• Sonuç bulunamadı

BÖLÜM III: MATERYAL VE METOD

IV. BULGULAR VE TARTIŞMA

4.8 Fotokatalitik İleri Oksidasyon Prosesi Sonrası sonuçların UV-Vis Spektrofotometre ölçümleri ile değerlendirmesi

NFC-doplu TiO2 fotokatalist ile gerçekleştirilen fotokatalitik ileri oksidasyon prosesi sonrasında ilk 1 saat karanlıkta ve sonrasında 3 ve 7 saat boyunca UV ışık altında süren fotokatalitik aktivite sonrasında saat başı alınan su numuneleri UV-Vis Spektrofotometre’de ölçüme tabi tutulmuştur. Sonuçlar Garfik 4.9.1’de verilmiştir.

Grafik 4.9.1 NFC-doplu TiO2 ile fotokatalitik ileri oksidasyon prosesi sonrasında Lüleburgaz Evsel AAT çıkış sularının UV-Vis Spektrofotometre ölçüm sonuçları.

Grafik 4.9.1’de görüldüğü gibi 3 saatlik NFC-doplu fotokatalitik oksidasyon sonrasında Lüleburgaz Evsel AAT çıkış sularının %96,536 olan antibiyotik giderim verimi, süre 7 saate uzatıldığında %99,963’e yükseltilebilmiştir.

Malkara ve Karpuzlu Evsel AAT’nin biyolojik arıtma sonrası çıkış sularına uygulanan 7 saatlik NFC-doplu fotokatalitik oksidasyon sonrasında alınan su numunelerinin UV-Vis Spektrofotometrik ölçüm sonuçlarına göre her üç antibiyotiğin de giderim verimi sırasıyla % 99,982 ve %99,956 olarak belirlenmiş olup sonuçlar Grafik 4.9.2’de grafiksel olarak ortaya konulmuştur.

0 0,2 0,4 0,6 0,8 1

0 50 100 150 200 250 300 350 400 450 500 550 600

C/C0

Süre,dk

LÜLEBURGAZ NFC-doplu TiO2 3 saat LÜLEBURGAZ NFC-doplu TiO2 7 saat

Karanlık Adsorbsiyon

Görünür Işık

61

Grafik 4.9.2 Malkara ve Karpuzlu Evsel AAT çıkış sularının NFC-Doplu TiO2 fotokatalitik ileri oksidasyon prosesi sonrasındaki UV-Vis Spektrofotometre ölçüm sonuçları.

Grafik 4.9.3 Kırklareli Evsel ve Çerkezköy Endüstriyel AAT çıkış sularının NFC-doplu TiO2 fotokatalitik ileri oksidasyon prosesi sonrasındaki UV-Vis Spektrofotometre ölçüm sonuçları.

Grafik 4.9.3’de görüldüğü gibi Kırklareli Evsel ve Çerkezköy Endüstriyel AAT çıkış sularının NFC-doplu TiO2 ile fotokatalitik ileri oksidasyon prosesi sonrasındaki antibiotik giderim verimleri sırasıyla %99,954 ve %99,789 olarak belirlenmiştir.

0

62

Grafik 4.9.4 Tüm Evsel ve Endüstriyel AAT çıkış sularının NFC-doplu TiO2 ile fotokatalitik ileri oksidasyon prosesi sonrasındaki toplu UV-Vis Spektrofotometre ölçüm sonuçları.

Grafik 4.9.4’de görüldüğü gibi NFC-doplu TiO2 fotoktalist ile laboratuvar ortamında gerçekleştirilen İleri Oksidasyon Prosesi ile elde edilen antibiyotik giderim prosesi boyunca saat başı alınan numunelerin UV-Vis Spektrofotometre ölçüm sonuçları, Tablo 4.6.1’de verilen gösteren HPLC/MS-MS ile ölçülen antibiyotik giderim verim sonuçlarını desteklemektedir.

BÖLÜM V: SONUÇLAR

Sonuç olarak, bu çalışma için özel olarak hazırlanan NFC-doplu TiO2 fotokatalist özellikle evsel ve ardından da endüstriyel atıksulardan antibiyotik gideriminde oldukça başarılı sonuçlar ortaya koymuştur. Bu çalışmalardan yola çıkılarak özel fotoreaktörler tasarlanmasıyla NFC-doplu TiO2 fotokatalitik oksidasyon prosesleri konvansiyonel sistemlerle sağlanamayan antibiyotik gideriminde alternatif arıtma yöntemi olarak kullanılabilir.

63 KAYNAKLAR

[1] Ordu, Ş. (2005). Ergene Havzasında Yüzeysel Su Kirlenmesinin Çevre Bilgi Sistemi Yardımıyla İzlenmesi ve Kontrol Yöntemlerinin Geliştirilmesi. İstanbul: İTÜ Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı.

[2] Özkan, E. ve Kubaş, A., 2008. Ergene Havzasındaki Kirliliğin Sosyo Ekonomik Etkileri, 5. Dünya Su Forumu Bölgesel Hazırlık Süreci Türkiye Bölgesel Su Toplantıları-Havza Kirliliği Konferansı Bildiri Kitabı, DSİ 2. Bölge Müdürlüğü, s. 18, İzmir.

[3] Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminantsin US streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol.

36, 1202–1211.

[4] Hamscher, G., Priess, B., Nau, H. (2006). A survey of the occurrence of various sulfonamides and tetracyclines in water and sediment samples originating from aquaculture systems in Northern Germany in summer 2005, Arch. Lebensmittelhyg. 57, 97–101.

[5] Batt, A.L., Snow, D.D., Aga, D.S. (2006). Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA, Chemosphere 64, 1963–1971.

[6] Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminantsin US streams, 1999–2000: a national reconnaissance, Environ. Sci.Technol.

36, 1202–1211.

[7] Kümmerer, K., 2009. Antibiotics in the aquatic environment - A review Part I, Chemosphere 75, 417–434.

[8] Cabello FC. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. EnvironMicrobiol., 8, 1137–

44.

[9] Sarmah, A.K., Meyer, M.T., Boxall, A.B.A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics in the environment. Chemosphere, 65, 725–59.

[10] Gao, P., Munir, M., Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant, Science of The Total Environment, 421–422, 173-183.

[11] Kemper, N., (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators, 8, 1-13.

[12] Kümmerer K, Henninger A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect., 9, 1203–14.

64

[13] Halling-Sorensen, B., Nielson, S.N., Lanzky, P.E., Ingerslev, L.F., Holten Lutzhoft, H.C., Jorgensen, S.E. (1998). Chemosphere 36, 357.

[14] Perez., M.I.B., Campana, A.M.G., Blanco, C.C., Iruela, M.D.O. (2008). Trace determination of Beta-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography A, 1185, 273–280.

[15] Rickman, K.A., and Mezyk, S.P. (2010). Kinetics and mechanisms of sulfate radical oxidation of b-lactam antibiotics in water. Chemosphere, 81, 359–365.

[16] Ternes, T.A., (1998). Occurrence of drugs in German sewage treatment plants and rivers, Water Resources, 32, 3245-3260.

[17] Kurces, ., Al-Ahmad, A., Mersch-Sundermann, V., (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere, 40, 701-710.

[18] Hayes T, Haston K., Tsui M, Hoang A, Haeffele C, and A. VonkUV-Vis

Spektrofotometrik ölçüm sonuçlarına göre

http://www.sciencedirect.com/science/article/pii/S0925857411003739#bib0065)

[22] Yalap K.S., Balcıoğlu I. A., Oksitetrasiklinin ileri oksidasyon ile arıtımına su bileşenlerinin etkisi, itüdergisi/e su kirlenmesi kontrolü Cilt: 18, Sayı: 2-3, 51-60 2008.

[23] Dantas, R.F., Contreras, S., Sans, C., Esplugas, S., (2008). Sulfamethoxazole abatement by means of ozonation, Journal of Hazardous Materials, 150, 790-794.

[24] Balc 94.n, Journal of., , c 94.n, Journal of Hazardo treatment of antibiotics in pharmaceutical effuents, Proceedings of the 5th Specialised Conference on Small Water and Wastewater Treatment Systems, 24-26 September, 2002, İstanbul, Tstanbul

[25] Balc bul,24-26 September, 2002, ea., (2003). Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere, 50, 85-95.

[26] Andreozzi, R., Caprio, V., Marotta, R., Radovnikovic, A., (2003). Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation, Journal of Hazardous Materials, 103, 233-246.

[27] Zwiener, C., Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water, Water Research, 34, 1881-1885.

[28] Alaton, A,. Dogruel, S, Baykal, E., Geron, G., (2004). Combined chemical and biological oxidation of penicillin formulation effluent, Journal of Environmental Management, 73,155-163.

[29] Glaze, W. H., Kenneke, J. F., Ferry, J. L., "Cholorinated Byproducts from the TiO2- Mediated Photodegradation of Trichloroethylene and Tetra chloroethylene in Water", Environ. Sci. Technol., 27, 27, 177-184,1993.

65

[30] Meriç Ergene Havzası Endüstriyel Atıksu Yönetimi Ana Plan Çalışması Final Raporu, Kasım 2010, 47/222

[31] Hernando, M.D., Mezcua, M., Fernandez-Alba, A.R., Barcelo, D. (2006). Talanta 69 (2006) 334–342.

[32] Le-Minh, N., Stuetz, R.M., Khan, S.J. (2012). Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry, Talanta, 89, 407-416.

[33] Chee-Sanford, J.C., Aminov, R.I., Krapac, I.J., Garrigues-Jeanjean, N., Mackie, R.I.

(2001). Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine productio facilites. Appl Environ Microbiol., 67, 1494–

502.

[34] Pei R, Kim SC, Carlson KH, Pruden A. (2006). Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 40, 2427–35.

[35] Brooks, J.P., Maxwell, S.L., Rensing, C., Gerba, C.P., Pepper, I.L. (2007). Occurrence of antibioticresistant bacteria and endotoxin associated with the land application of biosolids. Can J. Microbiol., 53, 616–22.

[36] Xi, C., Zhang, Y., Marrs, C.F., Ye, W., Simon, C., Foxman, B. (2009). Prevalence of antibiotic resistance in drinking water treatment and distribution system. Appl Environ Microbiol., 75, 5714–8

[37] Storteboom, H., Arabi, M., Davis, J.G., Crimi, B., Pruden, A. (2010). Tracking antibiotic resistance genes in the south Platte river basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol., 44, 7397–404.

[38] Munir, M., Wong, K., Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 45, 681–93

[39] United States Environmental. Protection Agency – USEPA, 1997

[40] Glaze, W. H., Kenneke, J. F., Ferry, J. L., "Cholorinated Byproducts from the TiO2- Mediated Photodegradation of Trichloroethylene and Tetra chloroethylene in Water", Environ. Sci. Technol., 27, 27, 177-184,1993.

[41] Sedlak, D. L., Andren, A. W., "Aqueous-Phase Oxidation of Polychlorinated Biphenyls by Hydroxyl Radicals", Environ. Sci. Technol., 25, 25, 1419-1427,1991.

[42] Zepp, R. G., Hoigne, J., Bader, H., "Nitrate-Induced Photooxidation of Trace Organic Chemicals in Water", Environ. Sci. Technol., 21, 443-450, 1987.

[43] Asashi, R.; Morikawa, T.; Ohwakl, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

[44] Sakthivel, S.; Kisch, H. Angew. Chem., Int. Ed. 2003, 42, 4908.

[45] Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.

66

[46] Zhou, J. K.; Lv, L.; Yu, J. Q.; Li, H. L.; Guo, P. Zh.; Sun, H.; Zhao, X. S. J. Phys. Chem.

C 2008, 112, 5316.

[47] Klosek, S.; Raftery, D. J. Phys. Chem. B 2001, 105, 2815.

[48] Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.;

Romanò, L.; Speghini, A. J. Hazard. Mater. 2007, 146, 529.

[49] Araña, J.; Díaz, O. G.; Saracho, M. M.; Rodríguez, J. M. D.; Melián, J. A. H.; Peña, J.

P. Appl. Catal., B 2001, 32, 49.

[50] Yang, Y.; Li, X. J.; Chen, J. T.; Wang, L. Y. J. Photochem. Photobiol. A 2004, 163, 517.

[51] Zhu, J. F.; Deng, Z. G.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M.; Huang, J. Z.;

Zhang, L .Z. Appl. Catal., B 2006, 62, 329.

[52] Choi, Y. Umebayashi, T.; Yoshikawa, M. J. Mater. Sci. 2004, 39,1837.

[53] Zang, L.; Lange, C.; Abraham, I.; Storck, S.; Maier, W. F.; Kisch, H. J. Phys. Chem.

B 1998, 102, 10765.

[54] Lettman, C.; Hidenbrand, K.; Kisch, H.; Macyk, W. F. Appl. Catal.,B 2001, 32, 215.

[55] Sakthivel, S.; Kisch, H. Angew. Chem., Int. Ed. 2003, 42, 4908.

[56] Asashi, R.; Morikawa, T.; Ohwakl, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

[57] Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Jr.

J. Phys. Chem. B 2004, 108, 6004.

[58] Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Appl. Catal., A 2004, 265, 115.

[59] Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H. Y.; Wong, P. K.; Zhao, J. C. EnViron. Sci.

Technol. 2005, 39, 1175.

[60] Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Chem. Mater. 2003, 15, 2280.

[61] Kisch, H.; Zang, L.; Lange, C.; Maier, W. F.; Antonnius, C.; Meissner, D. Angew.

Chem., Int. Ed. 1998, 37, 3034.

[62] Zang, L.; Lange, C.; Abraham, I.; Storck, S.; Maier, W. F.; Kisch, H. J. Phys. Chem. B 1998, 102, 10765.

[63] Anpo, M.; Takeuchi, M. Int. J. Photoenergy 2001, 3, 89.

[64] Nakamura, I.; Negishi, N.; Kutauna, S.; Ihara, T.; Sugihara, S.; Takeuchi, K. J. Mol.

Catal. 2000, 161, 205.

[65] Takeuchi, K.; Nakamura, I.; Matsunoto, O.; Sugihara, S.; Andoh, M.; Ihara, T. Chem.

Lett. 2000, 1354.

67

[66] Cherepy, N. J.; Semestad, G. P.; Gra¨tzel, M.; Zhang, J. Z. J. Phys.Chem. B 1997, 101, 9432.

[67] Kay, A.; Humphry-Baker, R.; Gra¨tzel, M. J. Phys. Chem. 1994, 98, 952.

[68] Lettman, C.; Hidenbrand, K.; Kisch, H.; Macyk, W. F. Appl. Catal.,B 2001, 32, 215.

[69] Sakthivel, S.; Kisch, H. Angew. Chem., Int. Ed. 2003, 42, 4908.

[70] Asashi, R.; Morikawa, T.; Ohwakl, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

[71] Burda, C.; Lou, Y.; Chen, X.; Samia, A. C.; Stout, J.; Gole, J. L. Nano Lett. 2003, 3, 1049.

[72] Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Jr.

J. Phys. Chem. B 2004, 108, 6004.

[73] Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Appl.

Catal., A 2004, 265, 115.

[74] Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H. Y.; Wong, P. K.; Zhao, J.C. EnViron. Sci.

Technol. 2005, 39, 1175.

[75] Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Chem. Mater. 2003, 15,2280.

[76] Hattori, A.; Schimoda, K.; Tada, H.; Ito, S. Langmuir 1999, 15,5422.

[77] Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y.Z.; Ma, N.; Liu, Y. J.

Chem. Mater. 2005, 17, 1548.

[78] Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Chem.Mater. 2004, 16, 846 [79] X. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, “Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2,” Environ.

Sci. Technol., 30, 647–53 (1996).

[80] C. Anderson and A. J. Bard, “Improved Photocatalytic Activity and Characterization of Mixed TiO2/SiO2 and TiO2/Al2O3 Materials,” J. Phys. Chem. B, 101, 2611–6 (1997).

Mineralogical and Optical Characterization of SiO2,N-, and SiO2/N-Co-Doped Titania Nanopowders.

[81] David M. Tobaldi, Lian Gao, Alessandro F. Gualtieri, Andrijana Sever Sˇ kapin, Antonella Tucci, and Carlotta Giacobbe, J. Am. Ceram. Soc., 95 [5] 1709–1716 (2012).

[82] Yang, M. J.; Hume, C.; Lee, S.; Son, Y.-H.; Lee, J.-K. J. Phys. Chem. C 2010, 114,

68

[85] Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Chem.Mater. 2004, 16, 846.

[86] Daimei Chen, Zhongyi Jiang, Jiaqing Geng, Qun Wang, and Dong Yang, Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity, Ind. Eng.

Chem. Res. 2007, 46, 2741-2746

[87] Li, D.; Haneda, H.; Hishita, S.; Ohashi, a- N. Chem. Mater. 2005,17, 2588.

[88] Li, D.; Haneda, H.; Hishita, S.; Ohashi, b- N. Chem. Mater. 2005,17, 2596.

[89] Cong, Y.; Chen, F.; Zhang, J.; Anpo, M. Chem. Lett. 2006, 35,800.

[90] Xiaoqing Y., Chao X., Bolun Y., Guidong Y., Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications, Applied Surface Science 394 (2017) 248–257).)

[91] Muthulingama S., In-Hwan L., Periyayya U., Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight.

[92] Kinolonlar, Quinolones Uzm. Dr. Emine GÜNAL, Prof. Dr. Hakan ERDEM Diyarbakır, İç Hastalıkları Dergisi 2014; 21: 69-85

[93] Oxford Handbook of Infectious Diseases and Microbiology. OUP Oxford. 2009. p. 56.

ISBN 978-0-19-103962-1.

[94] "Siprofloksasin Hydrochloride". The American Society of Health-System Pharmacists.

Retrieved Aug 23, 2015.

[95] Heidelbaugh, J. J.; Holmstrom, H (2013). "The perils of prescribing fluoroquinolones". The Journal of family practice. 62 (4): 191–7. PMID 23570031.

[96] "FDA Drug Safety Communication: FDA requires label changes to warn of risk for possibly permanent nerve damage from antibacterial fluoroquinolone drugs taken by mouth or by injection".

[97] Makrolidler Eski ve Yeni Üyeler, Haluk Eraksoy, ANKEM Dergisi 5 (No 3); 284-296;

1991

[98] http://yunus.hacettepe.edu.tr/~pkelicen Yrd. Doç. Dr. E. Pelin KELİCEN [99] 2017, http://omedicine.info/tr/co-trimoxazole.html

[100] Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials part I, J. Opt. Soc. Am., 38(5), 448-457.

[101] Sato S., “Photo catalytic activity of NOx doped TiO2 in the visible region,” Chemical Physics Letters, vol. 123, no. 1-2, pp. 126–128, 1986.

[102] Clara M., Strenn B., Kreuzinger N., Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in

69

wastewater treatment and during groundwater infiltration, Water Res., 38 (2004), pp. 947–

954

[103] Köck-Schulmeyer M., Villagrasa M., López de Alda M., Céspedes-Sánchez R., Ventura F., Barceló D., Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact, Sci. Total Environ., 458 (2013), pp. 466–476

[104] Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S.,. Wang X.C, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014), pp. 619–641 [105] Gulkowska A., Leung H.W., So M.K., Taniyasu S., Yamashita N., Yeung L.W., Richardson B.J., Lei A.P.,. Giesy J.P,. Lam P.K, Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China, Water Res., 42 (2008), pp.

395–403

[106]. Neville E.M, Mattle M.J., Loughrey D., Rajesh B., Rahman M., Mac Elroy J.M.D.,.

Sullivan J.A, Thampi K.R., J. Phys. Chem. C 116, 16511 (2012)

[107] Ozaki H., Iwamoto S., Inoue M., J. Phys. Chem. C 111, 17061 (2007) [108] Liu H.,. Wu YZhang, J., ACS Appl. Mater. Interfaces 3, 1757 (2011) [109] Xu Y., Zhuang Y., Fu X., J. Phys. Chem. C 114, 2669 (2010)

[110] Lin X., Rong F., Ji X., Fu D., Microporous Mesoporous Mater. 142, 276 (2011) [111] Zhang H., Ling C., Liu J., Tian Z., Wang G., Cai W., Langmuir 28, 3938 (2012) [112] Long Y., Lu Y., Huang Y., Peng Y. UV-Vis Spektrofotometrik ölçüm sonuçlarına göre Y., Kang S., Mu J., Effect of C60 on the photocatalytic activity of TiO2 nano rods. J.

Phys. Chem. C 113, 13899 (2009)

[113] García-Serrano J., Gómez-Hernández E.,. Ocampo-Fernández M, Pal U., Curr. Appl.

Phys. 9, 1097 (2009)

[114] Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Appl. Surf. Sci. 257, 8121 (2011) [115] Wu D., Long M., Cai W., Chen C., Wu Y., J. Alloys Compd. 502, 289 (2010)

[116] Han C., Pelaez M., Likodimos V., Kontos A.G. UV-Vis Spektrofotometrik ölçüm sonuçlarına göre P., O’Sheac K.,. Dionysiou D.D, Appl. Catal. B Environ. 107, 77 (2011) [117] Ahmed O., Pons M.N, Lachheb H., Houas A. and Zahraa O., Degradation of sulfamethoxazole by photocatalysis using supported TiO2, Sustain. Environ. Res., 24(5), 381-387 (2014).

[118] Edwin H. Flynn, Max V. SigalJr., Paul F. Wiley, Koert Gerzon, Erythromycin. I.

Properties and Degradation Studies J. Am. Chem. Soc., 1954, 76 (12), pp 3121–3131 DOI:

10.1021/ja01641a005.

[119] Wu C., Alison L, Spongberg and Jason D. Witter, Use of solid phase extraction and liquid chromatography-tandem mass spectrometry for simultaneous determination of

70

various pjarmaceuticals in surface water, İnt. Journal of Env. Analytical Chem. 88,14, 1033-1048.

[120] Guney G. & Sponza D.T (2016) Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater, Environmental Technology, 37:24, 3151-3167, DOI: 10.1080/09593330.2016.1179348

[121]. Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Czoska A.M., Paganini M.C., Giamello E., Chemistry of Materials, 20 (2008), pp. 3706–3714

[122] Irie, H., Watanabe, Y., Hashimoto, K., 2003. Nitrogen-concentration dependence on photocatalytic, activity of TiO2−xNx powders. J. Phys. Chem. B, 107(23): 5483-5486.

[doi:10.1021/jp030133h]

[123] Choi, Y., Umebayashi, T., Yoshikawa, M., 2004. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science, 39(5):1837-1839.

[124] Moon, S.C., Mametsuka, H., Tabata, S., Suzuki, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 58(2-3):125-132.

[125] Albini, A., Monti, S., 2003. Photophysics and photochemistry of fluoroquinolones.

Chemical Society Reviews 32 (4), 238–250.

[126] Calza, P., Medana, C., Carbone, F., Giancotti, V., Baiocchi, C., 2008. Characterization of intermediate compounds formed upon photoinduced degradation of quinolones by highperformance liquid chromatography/high-resolution multiple-stage mass spectrometry.

Rapid Communications in Mass Spectrometry 22 (10), 1533–1552.

[127] Palominos, R., Freer, J., Mondaca, M.A., Mansilla, H.D., 2008. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. Journal of Photochemistry and Photobiology A: Chemistry 193, 139–145.

[128] Paul, T., Miller, P.L., Strathmann, T.J., 2007. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science &

Technology 41 (13), 4720–4727.

[129] Kubelka P., and Munk F., ‘Ein Beitrag Zur Optik der Farbanstriche’, Zeitschrift fur technische Physik 12 (1931) 593-601.