• Sonuç bulunamadı

Doku MMP-9 ile OKT'deki Santral Korneal Alan Korelasyonu

H- E: Hematoksilen-Eozin

HGF: Hepatosit Büyüme Faktörü HRP: Horseradish Peroksidaz HTY: Ham Tümleşik Yoğunluk

İGF: İnsülin Benzeri Büyüme Faktörü

İL: İnterlökin

KEB: Korneal Epitelyal Boyanma KGF: Keratosit Büyüme Faktörü KO: Korneal Opasite

LASIK: Laser in-situ Keratomileusis MMP: Matriks Metalloproteinaz

MT-1 MMP: Membran Tip -1 Matriks Metalloproteinaz NF-κB: Nükleer Faktör κB

NGF: Sinir Büyüme Faktörü NVA: Neovaskülarizasyon Alanı NVB: Neovaskülarizasyon Büyüklüğü OD: Optik Dansite

OKT: Optik Koherens Tomografi Pd: Piksel Değeri

PDGF: Trombosit Kökenli Büyüme Faktörü PEG: Polietilen Glikol

PMNL: Polimorfonükleer Lökosit PVP: Polivinil Pirolidon

ROI: Region of Interest SA: Sodyum Aljinat SD: Spektral Domain SH: Siliyer Hiperemi St: Standart

TGF-𝛽1: Tümör Büyüme Faktörü 𝛽1, TGF-𝛽2: Tümör Büyüme Faktörü 𝛽2

TIMP: Doku Matriks Metalloproteinaz İnhibitörleri

TNF-𝛼: Tümör Nekrozis Faktör 𝛼 TY: Tümleşik Yoğunluk

TZP: Trombositten Zengin Plazma

VEGF: Vasküler Endotelyal Büyüme Faktörü 𝛼-SMA: 𝛼 Smooth Muscle Actin

µm: Mikrometre

KAYNAKLAR

1. Thylefors B. Epidemiological patterns of ocular trauma. Aust N Z J Ophthalmol. 1992;20(2):95-8.

2. Anderson JD, Foster A. Ocular trauma. Trop Doct. 1989;19(1):35-40.

3. Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41(4):275-313.

4. Haring RS, Sheffield ID, Channa R, Canner JK, Schneider EB.

Epidemiologic Trends of Chemical Ocular Burns in the United States. JAMA Ophthalmol. 2016;134(10):1119-24.

5. Lusk PG. Chemical eye injuries in the workplace. Prevention and management. AAOHN J. 1999;47(2):80-7;8-9.

6. Houman D. Hemmati KAC. Treating Acute Chemical Injuries of the Cornea 2012 [Erişim Adresi: https://www.aao.org/eyenet/article/treating-acute-chemical-injuries-of-cornea.

7. Burns FR, Paterson CA. Prompt irrigation of chemical eye injuries may avert severe damage. Occup Health Saf. 1989;58(4):33-6.

8. Singh P, Tyagi M, Kumar Y, Gupta KK, Sharma PD. Ocular chemical injuries and their management. Oman J Ophthalmol. 2013;6(2):83-6.

9. Sharma N, Kaur M, Agarwal T, Sangwan VS, Vajpayee RB. Treatment of acute ocular chemical burns. Surv Ophthalmol. 2018;63(2):214-35.

10. Jorge L. Alió JLAdB, Francisco Arnalich-Montiel. Corneal Regeneration:

Therapy and Surgery. Singh AD, 2019. 507 p.

11. Alio JL, Abad M, Artola A, Rodriguez-Prats JL, Pastor S, Ruiz-Colecha J.

reatment with platelet-rich plasma of surgically related dormant corneal ulcers.

Eur J Ophthalmol. 2018 Sep;28(5):515-520.

12. Alio JL, Arnalich-Montiel F, Rodriguez AE. The role of "eye platelet rich plasma" (E-PRP) for wound healing in ophthalmology. Curr Pharm Biotechnol.

2012;13(7):1257-65.

13. Gandolfi MG, Brandão C, Pellizon CH, Hirota IN, Barros R, Hussein ACB, et al. Allogenic platelet-rich plasma in induced ulcers in rat’s cornea. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2021;73:613-21.

14. Zhang J, Middleton KK, Fu FH, Im H-J, Wang JHC. HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons. PLOS ONE. 2013;8(6):e67303.

15. Abdul Ameer LA, Raheem ZJ, Abdulrazaq SS, Ali BG, Nasser MM, Khairi AWA. The anti-inflammatory effect of the platelet-rich plasma in the periodontal pocket. Eur J Dent. 2018;12(4):528-31.

16. Park YG, Lee IH, Park ES, Kim JY. Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model. Arch Plast Surg. 2017;44(3):194-201.

17. Eğrilmez S. Kornea Embriyolojisi. Kornea: Türk Oftalmoloji Derneği Eğitim Yayinlari No:11; 2009. p. 21.

18. Ophthalmology AAO. Embryology. Fundamentals and Principles of Ophthalmology. 2014-2015 ed: American Academy of Ophthalmology; 2014. p.

120-2.

19. Yang AY, Chow J, Liu J. Corneal Innervation and Sensation: The Eye and Beyond. Yale J Biol Med. 2018;91(1):13-21.

20. Cornea: Fundamentals, Diagnosis and Management. In: Mark J. Mannis EJH, editor. 2. Fourth ed: Elsevier; 2017. p. 1-22.

21. Sylvain M. Molon-Noblot PD. Anatomy of the Ocular Surfaces, Cornea, and Conjunctiva, Rat and Mouse. In: Jones T.C. MU, Hunt R.D., editor. Eye and Ear Monographs on Pathology of Laboratory Animals. Berlin, Germany: Springer;

1991. p. 3-16.

22. Hanson A. Rat Biology. The Rat’s Eyes. 2006 [Erişim Adresi:

http://ratbehavior.org/Eyes.html

23. Robert Lewis Maynard ND. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research: Academic Press; 2019. 359 p.

24. Perçin HÇ. Kornea Yarası Oluşturulan Ratlarda Resveratrol’ün Erken Dönem İyileşmedeki Etkisinin Araştırılması. Afyon: TC. Afyon Kocatepe Üniversitesi 2018.

25. West JD, Dora NJ, Collinson JM. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells.

2015;7(2):281-99.

26. Agrawal VB, Tsai RJ. Corneal epithelial wound healing. Indian J Ophthalmol. 2003;51(1):5-15.

27. Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78(5):401-8.

28. Crosson CE, Klyce SD, Beuerman RW. Epithelial wound closure in the rabbit cornea. A biphasic process. Invest Ophthalmol Vis Sci. 1986;27(4):464-73.

29. Robb RM, Kuwabara T. Corneal wound healing. I. The movement of polymorphonuclear leukocytes into corneal wounds. Arch Ophthalmol.

1962;68:636-42.

30. Soong HK, Cintron C. Disparate effects of calmodulin inhibitors on corneal epithelial migration in rabbit and rat. Ophthalmic Res. 1985;17(1):27-33.

31. Ashby B, Garrett Q, Dp M, Willcox MDP, editors. Corneal Injuries and Wound Healing - Review of Processes and Therapies 2014.

32. Hanna C, O'Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536-9.

33. Aketa N, Yamaguchi T, Asato T, Yagi-Yaguchi Y, Suzuki T, Higa K ve ark.

Elevated Aqueous Cytokine Levels in Eyes With Ocular Surface Diseases. Am J Ophthalmol. 2017;184:42-51.

34. Cheng CY, Kuo CT, Lin CC, Hsieh HL, Yang CM. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br J Pharmacol.

2010;160(7):1595-610.

35. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45.

36. Sugioka K, Mishima H, Kodama A, Itahashi M, Fukuda M, Shimomura Y.

Regulatory Mechanism of Collagen Degradation by Keratocytes and Corneal Inflammation: The Role of Urokinase-Type Plasminogen Activator. Cornea.

2016;35 Ek 1:S59-S64.

37. Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21(1):1-14.

38. Fini ME, Cook JR, Mohan R. Proteolytic mechanisms in corneal ulceration and repair. Arch Dermatol Res. 1998;290 Ek:S12-23.

39. Raza SL, Cornelius LA. Matrix metalloproteinases: pro- and anti-angiogenic activities. J Investig Dermatol Symp Proc. 2000;5(1):47-54.

40. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, et al.

Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000;275(14):10405-12.

41. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al.

MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998;93(3):411-22.

42. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, et al.

Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A.

2000;97(8):4052-7.

43. Fini ME, Girard MT, Matsubara M, Bartlett JD. Unique regulation of the matrix metalloproteinase, gelatinase B. Invest Ophthalmol Vis Sci.

1995;36(3):622-33.

44. Matsubara M, Girard MT, Kublin CL, Cintron C, Fini ME. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev Biol. 1991;147(2):425-39.

45. Snoek-van Beurden PA, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques.

2005;38(1):73-83.

46. Matsubara M, Zieske JD, Fini ME. Mechanism of basement membrane dissolution preceding corneal ulceration. Invest Ophthalmol Vis Sci.

1991;32(13):3221-37.

47. Fini ME, Parks WC, Rinehart WB, Girard MT, Matsubara M, Cook JR, ve ark. Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am J Pathol. 1996;149(4):1287-302.

48. Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res. 2000;19(1):113-29.

49. Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf.

2007;5(3):228-39.

50. West-Mays JA, Strissel KJ, Sadow PM, Fini ME. Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop. Proc Natl Acad Sci U S A. 1995;92(15):6768-72.

51. Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea.

Prog Retin Eye Res. 1999;18(4):529-51.

52. Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol.

2000;118(5):666-73.

53. Ye HQ, Maeda M, Yu FS, Azar DT. Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas. Invest Ophthalmol Vis Sci. 2000;41(10):2894-9.

54. Fitch J, Fini ME, Beebe DC, Linsenmayer TF. Collagen type IX and developmentally regulated swelling of the avian primary corneal stroma. Dev Dyn.

1998;212(1):27-37.

55. Brown D, Hamdi H, Bahri S, Kenney MC. Characterization of an endogenous metalloproteinase in human vitreous. Curr Eye Res. 1994;13(9):639-47.

56. Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci.

2000;41(11):3299-304.

57. Plantner JJ, Smine A, Quinn TA. Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr Eye Res. 1998;17(2):132-40.

58. Plantner JJ, Jiang C, Smine A. Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp Eye Res. 1998;67(6):637-45.

59. Majka S, McGuire P, Colombo S, Das A. The balance between proteinases and inhibitors in a murine model of proliferative retinopathy. Invest Ophthalmol Vis Sci. 2001;42(1):210-5.

60. Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol.

1999;117(4):498-503.

61. Das A, McGuire PG, Eriqat C, Ober RR, DeJuan E, Jr., Williams GA, et al.

Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci. 1999;40(3):809-13.

62. Tamiya S, Wormstone IM, Marcantonio JM, Gavrilovic J, Duncan G.

Induction of matrix metalloproteinases 2 and 9 following stress to the lens. Exp Eye Res. 2000;71(6):591-7.

63. El-Shabrawi Y, Christen WG, Foster CS. Correlation of metalloproteinase-2 and-9 with proinflammatory cytokines interleukin-1ß, interleukin-1metalloproteinase-2 and the interleukin-1 receptor antagonist in patients with chronic uveitis. Current eye research. 2000;20(3):211-4.

64. Sivak JM, Mohan R, Rinehart WB, Xu PX, Maas RL, Fini ME. Pax-6

activity of the transcriptional promoter for matrix metalloproteinase gelatinase B.

Dev Biol. 2000;222(1):41-54.

65. Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT. A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy.

Invest Ophthalmol Vis Sci. 1998;39(8):1524-9.

66. Saghizadeh M, Brown DJ, Castellon R, Chwa M, Huang GH, Ljubimova JY, et al. Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations. Am J Pathol. 2001;158(2):723-34.

67. Lu PC, Ye H, Maeda M, Azar DT. Immunolocalization and gene expression of matrilysin during corneal wound healing. Invest Ophthalmol Vis Sci.

1999;40(1):20-7.

68. Dong Z, Katar M, Alousi S, Berk RS. Expression of membrane-type matrix metalloproteinases 4, 5, and 6 in mouse corneas infected with P. aeruginosa.

Invest Ophthalmol Vis Sci. 2001;42(13):3223-7.

69. Kenney MC, Chwa M, Alba A, Saghizadeh M, Huang ZS, Brown DJ.

Localization of TIMP-1, TIMP-2, TIMP-3, gelatinase A and gelatinase B in pathological human corneas. Curr Eye Res. 1998;17(3):238-46.

70. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet. 1994;8(4):352-6.

71. Fariss RN, Apte SS, Luthert PJ, Bird AC, Milam AH. Accumulation of tissue inhibitor of metalloproteinases-3 in human eyes with Sorsby's fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol. 1998;82(11):1329-34.

72. Jomary C, Neal MJ, Jones SE. Increased expression of retinal TIMP3 mRNA in simplex retinitis pigmentosa is localized to photoreceptor-retaining regions. J Neurochem. 1995;64(5):2370-3.

73. Kamei M, Hollyfield JG. TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci.

1999;40(10):2367-75.

74. Liu CY, Kao WW. Corneal Epithelial Wound Healing. Prog Mol Biol Transl Sci. 2015;134:61-71.

75. Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res. 2018;166:49-55.

76. Omoto M, Suri K, Amouzegar A, Li M, Katikireddy KR, Mittal SK, et al.

Hepatocyte Growth Factor Suppresses Inflammation and Promotes Epithelium Repair in Corneal Injury. Mol Ther. 2017;25(8):1881-8.

77. Lambiase A, Rama P, Bonini S, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med.

1998;338(17):1174-80.

78. Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110-8.

79. Bukowiecki A, Hos D, Cursiefen C, Eming SA. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci.

2017;18(6).

80. Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res. 2012;99:78-88.

81. Marino GK, Santhiago MR, Torricelli AA, Santhanam A, Wilson SE.

Corneal Molecular and Cellular Biology for the Refractive Surgeon: The Critical Role of the Epithelial Basement Membrane. J Refract Surg. 2016;32(2):118-25.

82. Mimura T, Yamagami S Fau - Amano S, Amano S. Corneal endothelial regeneration and tissue engineering. (1873-1635 (Elektronik)).

83. Lee JG, Kay EP. FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci. 2006;47(4):1376-86.

84. Landshman N, Solomon A, Belkin M. Cell division in the healing of the corneal endothelium of cats. Arch Ophthalmol. 1989;107(12):1804-8.

85. Lee HT, Lee JG, Na M, Kay EP. FGF-2 induced by interleukin-1 beta through the action of phosphatidylinositol 3-kinase mediates endothelial

mesenchymal transformation in corneal endothelial cells. J Biol Chem.

2004;279(31):32325-32.

86. Miyamoto T, Sumioka T, Saika S. Endothelial mesenchymal transition: a therapeutic target in retrocorneal membrane. Cornea. 2010;29 Ek 1:S52-6.

87. Ichijima H, Petroll WM, Jester JV, Barry PA, Andrews PM, Dai M ve ark. In vivo confocal microscopic studies of endothelial wound healing in rabbit cornea.

Cornea. 1993;12(5):369-78.

88. Joyce NC, Meklir B, Neufeld AH. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest Ophthalmol Vis Sci. 1990;31(9):1816-26.

89. Soltau JB, McLaughlin BJ. Effects of growth factors on wound healing in serum-deprived kitten corneal endothelial cell cultures. Cornea. 1993;12(3):208-15.

90. Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF. Effects of platelet-derived growth factor on endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci. 1994;35(1):150-61.

91. Bednarz J, Thalmann-Goetsch A, Richard G, Engelmann K. Influence of vascular endothelial growth factor on bovine corneal endothelial cells in a wound-healing model. Ger J Ophthalmol. 1996;5(3):127-31.

92. Wilson SE. Corneal wound healing. Exp Eye Res. 2020;197:108089.

93. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation.

Nat Rev Immunol. 2011;11(11):762-74.

94. Galligan CL, Fish EN. The role of circulating fibrocytes in inflammation and autoimmunity. J Leukoc Biol. 2013;93(1):45-50.

95. Lassance L, Marino GK, Medeiros CS, Thangavadivel S, Wilson SE.

Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury. Exp Eye Res. 2018;170:177-87.

96. Marino GK, Santhiago MR, Santhanam A, Lassance L, Thangavadivel S, Medeiros CS, et al. Epithelial basement membrane injury and regeneration

modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits. Exp Eye Res. 2017;161:101-5.

97. Santhanam A, Marino GK, Torricelli AA, Wilson SE. EBM regeneration and changes in EBM component mRNA expression in stromal cells after corneal injury. Mol Vis. 2017;23:39-51.

98. Medeiros CS, Saikia P, de Oliveira RC, Lassance L, Santhiago MR, Wilson SE. Descemet's Membrane Modulation of Posterior Corneal Fibrosis. Invest Ophthalmol Vis Sci. 2019;60(4):1010-20.

99. Wilson SE, Marino GK, Torricelli AAM, Medeiros CS. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: A paradigm for fibrosis in other organs? Matrix Biol. 2017;64:17-26.

100. Kaur H, Chaurasia SS, de Medeiros FW, Agrawal V, Salomao MQ, Singh N, et al. Corneal stroma PDGF blockade and myofibroblast development. Exp Eye Res. 2009;88(5):960-5.

101. Barbosa FL, Chaurasia SS, Kaur H, de Medeiros FW, Agrawal V, Wilson SE. Stromal interleukin-1 expression in the cornea after haze-associated injury.

Exp Eye Res. 2010;91(3):456-61.

102. Barbosa FL, Lin M, Santhiago MR, Singh V, Agrawal V, Wilson SE.

Interleukin-1 receptor role in the viability of corneal myofibroblasts. Exp Eye Res.

2012;96(1):65-9.

103. Wilson SE, Esposito A. Focus on molecules: interleukin-1: a master regulator of the corneal response to injury. Exp Eye Res. 2009;89(2):124-5.

104. Torres P, de Vos AF, van der Gaag R, Kijlstra A. Expression of the interleukin 1 receptor antagonist in the normal human cornea. Ocul Immunol Inflamm. 1994;2(4):217-22.

105. Kivanc SA, Budak Akova B, Cevik SG, Baykara M, Yasar S, Ozmen AT.

Occupational-related chemical ocular injuries: an analysis of 82 patients. The European Research Journal. 2016;2(2):143-6.

106. Reim M, Redbrake C, Schrage N. Chemical and thermal injuries of the eyes. Surgical and medical treatment based on clinical and pathophysiological findings. Arch Soc Esp Oftalmol. 2001;76(2):79-124.

107. Paterson CA, Pfister RR. Intraocular pressure changes after alkali burns.

Arch Ophthalmol. 1974;91(3):211-8.

108. McCulley JP. Ocular hydrofluoric acid burns: animal model, mechanism of injury and therapy. Trans Am Ophthalmol Soc. 1990;88:649-84.

109. Roper-Hall MJ. Thermal and chemical burns. Trans Ophthalmol Soc U K.

1965;85:631-53.

110. Dua HS, King AJ, Joseph A. A new classification of ocular surface burns.

Br J Ophthalmol. 2001;85(11):1379-83.

111. Ikeda N, Hayasaka S, Hayasaka Y, Watanabe K. Alkali burns of the eye:

effect of immediate copious irrigation with tap water on their severity.

Ophthalmologica. 2006;220(4):225-8.

112. Fortin JL, Bodson L, Fontaine M, Depil-Duval A, Paulin P, Bitar MP, et al.

Ann Burns Fire Disasters. 2017;30(4):286-91.

113. Kompa S, Redbrake C, Hilgers C, Wustemeyer H, Schrage N, Remky A.

Effect of different irrigating solutions on aqueous humour pH changes, intraocular pressure and histological findings after induced alkali burns. Acta Ophthalmol Scand. 2005;83(4):467-70.

114. Kompa S, Schareck B, Tympner J, Wustemeyer H, Schrage NF.

Comparison of emergency eye-wash products in burned porcine eyes. Graefes Arch Clin Exp Ophthalmol. 2002;240(4):308-13.

115. Kuckelkorn R, Schrage N, Keller G, Redbrake C. Emergency treatment of chemical and thermal eye burns. Acta Ophthalmol Scand. 2002;80(1):4-10.

116. Rihawi S, Frentz M, Becker J, Reim M, Schrage NF. The consequences of delayed intervention when treating chemical eye burns. Graefes Arch Clin Exp Ophthalmol. 2007;245(10):1507-13.

117. Rihawi S, Frentz M, Schrage NF. Emergency treatment of eye burns: which rinsing solution should we choose? Graefes Arch Clin Exp Ophthalmol.

2006;244(7):845-54.

118. Asari A, Morita M, Sekiguchi T, Okamura K, Horie K, Miyauchi S.

Hyaluronan, CD44 and fibronectin in rabbit corneal epithelial wound healing. Jpn J Ophthalmol. 1996;40(1):18-25.

119. Brazzell RK, Stern ME, Aquavella JV, Beuerman RW, Baird L. Human recombinant epidermal growth factor in experimental corneal wound healing.

Invest Ophthalmol Vis Sci. 1991;32(2):336-40.

120. Kobayashi TK, Tsubota K, Takamura E, Sawa M, Ohashi Y, Usui M. Effect of retinol palmitate as a treatment for dry eye: a cytological evaluation.

Ophthalmologica. 1997;211(6):358-61.

121. Kruse FE, Tseng SC. Retinoic acid regulates clonal growth and differentiation of cultured limbal and peripheral corneal epithelium. Invest Ophthalmol Vis Sci. 1994;35(5):2405-20.

122. Wu CL, Chou HC, Li JM, Chen YW, Chen JH, Chen YH, et al. Hyaluronic acid-dependent protection against alkali-burned human corneal cells.

Electrophoresis. 2013;34(3):388-96.

123. Pfister RR, Paterson CA. Ascorbic acid in the treatment of alkali burns of the eye. Ophthalmology. 1980;87(10):1050-7.

124. Risa O, Saether O, Midelfart A, Krane J, Cejkova J. Analysis of immediate changes of water-soluble metabolites in alkali-burned rabbit cornea, aqueous humor and lens by high-resolution 1H-NMR spectroscopy. Graefes Arch Clin Exp Ophthalmol. 2002;240(1):49-55.

125. Pfister RR, Paterson CA, Hayes SA. Topical ascorbate decreases the incidence of corneal ulceration after experimental alkali burns. Invest Ophthalmol Vis Sci. 1978;17(10):1019-24.

126. Pfister RR, Paterson CA, Spiers JW, Hayes SA. The efficacy of ascorbate treatment after severe experimental alkali burns depends upon the route of

127. Burns FR, Stack MS, Gray RD, Paterson CA. Inhibition of purified collagenase from alkali-burned rabbit corneas. Invest Ophthalmol Vis Sci.

1989;30(7):1569-75.

128. Seedor JA, Perry HD, McNamara TF, Golub LM, Buxton DF, Guthrie DS.

Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits.

Arch Ophthalmol. 1987;105(2):268-71.

129. Uitto VJ, Firth JD, Nip L, Golub LM. Doxycycline and chemically modified tetracyclines inhibit gelatinase A (MMP-2) gene expression in human skin keratinocytes. Ann N Y Acad Sci. 1994;732:140-51.

130. Ralph RA. Tetracyclines and the treatment of corneal stromal ulceration: a review. Cornea. 2000;19(3):274-7.

131. Perry HD, Golub LM. Systemic tetracyclines in the treatment of noninfected corneal ulcers: a case report and proposed new mechanism of action. Ann Ophthalmol. 1985;17(12):742-4.

132. Golub LM, Wolff M, Lee HM, McNamara TF, Ramamurthy NS, Zambon J ve ark. Further evidence that tetracyclines inhibit collagenase activity in human crevicular fluid and from other mammalian sources. J Periodontal Res.

1985;20(1):12-23.

133. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNamara TF, Kaplan R ve ark.

Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J Periodontal Res.

1983;18(5):516-26.

134. Pfister RR, Haddox JL, Sommers CI. Effect of synthetic metalloproteinase inhibitor or citrate on neutrophil chemotaxis and the respiratory burst. Invest Ophthalmol Vis Sci. 1997;38(7):1340-9.

135. Menna F, Antonucci R, Ippolito S, Maronne V, Matrisciano F. [The use of cysteine and acetylcysteine collyria in chemical burns of the cornea. Experimental studies]. Bull Mem Soc Fr Ophtalmol. 1982;94:425-8.

136. Kubota M, Shimmura S, Kubota S, Miyashita H, Kato N, Noda K ve ark.

Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis

in a mouse corneal alkali-burn model. Invest Ophthalmol Vis Sci. 2011;52(1):427-33.

137. Kigasawa K, Murata H, Morita Y, Odake S, Suda E, Shimizu I ve ark.

Inhibition of corneal ulceration by tetrapeptidyl hydroxamic acid. Jpn J Ophthalmol. 1995;39(1):35-42.

138. Evans RM, Mc Crary JA, 3rd, Christensen G. Mucomyst (acetylcysteine) in the treatment of corneal alkali burns. Ann Ophthalmol. 1972;4(4):320-8.

139. Leibowitz HM. Management of inflammation in the cornea and conjunctiva.

Ophthalmology. 1980;87(8):753-8.

140. Kenyon KR. Inflammatory mechanisms in corneal ulceration. Trans Am Ophthalmol Soc. 1985;83:610-63.

141. Donshik PC, Berman MB, Dohlman CH, Gage J, Rose J. Effect of topical corticosteroids on ulceration in alkali-burned corneas. Arch Ophthalmol.

1978;96(11):2117-20.

142. Phillips K, Arffa R, Cintron C, Rose J, Miller D, Kublin CL ve ark. Effects of prednisolone and medroxyprogesterone on corneal wound healing, ulceration, and neovascularization. Arch Ophthalmol. 1983;101(4):640-3.

143. Parker AV, Williams RN, Paterson CA. The effect of sodium citrate on the stimulation of polymorphonuclear leukocytes. Invest Ophthalmol Vis Sci.

1985;26(9):1257-61.

144. Paterson CA, Williams RN, Parker AV. Characteristics of polymorphonuclear leukocyte infiltration into the alkali burned eye and the influence of sodium citrate. Exp Eye Res. 1984;39(6):701-8.

145. Haddox JL, Pfister RR, Slaughter SE. An excess of topical calcium and magnesium reverses the therapeutic effect of citrate on the development of corneal ulcers after alkali injury. Cornea. 1996;15(2):191-5.

146. Pfister RR, Nicolaro ML, Paterson CA. Sodium citrate reduces the incidence of corneal ulcerations and perforations in extreme alkali-burned eyes--acetylcysteine and ascorbate have no favorable effect. Invest Ophthalmol Vis Sci.

Benzer Belgeler