• Sonuç bulunamadı

Observation of the Lambda(0)(b) -> J/psi Lambda phi decay in proton-proton collisions at root s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Observation of the Lambda(0)(b) -> J/psi Lambda phi decay in proton-proton collisions at root s=13 TeV"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

the



0b

J/ψ



φ

decay

in

proton-proton

collisions

at

s

=

13 TeV

.TheCMS Collaboration CERN,Switzerland a r t i c l e i n f o a b s t ra c t Articlehistory: Received9November2019

Receivedinrevisedform3January2020 Accepted6January2020

Availableonline9January2020 Editor:M.Doser Keywords: CMS bphysics Heavy-flavorspectroscopy Computing

The observation ofthe 0b→J/ψφ decayis reportedusing proton-protoncollisiondata collectedat

s=13 TeV by the CMS experiment at the LHC in2018, corresponding toan integrated luminosity of60fb−1.The ratio ofthe branchingfractions B(b0→J/ψφ)/B(0b→ ψ(2S))is measuredto be

(8.26±0.90 (stat)±0.68 (syst)±0.11(B))×10−2,wherethefirstuncertaintyisstatistical,thesecondis

systematic,andthelastuncertaintyreflectstheuncertaintiesintheworld-averagebranchingfractionsof

φandψ(2S)decaystothereconstructedfinalstates.

©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Studiesofb baryondecaysareofgreatimportanceforprobing thedynamicsof heavy-flavor decayprocesses.Since the observa-tion of the lightest b baryon 0b by the UA1 Collaboration [1] atthe CERN SppS, followedby extensivestudies at theFermilab Tevatron by the CDF [2–11] and D0 [12–17] Collaborations, the ATLAS,CMS, andLHCbexperiments haveaccomplishednumerous 0b baryon studies, made possible by the large production cross sectionofbb pairsattheCERNLHC.Amongthesestudiesare pre-cision mass measurements of the groundand excited states [18, 19], as well as lifetime and polarization measurements [20–23]. Mostofthesestudieshavebeenperformedinthe0b→J/ψ de-caychannel.Recently,anobservationofthe0bbaryondecaytoan excitedcharmoniumstate0b→ ψ(2S)hasbeenreportedbythe ATLAS Collaboration [24], while theLHCb Collaboration observed other,higher-multiplicitydecaysinvolvingcharmoniumstates [25, 26]. Decays of the 0b baryon also proved to be a rich sourceof exoticspectroscopy,ashasbeendemonstratedbytheobservation byLHCb [27,28] ofnewpentaquarkstatesPc(4312)+,Pc(4380)+, andPc(4450)+ intheinvariant massdistributionoftheJ/ψp sys-temproduced in the 0b→J/ψpK− decay. Furtherstudies of the 0b baryon decay modes involving charmonium states may shed

 E-mailaddress:cms-publication-committee-chair@cern.ch.

light on thestrong interaction processes inhadronicdecays of b baryonsandontheproductionofexoticmultiquarkstates.

This Letter reports the observation of the 0b→J/ψφ de-cay mode and the measurement of the branching fraction ra-tio B(0b→J/ψφ)/B(0b→ ψ(2S)), by the CMS experiment. Here and thereafter, φ refers to the φ(1020) meson. The J/ψ, , φ, and ψ(2S) candidates are reconstructed in μ+μ−, pπ−, K+K−,andJ/ψπ+π−finalstates,respectively.The0b→ ψ(2S)→ J/ψπ+π−pπ−→ μ+μ−π+π−pπ−decayisusedasthenormalization channel,owingtoitssimilardecaytopology.

ThebranchingfractionratioB(0

b→J/ψφ)/B(0b→ ψ(2S)) ismeasuredas: B(0b→J/ψφ) B(0b→ ψ(2S))= N(0b→J/ψφ) N(0b→ ψ(2S)) ×(0b→ ψ(2S))B(ψ(2S)→J/ψπ+π−) (0b→J/ψφ)B(φ →K+K−) , (1)

where N(0b→J/ψφ) and N(0b→ ψ(2S)) are the measured 0b yields forthe signalandnormalizationchannels, respectively. The terms (0b→J/ψφ) and (0b→ ψ(2S))are the respec-tive overall efficiencies that include the detector acceptance and the reconstruction efficiency. The branching fractions B(ψ(2S)→ J/ψπ+π−) and B(φ →K+K−) are taken from the Particle Data Group(PDG) [29].

https://doi.org/10.1016/j.physletb.2020.135203

0370-2693/©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

The0b→J/ψφdecayisexpectedtoproceedviatheb→ccs process, similarly to the 0b→J/ψ decay, but requires an ad-ditional ss pair. Consequently, the measurement of its branching fractioncould enhancetheunderstandingofthefinal-statestrong interactionsinb baryondecaysandtestheavy-quarkeffective the-ory [30].Inaddition,the 0b→J/ψφdecayisa baryonicanalog oftheB+→J/ψφK+decay,wherearichresonantstructureinthe J/ψφ system has been observed by several experiments [31–34]. Therefore,detailedstudiesoftheJ/ψφspectrumproducedin bary-onic decaysmayprovide an importanttest for theproductionof thesestates.Recently,theexistenceofahidden-charmpentaquark spectrawas predictedfortheJ/ψ final state [35],which canbe investigatedinthe0b→J/ψφdecay,onceasufficientnumberof signaleventsisaccumulated.

2. TheCMSdetector

The central feature of the CMS apparatus [36] is a supercon-ducting solenoid of 6 m internal diameter, providing a magnetic field of3.8 T.Withinthe solenoidvolumeare a siliconpixel and strip tracker,a leadtungstatecrystalelectromagnetic calorimeter, andabrass andscintillatorhadron calorimeter,eachcomposedof abarrelandtwoendcapsections.Forwardcalorimetersextendthe pseudorapidity(η)coverageprovidedbythebarrelandendcap de-tectors.Muonsaredetectedingas-ionizationchambersembedded inthe steelflux-returnyokeoutsidethe solenoid. Themain sub-detectorsusedforthepresentanalysisarethesilicontrackerand themuonsystem.

Thesilicontrackermeasureschargedparticleswithintherange |η|<2.5.During the LHCrunning periodwhen thedata used in this Letter were recorded, the silicon tracker consisted of 1856 silicon pixel and 15 148 silicon strip detector modules. For non-isolatedparticleswithtransversemomentum1<pT<10GeV and |η|<1.4,thetrackresolutionistypically1.5%inpT.

Muons are measured within |η|<2.4, with detection planes made using three technologies: drift tubes, cathode strip cham-bers,andresistive-platechambers.Tracksinthemuonsystemare matchedtothose measuredinthesilicontracker.The relative pT resolutionismeasuredtobeintherange0.8–3.0%formuonswith

pT<10GeV usedinthisanalysis,dependingonthemuon|η|[37]. Events of interest are selected using a two-tiered trigger sys-tem [38]. Thefirstlevel (L1),composedofcustom hardware pro-cessors, usesinformationfromthe calorimetersandmuon detec-tors toselect eventsata rateup to 100 kHz withina fixed time intervaloflessthan4μs.Thesecondlevel,knownasthehigh-level trigger (HLT), consistsof a farm of processors running a version of the full event reconstruction software optimized for fast pro-cessing, andreduces the event rateto around 1 kHz before data storage.

AmoredetaileddescriptionoftheCMSdetector,togetherwith adefinitionofthecoordinatesystemused andthe relevant kine-maticvariables,canbefoundinRef. [36].

3. Datasampleandeventselection

Theanalysisdescribed inthisLetterisbasedonadatasample of proton-protoncollisions at a center-of-mass energyof 13TeV, collectedwiththeCMSdetectorin2018andcorresponding toan integratedluminosityof60fb−1.

Datawererecordedwithadedicatedtrigger,optimizedforthe selectionof b hadronsdecayingto J/ψ(μ+μ−)andtwo additional tracksfromthechargedhadronsemergingfromthedecay.TheL1 triggerrequirestwooppositely chargedmuonswith pT ofatleast 4GeV,ortwomuonsinthebarrelregion(|η|<1.479)withoutany

pT threshold. At the HLT, a J/ψ candidate decaying into a μ+μ−

pairdisplacedfromtheinteractionpointisrequired,alongwithat leasttwo tracks consistentwiththe displacedvertex. Eachmuon

pT is required to be at least 4GeV, while the dimuon pT is re-quired to exceed 6.9GeV.The J/ψ candidates reconstructed from dimuons arerequiredtohavean invariant massbetween2.9and 3.3GeV.Thethree-dimensionaldistanceofclosestapproachofthe two muonsto each other isrequired tobe lessthan 0.5 cm. The fitteddimuonvertexisrequiredtohaveatransversedecaylength significance Lxy(J/ψ)/σLxy(J/ψ)>3,where Lxy(J/ψ) and σLxy(J/ψ) are, respectively, the distance from the common vertex to the beam axisinthetransverseplaneanditsuncertainty.Finally,thedimuon vertexfit probability,calculatedusingthe χ2 andthenumberof degreesoffreedomofthefit,isrequiredtoexceed10%,whilethe angle αbetweenthedimuonpT vectorandthedirection connect-ingthebeamaxisandthedimuonvertexinthetransverseplaneis requiredtosatisfycosα>0.9.Giventhelackofadedicatedkaon identification, thetwoadditionaltracksare assigneda kaonmass hypothesis andrequired to have pT>0.8GeV, |η|<2.5, andan invariantmassinarangeof0.95–1.30GeV.

In thesubsequentoffline analysiswe followcloselythe selec-tion of Ref. [39]. The pT threshold on the two muon candidates of 4GeV and the requirement of |η|<2.4 are kept. Two oppo-sitely charged muon candidatesare paired andrequired to origi-nate from a commonvertex. The vertexrequirements applied at the HLT are confirmed in the offline selection. Also both muon candidates must match those that triggered the event readout. Dimuoncandidateswithaninvariantmasswithin100MeV,which corresponds to approximately four effective widths, around the J/ψ mesonmass MPDGJ/ψ are selected (hereafter, MPDGX denotes the world-average massofhadronX [29]),andthe pT oftheJ/ψ me-sonisrequiredtoexceed7GeV.

To reconstructa 0b candidate,the J/ψ candidateis combined withtwo oppositely charged, high-purity [40] tracks, assumedto be kaon candidates, and a  candidate.The pT of the tracks is required to exceed 0.8GeV, and their invariant mass must sat-isfy 0.99<M(K+K−)<1.05GeV. The  candidates are formed from displaced two-prong vertices under the assumption of the →pπ− decay, asdescribed in Ref. [41]. Daughter particles of the  candidateare refitted to a common vertex withtheir in-variant mass constrained to MPDG, and the vertex fit probabil-ity isrequired to exceed 1%. The protonmass is assignedto the higher-momentum daughtertrack.Toselectthecandidatesinthe  signal region, the following additionalrequirement isapplied: |M(pπ−)MPDG |<7.5MeV.The widthofthiswindowischosen tocorrespondtoapproximatelythreetimestheeffectivewidthof thereconstructedcandidates.Inaddition,thecandidateis re-quiredtohaveatransversemomentuminexcessof1GeV.

Asthelaststepofthereconstruction,afittothecommon ver-texofthecandidate,thetwokaontracks,andthedimuonpairis performed,withthedimuonmassconstrainedtoMPDGJ/ψ ;thisvertex isreferredtoasthe0b vertex.Thekinematicvertexfitprobability ofthe0b candidateisrequiredtoexceed1%.Theselected candi-datesarerequiredtohavepT(0b)>10GeV.

Multiple proton-proton interactions in the same or nearby beam crossing (pileup) are presentin the data, withan average multiplicity of 32,resulting in multiple reconstructed vertices in an event.Thevertexwiththelowestthree-dimensionalangle be-tween thelineconnectingthisvertexwiththe0b vertexandthe 0b candidate momentum is chosen as the primary vertex (PV). The following requirement is used to select 0b candidates con-sistent withoriginatingfromthePV:cosα(0b,PV)>0.99,where

α(0b,PV)isthetwo-dimensionalangleinthetransverseplane be-tweenthe0b candidatemomentumandthevectorpointingfrom

(3)

Fig. 1. Theinvariantmassdistributionsof(left)J/ψK+K− and(right)background-subtractedK+K−.Thepointsarethedata,withtheverticalbarsgivingthestatistical uncertainties,andthelinesshowtheresultsofthefitsdescribedinthetext.

the PV to the 0b vertex. The following requirement on the 0b vertexdisplacement is also applied: Lxy(0b)/σLxy(0b)>3,where Lxy(0b) is thedistance betweenthe primary and0b verticesin thetransverseplane,and σLxy(0b)isitsuncertainty.

Candidatedecaysforthenormalizationchannel0b→ ψ(2S), withψ(2S)→J/ψπ+π−,areselectedusingthesamereconstruction chain.IdenticalrequirementsareusedtoselecttheJ/ψ candidate, π+ andπtracks,andcandidate.Anadditionalrequirementis

placedon the J/ψπ+π− invariant mass, |M(J/ψπ+π−)MPDG

ψ(2S)|< 15MeV, to select ψ(2S) candidates, where this window corre-spondstoapproximatelythreeeffectivewidthsofareconstructed ψ(2S)candidate.

Incaseofmultiple0b candidates perevent, theonewiththe highestvertexfitprobabilityischosenforboththesignaland nor-malizationchannels.Thereare18.9and7.4% ofeventswithtwoor morereconstructedcandidatesforsignal andnormalization chan-nels, respectively. When there are two ormore candidates in an event, the MC simulation predicts that the correct candidate is chosen 84±5 and 93±13% ofthe time for the signal and nor-malizationchannels,respectively.

Tocalculatethereconstructionefficiency,astudybasedon sim-ulated signal events for both channels is performed. The events are generatedwith pythia 8.230 [42]. The 0b baryon decays are modeled with evtgen [43] v1.6.0 for both the 0

b→J/ψφ and 0b → ψ(2S) decay channels, following the three-body phase spacemodel.The eventsarethen passed throughadetailedCMS detectorsimulationbasedon Geant4 [44].

4. Signalyieldextraction

The invariant mass distribution of the 0b→J/ψK+K− can-didatesselectedusingthestrategy described intheprevious sec-tion isshown inFig. 1 (left). An unbinned,extended maximum-likelihoodfittoasignalplusbackgroundhypothesisisperformed onthisobservableandfurthermassdistributions.

The signal is described by a double-Gaussian function with a floating common mean and total normalization, while the two widthsandtherelativefractionofthetwoGaussianfunctionsare fixedtothevaluesobtainedfromsimulation.Thedouble-Gaussian function was chosen as a model that provides the best descrip-tionofthesimulatedsample.Thebackgroundisparameterizedby athird-orderBernsteinpolynomial.Thefitresultsinasignalyield of380±32 events.Thesignal significanceiscalculatedto be9.7 standard deviations in the asymptotic approximation [45], using theprofilelikelihoodratioofthesignal plusbackgroundoverthe

background-onlyhypothesisasthetest statistic.Including model-ing uncertainties inthe signal andbackgroundshapes (described inSection6)resultsinareductionofthesignificancevalueto9.4 standarddeviations.

There isa binwiththe yieldsignificantly higherthan the av-eragebackground levelin theleft panel ofFig. 1,justbelow the signal0bpeak.Thelocalsignificanceoftheexcessisestimatedto be lessthan three standard deviations.Severalcross-checks have been performed to investigate this enhancement. The M(0b→ J/ψK+K−)distributionwiththerequirementontheφcandidates tohaveamasswithin10MeV ofthenominalvalueshowsno sig-nificant excess in this bin. The statistical significance of the 0b signalis10.3standarddeviationsintheasymptoticapproximation. Astatisticallyindependentdataset,collectedin2017,hasbeen ex-aminedwiththe sameselection, andnosignificant excess below the 0b peak was observed.As a resultofthesecross-checks, we attributetheexcesstoastatisticalfluctuation.

Anunbinnedlikelihoodfittothe M(0b→J/ψK+K−) observ-able is employed to separate the signal andbackground compo-nentsstatistically,whichisthenusedwiththesPlot technique [46] to obtain the M(K+K−) data distributioncorresponding to signal 0b→J/ψK+K− decays.Toextractthe 0b→J/ψφ decayyield, the background-subtracted M(K+K−) distribution is fitted with theconvolutionofadouble-GaussianandrelativisticBreit–Wigner functions forthe φ signal anda first-order Bernstein polynomial forthe nonresonant component. The natural widthof theφ me-son isfixed to theworld-average value [29]. It was checkedthat the naturalwidth ofthe φ mesonobtained fromthe fit whenit was allowedtofloatwas consistentwiththeworld-averagevalue within the uncertainties.Both widthsandthe relative fractionof thetwoGaussiansarefixedtothevaluesobtainedfromfittingthe simulatedsignalsample.Thefitresultsinasignalyieldof286±29 events.The M(K+K−)invariant mass distribution,along withthe resultofthefit,areshowninFig.1(right).

Fig.2displaystheinvariantmassdistributionof0b→ ψ(2S) candidates. The points represent the data and the curve is the resultofthefit.Thesignalisdescribedbyadouble-Gaussian func-tion with floating common mean andtotal normalization, while theindividualwidthsandtherelativefractionofthetwoGaussians arefixedfromthefittoasimulatedsignalsample.Thebackground isdescribedbyathird-orderBernsteinpolynomialfunction.Thefit resultsinasignalyieldof884±37 events.Thenon-ψ(2S) contri-butioninthe0b→J/ψπ+π−signalwasestimatedtobe negligi-bleintheselectedmasswindow|M(J/ψπ+π−)MPDG

(4)

Fig. 2. Theinvariantmassdistributionof0

b→ ψ(2S)candidates.Thepointsare

thedataandthelinesgivetheresultofthefitdescribedinthetext.

5. Efficiencycalculation

The 0b selection efficiencies in the signal and normalization channels are calculated as the ratio of the numbers of selected togenerated eventsinsimulated signalsamples.The overall effi-ciencyincludesthetriggerandreconstruction efficienciesandthe detectoracceptance.Theefficiencyineachchannelisobtained us-ing the simulated samples described in Section 3. The efficiency ratio,whichisusedin thebranchingfractionratiomeasurement, isfoundto be (0b→ ψ(2S))/(0b→J/ψφ)=0.363±0.011, wheretheuncertaintyisstatisticalonlyandaccountsforthe lim-itedeventcountsinthecorrespondingsimulatedsamples.The pT spectrum ofpions from the ψ(2S)→J/ψπ+π− decay inthe nor-malizationschannelissofterthanthe pT spectrumofkaonsfrom the φ →K+K− decay in the signal channel, resulting in an effi-ciencyratiosignificantlybelowunity.

6. Systematicuncertainties

In this section we discuss various sources of systematic un-certainty contributing to the measurement of the ratio B(0b→ J/ψφ)/B(0b→ ψ(2S)),asdefinedinEq. (1).

Since both the 0b →J/ψφ → μ+μ−pπ−K+K− and 0bψ(2S)→ μ+μ−pπ−π+π− decaymodeshave thesame topology, thesystematicuncertaintiesrelatedtothemuonandtrack recon-struction, as well as the trigger efficiency, mostly cancel in the ratio.Totest this assumption,simulated sampleswere compared with background-subtracted data in a number of kinematic dis-tributions. As a result of these studies, an additional systematic uncertaintyisassignedtoaccountfortheobserveddifference be-tweendataandsimulationinthe0b rapidity distributionforthe normalization channel, as well as for the difference in the two-bodyinvariantmassdistributionsM(J/ψ),M(J/ψφ),andM(φ)in dataandsimulationforthesignalchannel. Thelatterdiscrepancy could becaused bya deviationfromthepure phase spacedecay modelusedinthesimulationdueto contributionsfrom interme-diateresonantstates;however,thestatisticalpowerofthepresent datasetisinsufficienttoperformamoredetailedinvestigation.To estimate thissystematicuncertainty, thesimulated sampleswere reweighted to matchthe distributions observed in data. The dif-ference intheefficiencyratio beforeandafterthe reweightingis takenasthecorrespondingsystematicuncertainty.

The systematic uncertainty relatedto the choice of the back-groundmodelisestimatedseparatelyforthesignal channel, nor-malization channel, and φ →K+K− decays. The variation of the backgroundmodel includes Bernstein polynomials ofsecond and fourth orders, independently for the signal and normalization

channels, andan exponential function for the backgroundin the φ →K+K− invariantmass distribution.Forthesignal channel,an additional backgroundfunction with a thresholdbehavior is also tested: (xx0 multipliedby theBernstein polynomialsof first andsecondorders,where x0=MPDGJ/ψ +MPDG +MPDGφ andthe ex-ponentβisallowedtovaryfreelyinthefit.Ineachcase,the max-imumdeviationinthemeasuredsignalyieldwithinthevariations ofthebackgroundmodelisusedasthesystematicuncertainty.

Another source of systematic uncertainty is the signal shape modeling in the M(J/ψK+K−), M(ψ(2S)), and M(K+K−) dis-tributions. This uncertainty isestimated by usingalternative sig-nal models whose parameters were obtainedby fitting the sim-ulated invariant mass distributions. The variation of signal mod-els includes a triple-Gaussian function and a sumof two Crystal Ball [47] functionsforthe0b→J/ψK+K− invariantmass distri-bution; asumoftwo CrystalBallfunctionsforthe0b→ ψ(2S) channel;anda convolution ofa doubleCrystal Ball [48] and rel-ativisticBreit–WignerfunctionsfortheM(K+K−)distribution.For eachofthevariations,thelargestdeviationinthemeasuredsignal yieldistakenasthesystematicuncertainty.

The next source of systematicuncertainty isthe difference in themassresolutionofthe0bandφpeaksbetweendataand simu-lation.Toestimatethisuncertainty,severalvariationswereapplied to theresolution functionsinthe M(J/ψK+K−) and M(ψ(2S)) distributions:onlytheratioofthetwoGaussianwidthswasfixed to theone measured insimulation insteadoffixing both widths, asinthenominalfit.FortheM(K+K−)distribution,afitwiththe fixedratiosofthetwoGaussianwidthsandyields,asmeasuredin simulation,isperformed. Ineach case,the maximumvariationin themeasured 0b yieldisusedasthesystematicuncertainty.The differencebetweendataandsimulationinthemeasured0b mass resolution forthe0b→J/ψK+K− channel resultsin thelargest systematicuncertainty.

Thestatisticaluncertaintyintheefficiencyratioobtainedfrom simulationisalsoconsideredasasourceofsystematicuncertainty. Table 1 summarizes theindividual sources ofthe systematic un-certainty,aswellastheoveralluncertaintyobtainedasaquadratic sumoftheindividualcomponents.

7. Measurementofthebranchingfractionratio

Using Eq. (1), the signal and normalization channel yields

N(0b→J/ψφ)=286±29 and N(0b→ ψ(2S))=884±37, the efficiency ratio described in Section 5, and the PDG values of B(ψ(2S)→J/ψπ+π−)=0.347±0.003 and B(φ →K+K−)= 0.492±0.005, we measure the ratio B(0b→J/ψφ)/B(0bψ(2S))to be (8.26±0.90(stat)±0.68(syst)±0.11(B))×10−2. The first uncertaintyis statistical, while thesecond issystematic (asdescribed inSection6),andthethirdisduetothe uncertain-tiesinthebranchingfractionsofthedecaysinvolved.

8. Summary

The observation of the 0b→J/ψφ decay and the measure-ment of the branching fraction ratio B(b0→J/ψφ)/B(0bψ(2S)) is presentedusing a data sample of proton-proton col-lisions at √s= 13TeV collected in 2018 by the CMS experi-ment and corresponding to an integrated luminosity of 60fb−1. The ratio B(0b →J/ψφ)/B(0b→ ψ(2S)) is measured to be (8.26±0.90(stat)±0.68(syst)±0.11(B))×10−2, wherethefirst uncertaintyisstatistical,thesecondissystematic,andthelast un-certaintyreflectstheuncertaintiesintheworld-averagebranching fractions ofφ and ψ(2S) decaysto thereconstructed final states. The observation of the 0b→J/ψφ decay opens a window on

(5)

Table 1

SummaryoftherelativesystematicuncertaintiesinB(0

b→J/ψφ)/B( 0

b→ ψ(2S)).

Source Relative

uncertainty(%) Data/simulation difference in the0

brapidity and two-body mass distributions 0.1

Background model in the M(J/ψK+K−)distribution 0.6 Background model in the M(ψ(2S))distribution 0.8 Background model in the M(K+K−)distribution 0.8 Signal model in the M(J/ψK+K−)distribution 0.8 Signal model in the M(ψ(2S))distribution 1.1 Signal model in the M(K+K−)distribution 0.5 Data/simulation difference in the0

bresolution for the 0

b→J/ψφdecay 6.6

Data/simulation difference in the0bresolution for the 0

b→ ψ(2S)decay 3.1

Data/simulation difference in theφresolution 1.4 Finite size of simulated samples 2.9

Total systematic uncertainty 8.2

future searches for new resonances in the J/ψ and J/ψφ mass spectra,onceasufficientnumberofsignaleventsisobserved.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies: BMBWFandFWF(Austria);FNRS andFWO (Belgium); CNPq, CAPES, FAPERJ,FAPERGS, andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN(Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia); BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna); MON, RosAtom,RAS, RFBR, andNRC KI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR, andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASU (Ukraine); STFC (United Kingdom); DOE andNSF (USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexan-der von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); theF.R.S.-FNRS andFWO (Belgium)under the “Excellenceof Sci-ence – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences, the New National Excellence Program ÚNKP, the NKFIA researchgrants123842,123959,124845,124850,125105,128713,

128786, and 129058 (Hungary); the Council of Science and In-dustrial Research,India;theHOMING PLUSprogramofthe Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Programby QatarNationalResearchFund;the Ministryof Science and Education, grant no. 3.2989.2017 (Russia); the Pro-gramaEstatalde Fomento delaInvestigación CientíficayTécnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis andAristeiaprogramscofinancedbyEU-ESF andtheGreek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd Century Project Advancement Project (Thailand); the Nvidia Cor-poration;TheWelchFoundation,contractC-1845;andtheWeston HavensFoundation(USA).

References

[1] C.Albajar,etal.,UA1,Firstobservationofthebeautybaryon0binthedecay

channel0

b→J/ψattheCERNproton-antiprotoncollider,Phys.Lett.B273

(1991)540,https://doi.org/10.1016/0370-2693(91)90311-D. [2] F.Abe,etal.,CDF,Searchfor0

b→J/ψinpp collisions¯ at

s=1.8 TeV,Phys. Rev.D47(1993)R2639,https://doi.org/10.1103/PhysRevD.47.R2639. [3] F.Abe,etal.,CDF,Measurementof0

blifetimeusing 0

b→ +c ν¯,Phys.Rev.

Lett.77(1996)1439,https://doi.org/10.1103/PhysRevLett.77.1439. [4] F.Abe,etal.,CDF,Observationof0

b→J/ψattheFermilabproton-antiproton

collider, Phys. Rev. D 55 (1997) 1142, https://doi.org/10.1103/PhysRevD.55. 1142.

[5] D.Acosta,etal.,CDF,Searchfor0

b→pπ and 0

b→pK decaysinpp col-¯

lisions at√s=1.96 TeV, Phys.Rev.D72(2005)051104,https://doi.org/10. 1103/PhysRevD.72.051104,arXiv:hep-ex/0507067.

[6] A. Abulencia, et al., CDF, Measurement of σ(0

b)/σ( ¯B0)× BR(0b → +cπ)/BR( ¯B0→D+π)inpp collisions¯ at

s=1.96 TeV,Phys.Rev.Lett. 98 (2007) 122002, https://doi.org/10.1103/PhysRevLett.98.122002, arXiv:hep -ex/0601003.

[7] A.Abulencia,etal.,CDF,Measurementofthe0blifetimein 0

b→J/ψinpp¯

collisionsat√s=1.96 TeV,Phys.Rev.Lett.98(2007)122001,https://doi.org/ 10.1103/PhysRevLett.98.122001,arXiv:hep-ex/0609021.

[8] T.Aaltonen,etal.,CDF,Firstmeasurementoftheratioofbranchingfractions B(0

b→ +cμν¯μ)/B(0b→ +cπ),Phys.Rev.D79(2009)032001,https://

doi.org/10.1103/PhysRevD.79.032001,arXiv:0810.3213. [9] T.Aaltonen,etal.,CDF,Measurementofthe0

blifetimein 0

b→ +cπ

de-caysinpp collisions¯ at√s=1.96 TeV, Phys.Rev.Lett.104(2010)102002,

https://doi.org/10.1103/PhysRevLett.104.102002,arXiv:0912.3566.

[10] T. Aaltonen,etal., CDF,Observationofthe baryonicflavor-changingneutral current decay 0b→ μ+μ−, Phys. Rev.Lett. 107(2011) 201802, https://

doi.org/10.1103/PhysRevLett.107.201802,arXiv:1107.3753.

[11] T. Aaltonen, et al., CDF, Measurement of the branching fraction B(0b→ +cππ+π)atCDF,Phys.Rev.D85(2012)032003,https://doi.org/10.1103/

(6)

[12] V.M.Abazov,etal.,D0,Measurementofthe0

blifetimeinthedecay 0 b→

J/ψwiththeD0detector,Phys.Rev.Lett.94(2005)102001,https://doi.org/ 10.1103/PhysRevLett.94.102001,arXiv:hep-ex/0410054.

[13] V.M.Abazov,etal.,D0,Measurementofthe0blifetimeintheexclusive

de-cay 0b→J/ψ, Phys. Rev. Lett.99 (2007) 142001, https://doi.org/10.1103/

PhysRevLett.99.142001,arXiv:0704.3909. [14] V.M.Abazov,et al.,D0,Measurementofthe0

blifetimeusingsemileptonic

decays,Phys.Rev.Lett.99(2007)182001,https://doi.org/10.1103/PhysRevLett. 99.182001,arXiv:0706.2358.

[15] V.M.Abazov,etal.,D0,Measurementoftheproductionfractiontimes branch-ingfraction f(b→ 0

b)· B( 0

b→J/ψ),Phys.Rev.D84(2011)031102(R),

https://doi.org/10.1103/PhysRevD.84.031102,arXiv:1105.0690. [16] V.M.Abazov,etal.,D0,Measurementofthe0

blifetimeintheexclusivedecay 0

b→J/ψinpp collisions¯ at

s=1.96 TeV,Phys.Rev.D85(2012)112003,

https://doi.org/10.1103/PhysRevD.85.112003,arXiv:1204.2340.

[17] V.M.Abazov,etal.,D0,Measurementoftheforward-backwardasymmetryin 0band ¯

0

b baryonproductioninpp collisions¯ at

s=1.96 TeV,Phys.Rev. D91(2015)072008,https://doi.org/10.1103/PhysRevD.91.072008,arXiv:1503. 03917.

[18] LHCb Collaboration, Observation of the decays 0

b→χc1pK− and  0 b→ χc2pK−, Phys. Rev. Lett. 119 (2017) 062001, https://doi.org/10.1103/ PhysRevLett.119.062001,arXiv:1704.07900.

[19] LHCbCollaboration, Observationofexcited0b baryons,Phys.Rev.Lett.109

(2012) 172003, https://doi.org/10.1103/PhysRevLett.109.172003, arXiv:1205. 3452.

[20] ATLASCollaboration,Measurementofthe0

blifetimeandmassintheATLAS

experiment,Phys.Rev.D87(2013)032002,https://doi.org/10.1103/PhysRevD. 87.032002,arXiv:1207.2284.

[21] LHCbCollaboration,Precisionmeasurementoftheratioofthe0btoB 0

life-times,Phys.Lett.B734(2014)122,https://doi.org/10.1016/j.physletb.2014.05. 021,arXiv:1402.6242.

[22] CMSCollaboration,Measurementofthe0

b polarizationandangular

param-etersin0b→J/ψdecays frompp collisionsat

s= 7and 8TeV,Phys. Rev.D97(2018)072010,https://doi.org/10.1103/PhysRevD.97.072010,arXiv: 1802.04867.

[23] CMSCollaboration,Measurementofbhadronlifetimesinpp collisionsat√s=

8 TeV,Eur.Phys.J.C78(2018)457,https://doi.org/10.1140/epjc/s10052-018 -5929-3, arXiv:1710.08949,Erratum:https://doi.org/10.1140/epjc/s10052-018 -6014-7.

[24] ATLAS Collaboration, Measurement of the branching ratio (0b → ψ(2S))/(0

b→J/ψ)withtheATLASdetector,Phys.Lett.B751(2015)63,

https://doi.org/10.1016/j.physletb.2015.10.009,arXiv:1507.08202. [25] LHCbCollaboration,Observationof0

b→ ψ(2S)pK−and0b→J/ψπ+π−pK−

decaysandameasurementofthe0

b baryonmass,J.HighEnergyPhys.05

(2016)132,https://doi.org/10.1007/JHEP05(2016)132,arXiv:1603.06961. [26] LHCbCollaboration, Observationof the 0b→χc1(3872)pK− decay, J. High

Energy Phys.09 (2019)028,https://doi.org/10.1007/JHEP09(2019)028,arXiv: 1907.00954.

[27] LHCbCollaboration,ObservationofJ/ψp resonancesconsistentwithpentaquark statesin0

b→J/ψK−p decays,Phys.Rev.Lett.115(2015)072001,https://doi.

org/10.1103/PhysRevLett.115.072001,arXiv:1507.03414.

[28] LHCbCollaboration,Observationofanarrowpentaquarkstate,Pc(4312)+,and

ofthetwo-peakstructureofthePc(4450)+,Phys.Rev.Lett.122(2019)222001,

https://doi.org/10.1103/PhysRevLett.122.222001,arXiv:1904.03947.

[29] ParticleDataGroup,M.Tanabashi,etal.,Reviewofparticlephysics,Phys.Rev. D98(2018)030001,https://doi.org/10.1103/PhysRevD.98.030001.

[30]Y.Chen,A.Fujimori,T.Müller,W.Stwalley,J.Yang(Eds.),HeavyQuarkEffective Theory,Springer,Berlin,Heidelberg,2004.

[31] T.Aaltonen,etal.,CDF,ObservationoftheY(4140)structureintheJ/ψφmass spectrumin B±→J/ψφK± decays,Mod. Phys. Lett.A 32 (2017) 1750139,

https://doi.org/10.1142/S0217732317501395,arXiv:1101.6058.

[32] CMSCollaboration,ObservationofapeakingstructureintheJ/ψφmass spec-trumfromB±→J/ψφK±decays,Phys.Lett.B734(2014)261,https://doi.org/ 10.1016/j.physletb.2014.05.055,arXiv:1309.6920.

[33] V.M.Abazov,etal.,D0,InclusiveproductionoftheX(4140) stateinpp col-¯ lisions at D0, Phys. Rev. Lett. 115 (2015) 232001, https://doi.org/10.1103/ PhysRevLett.115.232001,arXiv:1508.07846.

[34] LHCbCollaboration,ObservationofJ/ψφstructuresconsistentwithexoticstates fromamplitudeanalysisofB+→J/ψφK+ decays,Phys.Rev.Lett.118(2017) 022003,https://doi.org/10.1103/PhysRevLett.118.022003,arXiv:1606.07895. [35] X.-Z.Weng,X.-L.Chen,W.-Z.Deng,S.-L.Zhu,Hidden-charmpentaquarksand

Pc states,Phys.Rev.D100(2019)016014,https://doi.org/10.1103/PhysRevD.

100.016014,arXiv:1904.09891.

[36] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[37] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon recon-structionwithproton-protoncollisionsat√s=13 TeV,J.Instrum.13(2018) P06015,https://doi.org/10.1088/1748-0221/13/06/P06015,arXiv:1804.04528. [38] CMS Collaboration, The CMStrigger system,J. Instrum. 12 (2017) P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [39] CMSCollaboration,StudyoftheB+→J/ψp decayinproton-protoncollisions

at√s=8 TeV,J.HighEnergy Phys.12(2019) 100,https://doi.org/10.1007/ JHEP12(2019)100,arXiv:1907.05461,submittedforpublication.

[40] CMSCollaboration,Descriptionandperformanceoftrackandprimary-vertex reconstructionwiththeCMStracker,J.Instrum.9(2014)P10009,https://doi. org/10.1088/1748-0221/9/10/P10009,arXiv:1405.6569.

[41] CMSCollaboration,CMStrackingperformanceresultsfromearlyLHCoperation, Eur.Phys.J.C70(2010)1165,https://doi.org/10.1140/epjc/s10052-010-1491 -3,arXiv:1007.1988.

[42] T. Sjöstrand,S.Ask,J.R. Christiansen,R.Corke,N.Desai,P.Ilten,S. Mrenna, S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[43] D.J.Lange,The evtgen particledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152,https://doi.org/10.1016/S0168-9002(01)00089-4. [44] S. Agostinelli, et al., GEANT4, Geant4—a simulation toolkit, Nucl. Instrum.

MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [45] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor

likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,https://doi.org/10. 1140/epjc/s10052-011-1554-0, arXiv:1007.1727, Erratum: https://doi.org/10. 1140/epjc/s10052-013-2501-z.

[46] M.Pivk,F.R.LeDiberder,SPlot:astatisticaltooltounfolddatadistributions, Nucl.Instrum.MethodsA555(2005)356,https://doi.org/10.1016/j.nima.2005. 08.106,arXiv:physics/0402083.

[47] M.J. Oreglia, A study of the reactions ψ→γ γψ, Ph.D. thesis, SLAC Re-portSLAC-R-236,StanfordUniversity,1980,http://www.slac.stanford.edu/pubs/ slacreports/slac-r-236.html.

[48] J.E.Gaiser,CharmoniumspectroscopyfromradiativedecaysoftheJ/ψandψ, Ph.D.thesis,SLACReportSLAC-R-255,StanfordUniversity,1982, https://www-public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=slac-R-255.

TheCMSCollaboration

A.M. Sirunyan†, A. Tumasyan YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic,J. Erö, A. Escalante Del Valle,M. Flechl, R. Frühwirth1, M. Jeitler1, N. Krammer,I. Krätschmer, D. Liko,T. Madlener, I. Mikulec,N. Rad, J. Schieck1, R. Schöfbeck, M. Spanring, W. Waltenberger, C.-E. Wulz1,M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Drugakov,V. Mossolov, J. Suarez Gonzalez InstituteforNuclearProblems,Minsk,Belarus

(7)

M.R. Darwish,E.A. De Wolf, D. Di Croce, X. Janssen,A. Lelek, M. Pieters,H. Rejeb Sfar, H. Van Haevermaet,P. Van Mechelen,S. Van Putte, N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman, E.S. Bols,S.S. Chhibra,J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette,I. Marchesini, S. Moortgat, Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi,A. Popov, N. Postiau,E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,D. Dobur, I. Khvastunov2, M. Niedziela, C. Roskas, M. Tytgat, W. Verbeke,B. Vermassen, M. Vit

GhentUniversity,Ghent,Belgium

O. Bondu,G. Bruno, C. Caputo, P. David,C. Delaere, M. Delcourt,A. Giammanco, V. Lemaitre, J. Prisciandaro, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,G.A. Alves,G. Correia Silva, C. Hensel,A. Moraes, P. Rebello Teles CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, J. Martins5,D. Matos Figueiredo, M. Medina Jaime6,M. Melo De Almeida,C. Mora Herrera, L. Mundim, H. Nogima,W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel,

E.J. Tonelli Manganote3,F. Torres Da Silva De Araujo, A. Vilela Pereira UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardesa, L. Calligarisa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb,D.S. Lemos, P.G. Mercadanteb,S.F. Novaesa,Sandra S. Padulaa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, G. Antchev, R. Hadjiiska,P. Iaydjiev, M. Misheva, M. Rodozov,M. Shopova, G. Sultanov InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

M. Bonchev,A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov,P. Petkov UniversityofSofia,Sofia,Bulgaria

W. Fang7, X. Gao7,L. Yuan BeihangUniversity,Beijing,China

G.M. Chen,H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu, A. Spiezia, J. Tao, E. Yazgan, H. Zhang,S. Zhang8,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

A. Agapitos,Y. Ban, G. Chen, A. Levin,J. Li, L. Li,Q. Li, Y. Mao, S.J. Qian, D. Wang,Q. Wang StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

(8)

TsinghuaUniversity,Beijing,China M. Xiao

ZhejiangUniversity,Hangzhou,China

C. Avila,A. Cabrera, C. Florez, C.F. González Hernández, M.A. Segura Delgado UniversidaddeLosAndes,Bogota,Colombia

J. Mejia Guisao,J.D. Ruiz Alvarez,C.A. Salazar González, N. Vanegas Arbelaez UniversidaddeAntioquia,Medellin,Colombia

D. Giljanovi ´c,N. Godinovic, D. Lelas, I. Puljak, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, M. Roguljic, A. Starodumov9,T. Susa InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, E. Erodotou, A. Ioannou,M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski,D. Tsiakkouri

UniversityofCyprus,Nicosia,Cyprus

M. Finger10, M. Finger Jr.10, A. Kveton,J. Tomsa CharlesUniversity,Prague,CzechRepublic

E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador Y. Assran11,12,S. Elgammal12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira,R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola, L. Forthomme,H. Kirschenmann, K. Osterberg,M. Voutilainen DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

F. Garcia, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén,P. Luukka, T. Mäenpää, H. Siikonen,E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

(9)

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, C. Leloup,B. Lenzi, E. Locci, J. Malcles,J. Rander,

A. Rosowsky,M.Ö. Sahin, A. Savoy-Navarro13, M. Titov, G.B. Yu IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

S. Ahuja,C. Amendola, F. Beaudette, P. Busson, C. Charlot,B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez,M. Nguyen, C. Ochando, P. Paganini, J. Rembser,R. Salerno, J.B. Sauvan, Y. Sirois,A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,CNRS/IN2P3,EcolePolytechnique,InstitutPolytechniquedeParis,France

J.-L. Agram14,J. Andrea, D. Bloch,G. Bourgatte, J.-M. Brom, E.C. Chabert,C. Collard, E. Conte14, J.-C. Fontaine14,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni,J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, F. Lagarde, I.B. Laktineh,H. Lattaud, A. Lesauvage,M. Lethuillier, L. Mirabito,S. Perries, V. Sordini, L. Torterotot,G. Touquet,

M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France T. Toriashvili15

GeorgianTechnicalUniversity,Tbilisi,Georgia Z. Tsamalaidze10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten,M.P. Rauch, J. Schulz, M. Teroerde,B. Wittmer

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Erdmann,B. Fischer, S. Ghosh, T. Hebbeker,K. Hoepfner, H. Keller, L. Mastrolorenzo,

M. Merschmeyer,A. Meyer, P. Millet,G. Mocellin, S. Mondal, S. Mukherjee,D. Noll, A. Novak, T. Pook, A. Pozdnyakov,T. Quast, M. Radziej, Y. Rath, H. Reithler,J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge,W. Haj Ahmad16,O. Hlushchenko, T. Kress,T. Müller, A. Nowack,C. Pistone, O. Pooth,D. Roy, H. Sert,A. Stahl17

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,P. Asmuss, I. Babounikau, H. Bakhshiansohi, K. Beernaert,O. Behnke,

A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras18,V. Botta, A. Campbell,A. Cardini, P. Connor,S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov,A. De Wit, M.M. Defranchis, C. Diez Pardos,D. Domínguez Damiani,G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo19, A. Geiser, A. Grohsjean, M. Guthoff,M. Haranko, A. Harb,A. Jafari,N.Z. Jomhari, H. Jung, A. Kasem18,M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle,D. Krücker, W. Lange, T. Lenz, J. Lidrych,K. Lipka, W. Lohmann20,R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller,V. Myronenko, D. Pérez Adán,S.K. Pflitsch, D. Pitzl,A. Raspereza, A. Saibel,

(10)

M. Savitskyi,V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko,A. Singh, H. Tholen, O. Turkot, A. Vagnerini,M. Van De Klundert, R. Walsh, Y. Wen,K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcik DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers,E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina,G. Kasieczka, R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer,A. Perieanu, A. Reimers, O. Rieger,C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld,H. Stadie, G. Steinbrück, F.M. Stober,B. Vormwald, I. Zoi

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,M. Baselga, S. Baur, T. Berger,E. Butz, R. Caspart,T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit,N. Faltermann, M. Giffels,P. Goldenzweig, A. Gottmann,M.A. Harrendorf, F. Hartmann17,U. Husemann, S. Kudella, S. Mitra, M.U. Mozer,D. Müller, Th. Müller, M. Musich, A. Nürnberg, G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov, H.J. Simonis,R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf

KarlsruherInstitutfuerTechnologie,Karlsruhe,Germany

G. Anagnostou, P. Asenov, G. Daskalakis,T. Geralis,A. Kyriakis, D. Loukas, G. Paspalaki InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

M. Diamantopoulou,G. Karathanasis, P. Kontaxakis,A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, A. Stakia,K. Theofilatos, K. Vellidis,E. Vourliotis

NationalandKapodistrianUniversityofAthens,Athens,Greece

G. Bakas, K. Kousouris,I. Papakrivopoulos, G. Tsipolitis NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou, C. Foudas,P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas,F.A. Triantis, D. Tsitsonis

UniversityofIoánnina,Ioánnina,Greece

M. Bartók21,R. Chudasama, M. Csanad, P. Major, K. Mandal, A. Mehta,M.I. Nagy, G. Pasztor,O. Surányi, G.I. Veres

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath22,F. Sikler, T.A. Vámi,V. Veszpremi, G. Vesztergombi† WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi21,J. Molnar, Z. Szillasi InstituteofNuclearResearchATOMKI,Debrecen,Hungary

P. Raics, D. Teyssier,Z.L. Trocsanyi, B. Ujvari InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

T. Csorgo, W.J. Metzger, F. Nemes, T. Novak EszterhazyKarolyUniversity,KarolyRobertCampus,Gyongyos,Hungary S. Choudhury, J.R. Komaragiri, P.C. Tiwari IndianInstituteofScience(IISc),Bangalore,India

(11)

S. Bahinipati23,C. Kar, G. Kole, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak24, D.K. Sahoo23, S.K. Swain

NationalInstituteofScienceEducationandResearch,HBNI,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, S. Chauhan,R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari,M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

PanjabUniversity,Chandigarh,India

A. Bhardwaj,B.C. Choudhary, R.B. Garg,M. Gola, S. Keshri, Ashok Kumar,M. Naimuddin, P. Priyanka, K. Ranjan,Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj25, M. Bharti25, R. Bhattacharya,S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dutta, S. Ghosh,B. Gomber26,M. Maity27,K. Mondal, S. Nandan, A. Purohit,P.K. Rout, G. Saha,S. Sarkar, T. Sarkar27,M. Sharan, B. Singh25,S. Thakur25

SahaInstituteofNuclearPhysics,HBNI,Kolkata,India

P.K. Behera,P. Kalbhor, A. Muhammad, P.R. Pujahari,A. Sharma, A.K. Sikdar IndianInstituteofTechnologyMadras,Madras,India

D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, Ravindra Kumar Verma TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar,N. Sahoo, S. Sawant

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Dube,B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani28, E. Eskandari Tadavani,S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, R. Alya,b,29, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c,L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, W. Elmetenaweea,b,L. Fiorea,A. Gelmia,b,G. Iasellia,c, M. Incea,b, S. Lezkia,b, G. Maggia,c,M. Maggia, J.A. Merlin,G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c,R. Radognaa, A. Ranieria,G. Selvaggia,b,L. Silvestrisa,F.M. Simonea,b,R. Vendittia, P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b, L. Borgonovia,b,S. Braibant-Giacomellia,b,

R. Campaninia,b,P. Capiluppia,b,A. Castroa,b, F.R. Cavalloa, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea,F. Fabbria,A. Fanfania,b,E. Fontanesia,b, P. Giacomellia,C. Grandia, L. Guiduccia,b,

(12)

F. Iemmia,b, S. Lo Meoa,30, S. Marcellinia, G. Masettia, F.L. Navarriaa,b,A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,31,S. Costaa,b,A. Di Mattiaa, R. Potenzaa,b,A. Tricomia,b,31,C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, A. Cassese,R. Ceccarelli, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b,F. Fioria,E. Focardia,b, G. Latinoa,b, P. Lenzia,b, M. Meschinia, S. Paolettia,G. Sguazzonia,L. Viliania

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, D. Piccolo INFNLaboratoriNazionalidiFrascati,Frascati,Italy

M. Bozzoa,b,F. Ferroa,R. Mulargiaa,b,E. Robuttia, S. Tosia,b aINFNSezionediGenova,Genova,Italy

bUniversitàdiGenova,Genova,Italy

A. Benagliaa, A. Beschia,b,F. Brivioa,b,V. Cirioloa,b,17, M.E. Dinardoa,b,P. Dinia, S. Gennaia,

A. Ghezzia,b, P. Govonia,b, L. Guzzia,b,M. Malbertia,S. Malvezzia,D. Menascea, F. Montia,b, L. Moronia, M. Paganonia,b,D. Pedrinia,S. Ragazzia,b, T. Tabarelli de Fatisa,b,D. Valsecchia,b, D. Zuoloa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b,A. Di Crescenzoa,b, F. Fabozzia,c,F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, L. Listaa,b,S. Meolaa,d,17, P. Paoluccia,17,B. Rossia,C. Sciaccaa,b,E. Voevodinaa,b aINFNSezionediNapoli,Napoli,Italy

bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,N. Bacchettaa,D. Biselloa,b,A. Bolettia,b,A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa,U. Dossellia, F. Gasparinia,b, U. Gasparinia,b,A. Gozzelinoa,

S.Y. Hoha,b,S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b,J. Pazzinia,b,M. Presillab, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b,A. Tikoa,M. Tosia,b, M. Zanettia,b,P. Zottoa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,D. Fiorinaa,b,P. Montagnaa,b, S.P. Rattia,b,V. Rea, M. Ressegottia,b,C. Riccardia,b, P. Salvinia, I. Vaia,P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

M. Biasinia,b, G.M. Bileia,D. Ciangottinia,b,L. Fanòa,b,P. Laricciaa,b, R. Leonardia,b,E. Manonia, G. Mantovania,b,V. Mariania,b, M. Menichellia,A. Rossia,b, A. Santocchiaa,b,D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,P. Azzurria,G. Bagliesia,V. Bertacchia,c,L. Bianchinia,T. Boccalia, R. Castaldia,

(13)

E. Mancaa,c,G. Mandorlia,c, A. Messineoa,b, F. Pallaa,A. Rizzia,b, G. Rolandi32,S. Roy Chowdhury, A. Scribanoa,P. Spagnoloa, R. Tenchinia,G. Tonellia,b, N. Turini, A. Venturia, P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

F. Cavallaria,M. Cipriania,b, D. Del Rea,b,E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b,F. Pandolfia, R. Paramattia,b,C. Quarantaa,b,S. Rahatloua,b,C. Rovellia,

F. Santanastasioa,b, L. Soffia,b aINFNSezionediRoma,Rome,Italy

bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,A. Bellora, C. Biinoa, A. Cappatia,b,N. Cartigliaa,S. Comettia,M. Costaa,b, R. Covarellia,b,N. Demariaa, B. Kiania,b, F. Legger, C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,

M.M. Obertinoa,b, G. Ortonaa,b, L. Pachera,b, N. Pastronea,M. Pelliccionia,G.L. Pinna Angionia,b, A. Romeroa,b,M. Ruspaa,c, R. Salvaticoa,b, V. Solaa,A. Solanoa,b,D. Soldia,b,A. Staianoa,D. Trocinoa,b aINFNSezionediTorino,Torino,Italy

bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,A. Da Rolda,b,G. Della Riccaa,b,F. Vazzolera,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

B. Kim, D.H. Kim,G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh,S.I. Pak, S. Sekmen, D.C. Son,Y.C. Yang KyungpookNationalUniversity,Daegu,RepublicofKorea

H. Kim,D.H. Moon,G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea B. Francois,T.J. Kim, J. Park

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go, S. Ha,B. Hong, K. Lee,K.S. Lee, J. Lim, J. Park, S.K. Park, Y. Roh,J. Yoo KoreaUniversity,Seoul,RepublicofKorea

J. Goh

KyungHeeUniversity,DepartmentofPhysics,Seoul,RepublicofKorea H.S. Kim

SejongUniversity,Seoul,RepublicofKorea

J. Almond,J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim,H. Lee, K. Lee,S. Lee, K. Nam, M. Oh,S.B. Oh, B.C. Radburn-Smith, U.K. Yang,H.D. Yoo, I. Yoon

SeoulNationalUniversity,Seoul,RepublicofKorea

D. Jeon, J.H. Kim, J.S.H. Lee, I.C. Park, I.J. Watson UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, Y. Jeong, J. Lee,Y. Lee, I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea

(14)

V. Veckalns33

RigaTechnicalUniversity,Riga,Latvia

V. Dudenas, A. Juodagalvis,A. Rinkevicius, G. Tamulaitis, J. Vaitkus VilniusUniversity,Vilnius,Lithuania

Z.A. Ibrahim, F. Mohamad Idris34, W.A.T. Wan Abdullah,M.N. Yusli, Z. Zolkapli NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

J.F. Benitez, A. Castaneda Hernandez,J.A. Murillo Quijada, L. Valencia Palomo UniversidaddeSonora(UNISON),Hermosillo,Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz35,R. Lopez-Fernandez, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia UniversidadIberoamericana,MexicoCity,Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico J. Mijuskovic2,N. Raicevic

UniversityofMontenegro,Podgorica,Montenegro D. Krofcheck

UniversityofAuckland,Auckland,NewZealand S. Bheesette,P.H. Butler UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

V. Avati,L. Grzanka, M. Malawski

AGHUniversityofScienceandTechnologyFacultyofComputerScience,ElectronicsandTelecommunications,Krakow,Poland

H. Bialkowska, M. Bluj,B. Boimska, M. Górski, M. Kazana, M. Szleper,P. Zalewski NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk36, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Olszewski, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

M. Araujo, P. Bargassa,D. Bastos, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo,T. Niknejad, J. Seixas,K. Shchelina, G. Strong,O. Toldaiev, J. Varela

(15)

S. Afanasiev,P. Bunin, M. Gavrilenko,I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavine,A. Lanev, A. Malakhov,V. Matveev37,38, P. Moisenz, V. Palichik,V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov,V. Smirnov, N. Voytishin, A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

L. Chtchipounov,V. Golovtcov, Y. Ivanov,V. Kim39,E. Kuznetsova40, P. Levchenko,V. Murzin, V. Oreshkin,I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,A. Nikitenko41,V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov,A. Stepennov, M. Toms,E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysicsnamedbyA.I.AlikhanovofNRC‘KurchatovInstitute’,Moscow,Russia T. Aushev,N. Petrov

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

O. Bychkova, R. Chistov42, M. Danilov42,A. Nigamova, S. Polikarpov42,E. Tarkovskii NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Belyaev,E. Boos,M. Dubinin43, L. Dudko,A. Ershov, A. Gribushin,V. Klyukhin, O. Kodolova,I. Lokhtin, S. Obraztsov,S. Petrushanko,V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

A. Barnyakov44, V. Blinov44, T. Dimova44,L. Kardapoltsev44, Y. Skovpen44 NovosibirskStateUniversity(NSU),Novosibirsk,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, V. Kachanov, D. Konstantinov, P. Mandrik,V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

InstituteforHighEnergyPhysicsofNationalResearchCentre‘KurchatovInstitute’,Protvino,Russia A. Babaev,A. Iuzhakov, V. Okhotnikov

NationalResearchTomskPolytechnicUniversity,Tomsk,Russia V. Borchsh, V. Ivanchenko, E. Tcherniaev TomskStateUniversity,Tomsk,Russia

P. Adzic45,P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic,M. Stojanovic UniversityofBelgrade, FacultyofPhysicsandVINCAInstituteofNuclearSciences,Belgrade,Serbia

M. Aguilar-Benitez,J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna,

Cristina F. Bedoya,J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada,N. Colino, B. De La Cruz, A. DelgadoPeris, J.P. Fernández Ramos, J. Flix, M.C. Fouz,O. GonzalezLopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,D. Moran, A. Navarro Tobar, A. Pérez-CaleroYzquierdo, J. PuertaPelayo,

(16)

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

UniversidadAutónomadeMadrid,Madrid,Spain

B. Alvarez Gonzalez, J. Cuevas, C. Erice,J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon,V. Rodríguez Bouza, S. Sanchez Cruz

UniversidaddeOviedo,InstitutoUniversitariodeCienciasyTecnologíasEspacialesdeAsturias(ICTEA),Oviedo,Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero,J. Duarte Campderros, M. Fernandez,P.J. Fernández Manteca, A. García Alonso,G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras,J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Russo46,L. Scodellaro,I. Vila, J.M. Vizan Garcia

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain K. Malagalage

UniversityofColombo,Colombo,SriLanka

W.G.D. Dharmaratna, N. Wickramage UniversityofRuhuna,DepartmentofPhysics,Matara,SriLanka

D. Abbaneo, B. Akgun,E. Auffray, G. Auzinger, J. Baechler,P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco,A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon,G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci,V. Daponte, A. David, O. Davignon,

A. De Roeck, M. Deile,M. Dobson, M. Dünser, N. Dupont,A. Elliott-Peisert, N. Emriskova, F. Fallavollita47, D. Fasanella, S. Fiorendi,G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi,K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman,C. Heidegger, Y. Iiyama, V. Innocente, T. James, P. Janot, O. Karacheban20, J. Kaspar,J. Kieseler, M. Krammer1, N. Kratochwil, C. Lange, P. Lecoq, C. Lourenço,L. Malgeri, M. Mannelli,A. Massironi,F. Meijers, S. Mersi,E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba,J. Niedziela, S. Nourbakhsh, S. Orfanelli,L. Orsini, F. Pantaleo17,L. Pape, E. Perez,M. Peruzzi, A. Petrilli, G. Petrucciani,A. Pfeiffer, M. Pierini,F.M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen,C. Schäfer, C. Schwick, M. Selvaggi,A. Sharma, P. Silva,W. Snoeys, P. Sphicas48,J. Steggemann, S. Summers,V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem,A. Vartak, M. Verzetti, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

L. Caminada49, K. Deiters,W. Erdmann, R. Horisberger, Q. Ingram,H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

PaulScherrerInstitut,Villigen,Switzerland

M. Backhaus, P. Berger, N. Chernyavskaya,G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, R.A. Manzoni, M.T. Meinhard,F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss,G. Perrin, L. Perrozzi,S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel,T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra,M. Schönenberger, L. Shchutska, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

ETHZurich–InstituteforParticlePhysicsandAstrophysics(IPA),Zurich,Switzerland

T.K. Aarrestad, C. Amsler50, C. Botta, D. Brzhechko,M.F. Canelli, A. De Cosa, R. Del Burgo, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, K. Schweiger, C. Seitz,Y. Takahashi, S. Wertz, A. Zucchetta

UniversitätZürich,Zurich,Switzerland

Şekil

Fig. 1. The invariant mass distributions of (left) J / ψ K + K − and (right) background-subtracted K + K −
Fig. 2. The invariant mass distribution of  0 b → ψ( 2S ) candidates. The points are the data and the lines give the result of the fit described in the text.

Referanslar

Benzer Belgeler

performed (small bowel passage radiogram, contrast enema, distal loopogram), strictures detected on contrast studies, age at ostomy closure, strictures detected at further

FSGS, MPGN ve amiloidosis grupları interstisyel inflamasyon, interstisyel fibrosis, tübüler atrofi, global ve segmental skleroz oranları, VEGF, HIF, GLUT ve CD68

1994 ve 2001 krizleri sonras dönemde, üretimde çal anlar ve sanayi üretim endeksleri aras ndaki önemli fark, üretimde çal anlar endeksinin iki dönemde ald katsay lard r.. Dolay

Çal man n sa k alan ndaki kazan mlar n ekonomik büyümeye etkisi ba alt nda ortaya ç kan bulgular , geli mekte olan ülkelerde sa k düzeyindeki iyile menin ekonomik büyüme performans

Bu çalışma, koentegrasyon ve hata-düzeltme tekniklerini kullanarak Türkiye'de nüfus artışıyla ekonomik büyüme arasında kısa ve/veya uzun dönemde bir ilişkinin

Yanı sıra Belgede etnik, kültürel, dilsel ve dinsel ayrılıkların sadece ulusal azınlık statüsüne geçişi öngörülmekte ve bu türden farklılıkların bir etnik

1960'lardan itibaren gözlenen diğer durumlar ise, yönetim danışmanlığı çalışmalarının kar amacı gütmeyen kuruluşlarda da başlaması, insanların bir &#34;meslek&#34;

Bilindiği üzere asabiyyet, esas olarak kandaşlık ilkesine dayalı olan toplulukların kolektif aksiyon kapasitesiyle ilgili bir kavramdır.. Asabiyyetin gayesi, tek kelimeyle