ji, S. W., Zhang, Z. Y., Zhu, H. N., Wang, W. L., Adiabatic Temperature Rise Model of Ultra-High-Volume Fly Ash Conventional Dam Concreteand a FEM Simulation of the Temperature History Curve.

In Concreep 10, pp. 1410-1419, 2015.

[75] Schindler, A. K., Keith, K. P., Behavior of high-volume fly ash concrete in masscon create applications. In Construction Materials and Structures: Proceedings of the First International Conference on Construction Materials and Structures, p.

268, IOS Press, 2014.

[76] Atakay, O., Uçucu küllerin katkılı çimento üretiminde kullanılması-tane inceliği ve

[77] Demir, İ., (Proje yürütücüsü), Uçucu Külün Yapı Tuğlası Üretiminde Kullanımının Araştırılması, (TUBİTAK: Proje no: 106M002).

[78] Türker, P., Erdoğan, B., Katnaş, F. ve Yeğınobalı, A., Uçucu küllerin sınıflandırılması ve özellikleri, Türkiye Çimento Müstahsilleri Birliği, Ankara, 2003.

[79] Thipse, S.S., Schoenitz, M. and Dreizin, E.L., Morphology and Composition of the Fly Ash Particles Produced in Incineration of Municipal Solid Waste”, Fuel Processing Technology, 75: 173-184, 2002.

[80] Seames, W.S., An Initial Study of the Fine Fragmentation Fly Ash Particle Mode Generated during Pulverized Coal Combustion, Fuel Processing Technology, 81:

109-125, 2003.

[81] 19. Gikunoo, E., Effect of Fly Ash Particles on the Mechanical Properties and Microstructure of Aluminium Casting Alloy A534, Master of Science, University of Saskatchewan, The College of Graduate Studies and Research, Saskatchewan, Canada, 2004.

[82] Türker, P., Erdoğan, B., Kantaş, F., Yeğinobalı, A., Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri, Türkiye Çimento Müstahsilleri Birliği Ankara 2009.

[83] Matsunaga, T., Kim, J.K., Hardcastle, S., Rohatgi, P.K., Crystallinity and Selected Properties of Fly Ash Particles, Materials Science & Engineering: 333-343, 2002.

[84] TS EN 450, Uçucu kül, betonda kullanılan tarifler, özellikler ve kalite kontrolü, Türk Standartları Enstitüsü, Ankara, 1998.

[85] Teixeira, E.R. Mateus, R., Camõesa, A. F., Bragança, L., Branco, F.G.,

‘‘Comparative Environmental Life-Cycle Analysis of Concretes Using Biomass and Coal Fly Ashes as Partial Cement Replacement Material’’, Journal of Cleaner Production, 112, 2221-2230, 2016.

[86] Kurama H., Kaya M., “Usage of coal combustion bottom ash in concrete mixture”

Construction and Building Materials, Volume 22, Issue 9, Pages 1922-1928, 2008.

[87] Şahbaz O., Öteyaka B., Kelebek Ş., Uçar A., Demir U., “Separation of unburned carbonaceous matter in bottom ash using Jameson cell” Separation and Purification Technology, Volume 62, Issue 1, Pages 103-109, 2008.

[88] Akakın, T., Kılınç, C., Işık, A., Zengin, H., Sayfa 1-13. “Hazır Beton Sektörü ve Beton Kullanımındaki Gelişmeler” Beton 2013 Hazır Beton Kongresi-Prof. Dr.

Süheyl Akman Onuruna. İstanbul, 2013.

[89] Mehta, P. K., “Greening of the Concrete Industry for Sustainable Development”, Concrete International, 24(7), 23–7, 2002.

[90] Martin, N., Worrell, E., Price, L., Energy efiiciency and carbon dioxide emissions reduction opportunities in the U.S. cement industry. Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1999.

[91] Adesina, A., & Awoyera, P., “Overview of trends in the application of waste materials in self-compacting concrete production”. SN Applied Sciences, 1(9), 962, 2019.

[92] Saifali S., Akhil R., Lakshmipathi S., Sheikh A. “Construction of A Building Using Fly Ash Concrete” International Journal of Civil Engineering and Technology (IJCIET), Volume 8, Issue 4, pp. 1809–1814, 2017

[93] Wu, Z. “Development of High- Performance Blended Cements” Doktora tezi, The University of Wisconsin-Milwaukee, 198, 2000.

[94] ASTM C618, Standart specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete, Annual Book of ASTM Standarts.

[95] Şengül, Ö., Taşdemir, M.A., Koç, İ., Tarhan, M., Erenoğlu, T. 2007. “Doğal ve Endüstriyel Mineral Katkılar İçeren Betonların Tasarımı, Mekanik Özellikleri ve Durabilitesi” 7. Ulusal Beton Kongresi, TMMOB İnşaat Mühendisleri Odası

[96] Feret, R., Sur la compacité des mortiers hydrauliques. Annales des Ponts et Chaussees, Vol. 4, pp. 5-16, 1892.

[97] Funk, J.E., Dinger, D.R., Funk, J.E.J., Caol Grinding and Particle Size Distribution Studies for Coal Water Slurries at High Solids Content. Final Report, Empire State Electric Energy Research Corporation (ESEERCO), New York, 1980.

[98] Johansen, V., Andersen, P.J., (1991) Particle Packing and Concrete Properties. In:

Skalny, J. and Mindess, S. (eds). Materials science of concrete 2, Westerville:

American Ceramic Society, 1991.

[99] Fuller, W.B., Thompson, S.E., Thelaws of proportioning concrete. ASCE J.

Transport., Vol. 59, pp. 67-143, 1907.

[100] Andreasen, A.H.M., Andersen, J., Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten), Colloid and Polymer Science, Vol. 50 (3), pp. 217 228, 1930.

[101] Baradan, B., Türkel, S., Yazıcı, H., Ün, H., Yiğiter, H., Felekoğlu, B., Tosun, K., Aydın, S., Yardımcı, M,Y., Topal, A ve Öztürk, A, U. “Beton”, 2012, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, ISBN: 978-975-441-361-8, İzmir, 2012,

[102] American Coal Ash Association, Fly Ash Facts for Highway Engineers, Federal Highway Administration, 2003.

[103] Mora, E.P., Paya, J. ve Monzo, J. 1993, Influence of different sized fractions of a fly ash on workability of mortars, Cement and Concrete Research, Vol.23, pp.917-924, USA. , 1993,

[104] Chandra, S., 1997, Waste materials used in concrete manufacturing, Division of concrete structures, Chalmers University of Technology, ISBN 0-8155-1393-3, USA, 1997.

[105] Mueller, F. V., Wallevik O. H., Khayat K. H., “Linking solid particle packing of Eco-SCC to material performance”, Cement & Concrete Composites, 54, 117–125, 2014.