• Sonuç bulunamadı

extended smoother Kalman Joint and state parameter estimation of the hemodynamic model byiterative Biomedical Signal Processing and Control

N/A
N/A
Protected

Academic year: 2021

Share "extended smoother Kalman Joint and state parameter estimation of the hemodynamic model byiterative Biomedical Signal Processing and Control"

Copied!
16
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Biomedical Signal Processing and Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

Joint parameter and state estimation of the hemodynamic model by iterative extended Kalman smoother

Serdar Aslan

a,∗

, Ali Taylan Cemgil

b

, Murat S¸ amil Aslan

c

, Behc¸ et U˘gur Töreyin

d

, Ata Akın

e,∗∗

aInstituteofBiomedicalEngineering,Bo˘gazic¸iUniversity,Kandilli, ˙Istanbul,Turkey

bDepartmentofComputerEngineering,Bo˘gazic¸iUniversity, ˙Istanbul,Turkey

cTübitakBilgem ˙IltarenAdvancedTechnologiesResearchInstitute,Ankara,Turkey

dankayaUniversity,FacultyofEngineering,DepartmentofElectricalandElectronicsEngineering,Ankara,Turkey

eDepartmentofMedicalEngineering,AcıbademUniversity,Istanbul,Turkey

a r t i c l e i n f o

Articlehistory:

Received30March2015

Receivedinrevisedform7September2015 Accepted9September2015

Availableonline27September2015

Keywords:

Hemodynamicmodel

ExtentedKalmanfilter/smoother CubatureKalmanfilter/smoother

a b s t r a c t

Thejointestimationoftheparametersandthestatesofthehemodynamicmodelfromthebloodoxygen leveldependent(BOLD)signalisachallengingproblem.Inthefunctionalmagneticresonanceimaging (fMRI)literature,quiteinterestingly,manyproposedalgorithmsworkonlyasafilteringmethod.This makestheestimationofhiddenstatesandparameterslessreliablecomparedwiththealgorithmsthat usesmoothing.Instandardimplementations,smoothingisperformedonlyonce.However,jointstate andparameterestimationcanbeimprovedsubstantiallybyiteratingsmoothingschemessuchasthe extendedKalmansmoother(IEKS).InthefMRIliterature,extendedKalmanfilteringisthoughttobeless accuratethanstandardparticlefiltering(PF).WecomparedEKFwithPFandobservedthatthecontraryis true.WeimprovedtheEKFperformancebyaddingsmoother.Byiterativeschemejointhemodynamicand parameterestimationisimprovedsubstantially.WecomparedIEKSperformancewiththesquare-root cubatureKalmansmoother(SCKS)algorithm.Weshowthatitsaccuracyforthestateandtheparameter estimationisbetterandmuchfasterthaniterativeSCKS.SCKSwasfoundtobeabetterestimatorthanthe dynamicexpectationmaximization(DEM),EKF,locallinearizationfilter(LLF)andPFmethods.Weshow inthispaperthatIEKSisabetterestimatorthaniterativeSCKSunderdifferentprocessandmeasurement noiseconditions.Asaresult,IEKSseemstobethebestmethodweevaluatedinallaspects.

©2015ElsevierLtd.Allrightsreserved.

1. Introduction

Inestimationtheory,therearetwomaincategoriesforthestate estimation.Thesearethefilteringandsmoothing.Inthefilteringof thestateestimate,theobservationsequencey1,y2,···,ykory1:kis usedtofindthestatisticalinformationaboutthestatesx1,x2,···, xk.Weareinterestedtofindingtheconditionalprobabilitydensity function(pdf)p(xk|y1:k)forthefiltering.Sincebythenewobser- vationyk+1wecanfindtheconditionalpdfp(xk+1|y1:k+1),filtering is alsoknownas online estimation, whereas, inthe smoothing approach,alltheobservationsequenceincludingthefuturedata (y1:N,N>k)areusedtofindp(xk|y1:N)[1].Sinceforeverytimestep weneedthecompleteobservationsequence,thiskindofprocessing

∗ Correspondingauthor.Tel.:+905545694249.

∗∗ Correspondingauthor.Tel.:+902123117683.

E-mailaddresses:serdar.aslan@gmail.com(S.Aslan),ata.akin@acibadem.edu.tr (A.Akın).

isalsoknownasofflineestimation. Theuseoffuture datacon- tainsinformationaboutthepastdataand,asaresult,improvesthe stateandparameterestimatesofthesystem.Thechoiceofthestate estimationtechniquealsohasanimportanteffectontheparame- terestimation.Havingamoreaccuratestateestimationalgorithm alsoimprovestheparameterestimationofthesystem.InthefMRI modelinversionliterature,mostofthestateestimationtechniques workonlyinthefilteringsense.However,inmosthemodynamic dataanalysiscases,thecomputationisnotperformedinrealtime.

Byusingsmoothingtechniques,theestimationofboththestateand theparametersofthehemodynamicsystemsisimproved.Trade- offisthatincorporatingsmoothingintoexistingalgorithmsleads toanincreasedcomputationtime.

In this paper, we worked on thejoint parameter and state estimationof thehemodynamicnonlineardynamic systemrep- resentation.The bloodoxygenlevel dependent(BOLD)signalis a measure for the localized hemodynamic response, which is observed after neuronal activation [2]. Thisresponse is a non- linearfunctionof theblood flowand theblood oxygencontent http://dx.doi.org/10.1016/j.bspc.2015.09.006

1746-8094/©2015ElsevierLtd.Allrightsreserved.

(2)

[3].Hemodynamicresponsetypicallylastsforseveralsecondsto respondanddecay[4].Thisresponsechangesfromsubjecttosub- ject,evenindifferenttimesduringthedayanddifferentregions ofthebrain[4,5].Thegeneralshapeoftheresponseisatypically skewedbell-shapedfunctionand iscommonlyrepresentedasa mixtureofgammafunctions[6].Alternatively,thetotalsystemrep- resentingthehemodynamicresponsecanbemodeledbynonlinear differentialequations[7–9].

WeestimatetheparametersandthestatesbyusingtheBOLD signalandthefunctionalrepresentationofthesystem.Inthispaper, weusethefollowingfunctionalmodel:

xk+1=f(,xk)+wk (1)

yk=h(,xk)+vk (2)

Here,fandharenonlinearfunctionsofthestatexk,wherekis thetimeindex.Thestateinourcaseisavectorxk∈R4,because therearefourhemodynamicstatevariables.TheobservedBOLD signalattimekisdenotedbyyk∈R,becausetheBOLDsignalis onedimensional.Thestatetransitionnoisewk isGaussianwith N(0,Qk),andtheobservationnoisevkisGaussianwithN(0,Rk).The setofparametersofthemodelisdenotedby.GivenNobservations y1,y2,···,yNory1:N,ouraimistofindtheparametersetandthe statesx1,x2,···,xNorx1:N.

InthefMRImodelinversionliterature,Rieraetal.[10]useda kindofextendedKalmanfilterwherethediscretizationwasnot basedontheEuler-Maruyamamethod.Theyusedthemethodpro- posedbyJimenezetal.[11].Huetal.,ontheotherhand,usedthe unscentedKalmanfilter(UKF)[12]intheirworkfortheestima- tionofthehemodynamicmodelstatesandparameters[13].Riera etal.andHuetal.usedthesetechniquesinaforwardpassmanner withoutsmoothing.TheearlyattemptsinthefMRImodelinversion literaturedisregardedthestatenoise.Forexample,in[7]Friston etal.modelstheinputandtheoutputrelationviaVolterraker- nels.Later,FristonusedaBayesianestimationtechnique[14]to findtheposterioroftheparametersagainunderzerostatenoise assumption.Later,Fristonet al.suggestedadvanced techniques basedonvariationalfilteringinwhichhealsoincludedthenonzero statenoisesinthemodel[15–17].Variationalfilteringtechniques assumefactorizationoftheparametersandstates.Dynamicexpec- tationmaximization(DEM)isthemostpopularofthem.AsHavlicek etal.pointedout,DEMalsoworksintheforwardpassmanner[3].

Johnstonetal.[2]usedparticlefilters,withoutusinganysmooth- ing.However,MurrayandStorkey[18]usedparticlesmoothers.

Mostrecently,Havlicek etal.[3]usedthesquare-rootcubature Kalmansmoother(SCKS)andobtainedquitearemarkablesuccess comparedwithDEMundercertainnoiseconditions.Mostofthe signalanalysistechniquesinthefMRIliteraturecanberegardedas akindofdeterministicmodelinversiontechnique.Finally,thereisa classofvariationalfilteringschemesknownasgeneralizedfiltering thatoperateingeneralizedcoordinatesofmotion[17].Crucially, fromourperspective,theseeffectivelyperformonlinesmoothing.

Thisisbecausethefilterestimatesnotjustthecurrentstatebut highorder derivativesthatare basedon(local)pastand future states.Inotherwords,generalizedfilteringcanberegardedasa localBayesiansmoother.Generalizedfilteringis,however,arecent additiontotheportfolioofBayesiandeconvolutionschemesand willnotbeconsideredfurtherinthispaper.

Inthispaper,theiterativeextendedKalmansmoother(IEKS) methodisusedasamodelinversiontechniqueanditisshownthat theparameterandthestateestimationperformancesareimproved comparedwiththestandard extendedKalmantype algorithms, whichareused intheliterature.Quiteinterestingly,EKF inthe hemodynamicliteratureis usedonlyin theforwardpasswith- outsmoothing[2,10].Furthermore,Johnstonetal.[2]concluded thatEKFisnotrobustandpoorinperformancecomparedwiththe

particlefiltersandLLFfilters.TheassertionthatEKFispoorerinper- formancewasrepeatedinthefMRIliteratureinseverallandmark paperswithoutexaminingspecificallyforthehemodynamicmod- elingcase[3,16].Inthispaper,weshowedthatthecontraryistrue.

WefollowedasimilarapproachwithHavliceketal.’smethodand showedthatIEKSisapowerfulalternativeofformermodelinver- sionalgorithms.WecomparedIEKSwithEKSandEKFandnoticed theremarkablestateestimationperformanceunderdifferentpro- cess/measurementnoiseconditions.WecomparedIEKSwithSCKS forjointstateandparameterestimationperformance.Inallcondi- tions,IEKSisshowntoberobustandmoreaccuratethaniterative SCKS.Also,IEKSwasmorethantwofoldfasterthaniterativeSCKS.

1.1. Outline

Thepaperisorganizedasfollows: inSection 2,we givethe detailsofthealgorithmsused.ThestepsofEKF,EKSandIEKSare detailed,includingthejointparameterandthestateestimation parts.

HemodynamicmodelsystemidentificationispresentedinSec- tion 3;weworkonthedetailsofthefMRIhemodynamicmodel statespaceformulation.Wefirstrepresentthesysteminthedeter- ministicnonlineardynamicaldifferentialequationsform.Weuse theEuler-Maruyamamethodwithtimestept=0.1todiscretize thesystem.Weassumethatthereisanassociatingmeasurement foreveryonesecond.Weperturbthesystemwithprocessandmea- surementnoises.Weworkondifferentprocessandmeasurement noiseconditions,including[16,3].

In the Results and Discussion section, we first comparethe hemodynamic state estimation performance of EKF with the standardparticlefilters(PF).Johnstonetal.[2]assertedthatPF outperformsEKFandLLFfilters.Inthispaper,wereexaminedthis assertionandconcludedthatthemostbasicusageofparticlefilters donotoutperformotherfilteringtechniques.Wecheckedthestate estimationperformanceofPFwithEKFunderavarietyofprocess andmeasurementnoiseconditions.Subsequently,wecheckedthe numericalimprovementinstateestimation,achievedbyapplying smoothertotheEKFstateestimationforawiderangeofnoisecon- ditions.Subsequently,forthejointparameterandstateestimation, wecheckedtheperformancecomparisonofEKSandIEKS.Wecon- cludethatIEKSsubstantiallyimprovestheestimationperformance.

Subsequently,forthejointparameterandstateestimation,wegive thesimulationresultsofthealgorithmsIEKSanditerativeSCKSfor fivedifferentscenarios.SCKSwastestedintheformerhemody- namicmodelinversionworkforlowprocessnoiseconditions[3].

WetestIEKSandSCKSformorechallengingprocessandmeasure- mentnoiselevels.TheperformanceimprovementofEKSoverSCKS forallprocessandmeasurementnoiseconditionsisshowninterms ofthestateandparameteraccuracy.Thebiasimprovementforthe parametersforIEKSisstressedcomparedwithiterativeSCKS.In Section 5,weapplyIEKSmethodtoa realdataset.Wediscuss furtheraspectsofthemethodindetail.

The main findings and contributions for the hemodynamic modelinversionforPF,EKF,EKSandIEKSareasfollows:

-TheassertionmadeintheliteraturethatPFoutperformsGauss- ian approximated model inversion methods seems not valid for the hemodynamic model tested for a wide range of pro- cess/measurementnoiseconditions.

-ThenotionthatEKFisnotanefficientmodelinversionscheme canberefuted.Itappearstooperatewellforvariouslevelsof measurementnoiseanddifferentprocesses.

-EKF’shemodynamicstateestimationperformanceisevenbetter thanstandardparticlefiltersunderawiderangeofprocessand measurementnoiseconditions.

(3)

-EKSisrobustandimprovesEKFespeciallyinthehigherhemoyd- namicprocess/measurementnoiseconditions.

-IEKSsubstantiallyimproveshemodynamicstateestimationper- formancebyutilizingtheEKSalgorithmiteratively.

-IEKS hasbetterhemodynamic stateestimationaccuracy com- paredwithiterativeSCKSfordifferentprocessandmeasurement noiseconditions.

-IEKShasbetterparameterestimationaccuracycomparedwith iterative SCKS for differenthemodynamic model process and measurement noise conditions. The biasof the parameters is lower.

-IEKSismorethantwicefasterthaniterativeSCKSforthejoint hemodynamicmodelinversion.

IntheformerevaluationofSCKSandDEM[3],SCKSisconcluded tobethebestmethodformodelinversioninthefMRIliterature.In thispaper,itisconcludedthatIEKSseemstobethebestmethod tobe usedfor the jointparameter and stateestimation ofthe hemodynamicdynamicalsystem.Thisalsostresseshowimportant smoothingisinthehemodynamicmodelinversionalgorithms.

2. Materialsandmethods

Inthissection,thedetailsoftheEKF,EKSandIEKSalgorithm isgiven.For theSCKSimplementation,thereaderisreferredto [3].TheextendedKalmanfilter/smootherandcubatureKalmanfil- ter/smootheralgorithmscanbeclassifiedunderthedeterministic inferencealgorithms.Theyapproximatethefilteredstateestimate p(xk|y1:k)andthesmoothedstateestimatep(xk|y1:N)byGaussian probabilitydensityfunctions(pdf).Since thepdfsareGaussian, bothofthealgorithmsiterativelyupdatethemeanandcovariance ofthestateestimates.

2.1. ExtendedKalmanfilter

FortheEKFalgorithm,thesystemislinearizedintheestimated statevalues.Afterthelinearizationstep,thestandardKalmanfilter algorithmisapplied,whichisknowntooperateoptimallyinlinear systems[19].SotheextendedKalmanfilterisakindofdeterminis- ticapproximationtechnique.Ithasthefurtherassumptionthatthe filteredandthepredictedstatescanbeapproximatedbyGaussian densities:

p(xk|y1:k)=N(ˆxk|k,Pk|k) (3)

p(xk+1|y1:k)=N(ˆxk+1|k,Pk+1|k) (4)

Here, ˆxk|kand ˆxk+1|karethefilteredandthepredictedmeanvalues ofthedensities,whereasPk|k andPk+1|k arethefilteredandthe predictedcovariancesofthestates.

Subsequently, the EKF algorithm recursively updates these statisticsasfollows:

Predictionupdate:

k|k−1=f(ˆxk−1|k−1) (5)

Pk|k−1=F(ˆxk−1|k−1)Pk−1|k−1F(ˆxk−1|k−1)T+Qk−1 (6) Hence,thestateupdate ˆxk|k−1isdonebypropagatingtheesti- mate ˆxk−1|k−1 throughthenonlinear stateequation.In orderto calculatethepredictedcovariancePk|k−1,thestateequationislin- earized.TheJacobianmatrixoffatthestatevaluexisdenotedbyF withthecomponentvaluesevaluatedas:

Fij(x)=∂f(xi)

∂xj (7)

Thisconcludesthepredictionstep.Thenextstepisthemeasure- mentupdate.Thefirststepistocalculatetheso-calledinnovation vk.

Measurementupdate:

Ifthereisameasurementattimek,thentheupdatesare:

vk=yk−h(ˆxk|k−1) (8)

Sk=H(ˆxk|k−1)Pk|k−1H(ˆxk|k−1)T+Rk (9)

Kk=Pk|k−1H(ˆxk|k−1)TS−1k (10)

k|k= ˆxk|k−1+Kkvk (11)

Pk|k=Pk|k−1−KkSkKkT (12)

Ifthereisnomeasurementavailableattimek,

k|k= ˆxk|k−1 (13)

Pk|k=Pk|k−1 (14)

InordertocalculatetheKalmangain,Kk,themeasurementfunction hislinearizedsimilartothepredictionstep.TheJacobianmatrixof hatthestatevaluexisdenotedbyHwiththecomponentvalues evaluatedas:

Hij(x)=∂h(xi)

∂xj

(15)

2.2. ExtendedKalmansmoother

ByusingtheEKFalgorithm,thestatexkispredictedfromthe observedsequencey1:k.Fromthefuturedata,oncewehavethem, a more accuratestate estimation can be accomplished.This is achievedthroughtheEKSalgorithm[1].TheEKSalgorithmisalso easytoimplement.Therecursionisdonebygoingbackwardin time.Therecursionstepbeginsfromk=N−1.

First,thestateispredictedas:

k+1|k=f(ˆxk|k) (16)

andthecovarianceispredictedbytheformula

Pk+1|k=F(ˆxk|k)Pk|kF(ˆxk|k)T+Qk (17)

TheKalmangainKkforthesmootheris:

Kk=Pk|kF(ˆxk|k)TPk+1|k−1 (18)

Smootherestimatesforthestatemean ˆxk|N andstatecovariance Pk|NarefoundbyusingtheKalmangainKkandthefilterestimates ofthestatemean ˆxk|kandthestatecovariancePk|k:

k|N= ˆxk|k+Kk(ˆxk+1|N− ˆxk+1|k) (19)

Pk|N=Pk|k+Kk(Pk+1|N−Pk+1|k)KkT (20)

2.3. ParameterestimationanditerativeEKS

EKFand EKScanalsobeusedtoestimatetheparametersof thesystem.Itispossibletoaugmenttheparameterstothestate variables.Inthisdescription,theparametersaretreatedastime- varyingvariableswithsmallnoiseperturbationsasin[3].Sothe parameterupdatesbecome:

k+1,1=k,1+wk,1 (21)

k+1,2=k,2+wk,2 (22)

··· (23)

k+1,p=k,p+wk,p (24)

(4)

wherek,istandsforthei-thparameterattimek,i=1,2,···,p.The newstatexa,kbecomesanextendedversionoftheoriginalstatexk.

xa,k= xk

k,1

k,2 .. .

k,p

(25)

ForSCKS,Havliceketal.usedthesimilartechniqueforparame- terestimation[3].Sinceweaugmentedtheparameterstothestate, EKSalsoestimatesfortheparametersbesidesthestates.Attheend oftheEKSalgorithm,weobtainanestimateoftheparameterset.

Usingtheestimatesoftheparametersasthenewinitialestimate fortheparameters,weiteratetheEKSalgorithmuntilconvergence similarto[3].

3. Hemodynamicmodelsystemidentification

Inthissection,wefirstreviewthedeterministichemodynamic model.FollowingFriston,wethenmakeanonlineartransformation toguaranteepositivevaluesforthehemodynamicvariables[16].

Wethenperturbthesystemwithwhitenoisetoobtainthestochas- tic representation of the hemodynamic model. As a final step, wediscretizethesystembyusingtheEuler-Maruyamamethod toobtainthediscretetimenonlinearstatespacemodel.Wealso specifytheparametervaluesandthenoisestatisticsofthehemo- dynamicmodel.

Thehemodynamic model consists of four dimensionalstate transitionequationsandonedimensionalmeasurementequation.

Thehemodynamicmodelrepresentstherelationshipbetweenthe neuronalactivityuandthemetabolicdemands[18].Aftertheneu- ronalactivity,anincreaseinthevasodilatorysignalh1isobserved.

In proportion to the increase in the vasodilatory signal h1, an increaseinthebloodflowh2isobserved.Subsequently,achange intheblood volumeh3 andthedeoxyhemoglobincontenth4 is observed[16].Thesequantitativefactsareexpressedinthefollow- ingnonlineardynamicdifferentialequations:

˙h1(t)=u(t)−h1(t)−(h2(t)−1) (26)

˙h2(t)=h1(t) (27)

˙h3(t)=(h2(t)−F(h3(t))) (28)

˙h4(t)=



h2(t)E(h2(t)))−F(h3(t))h4(t) h3(t)



(29) where

F(h3(t))=h3(t)1/˛ (30)

E(h2(t))= 1

ϕ(1−(1−ϕ)1/h2(t)) (31)

Here,theparameterϕisdenotedastherestingoxygenextrac- tionfraction,andtheparameter˛iscalledGrubb’sexponent.The parameteriscalledthetransittime.Theparameterisamea- sureforthedecayofthevasodilatorysignalh1.Theparameteris therateconstantforthefeedbackofthebloodflowh2.Finally,the parameterrepresentstheneuronalefficacyfactor.

Themeasurementequationisgivenby y(t)=V0



k1(1−h4(t))+k2



1−h4(t) h3(t)



+k3(1−h3(t))



(32) HeretheparameterV0iscalledtherestingbloodvolumefraction, andk1,k2andk3arecalledtheintravascularcoefficient,theconcen- trationcoefficientandtheextravascularcoefficient,respectively.

Themeasurementequationrelatestheobserved BOLDsignalin termsofthebloodvolumeh3andthedeoxyhemoglobincontent h4.Forthederivationandjustificationofthisequation,thereader isreferredto[20,9,21].

For arriving at the final discrete time nonlinear state space model,we firstutilizethe techniqueof variabletransformation proposedbyFriston[22].Subsequently,weperturbthemodelby whitenoises.Afterward,weemploytheEulermethodtoderive thediscretetimenonlinearstatespacerepresentation.Inorderto guaranteepositivevaluesforthehemodynamicstates,wemakethe transformationx1(t)=h1(t)andxi(t)=log(hi(t))fori=2,3,4[16,3], andweaddthewhitenoises.Asaresult,weworkonthefollowing transformedsystemofequationsforthestates:

1(t)=u(t)−x1(t)−(ex2(t)−1)+ˇ1(t) (33) x˙2(t)=x1(t)

ex2(t)2(t) (34)

3(t)=(ex2(t)−F(ex3(t)))

ex4(t)3(t) (35)

4(t)=(ex2(t)E(ex2(t)))−F(ex3(t))(ex4(t)/ex3(t)))

ex4(t)4(t) (36)

ByutilizingEulerdiscretizationforthefirstderivative,weobtain thefollowingrepresentationofthestochasticnonlinearsystemfor hemodynamicmodelingoffMRIsignals:

x1(t+t)≈x1(t)+t(u(t)−x1(t)−(ex2(t)−1))+



tˇ1(t) (37)

x2(t+t)≈x2(t)+t



x

1(t) ex2(t)



+



tˇ2(t) (38)

x3(t+t)≈x3(t)+t



(ex2(t)−F(ex3(t))) ex4(t)



+



tˇ3(t) (39)

x4(t+t)≈x4(t)+t



(ex2(t)E(ex2(t))−F(ex3(t))(ex4(t)/ex3(t))) ex4(t)



+



tˇ4(t) (40)

Forthediscrete timeinstantst=tkkt,k=1,2,...,putting xk+1=x(tk+t),xk=x(tk),uk=u(tk),yk=y(tk),andwk=√

tˇ(tk),1 wearriveatthediscretetime statespacerepresentationofthe form:

xk+1=f(,xk)+wk (41)

yk=h(,xk)+vk (42)

where thestatetransitionfunction f(,xk)and theobservation functionh(,xk)are

f(,xk)=

xk,1+t(uk−xk,1−(exk,2−1)) xk,2+t



x

k,1

exk,2



xk,3+t



(exk,2−F(exk,3)) exk,4



xk,4+t



(exk,2E(exk,2)−F(exk,3)(exk,4/exk,3)) exk,4



(43)

1Here,thescalingfactor

tonthenoisestandarddeviationcomesfromthe discretizationofthestochasticintegral



t.

(5)

Table1

Parametervaluesofthehemodynamicstatetransitionequations.

Parameter Description Value

 Rateofsignaldecay 0.65

 Hemodynamictransittime 1.02

 Rateofflowdependentelimination 0.41

˛ Grubb’sexponent 0.32

ϕ Restingoxygenextractionfraction 0.34

 Neuralefficiency 0.5

Table2

Parametervaluesofthehemodynamicobservationequation.

Parameter Description Value

V0 Restingbloodvolumefraction 0.04

k1 Intravascularcoefficient

k2 Concentrationcoefficient 2

k3 Extravascularcoefficient 2

and h(,xk)=V0



k1(1−exk,4)+k2



1−exk,4 exk,3



+k3(1−exk,3)



(44)

respectively.Intheequationabove,xk,ifori=1,2,3,4denotethe componentsofthestatevectorxk.

Inthesimulations,wetooktheparametervaluesofthehemo- dynamicmodelandtheBOLDsignalasshowninTables1and2as in[16].Theinputistakenasin[3]asGaussianbumpswithdifferent amplitudescenteredinthetimepoints(10,15,39,48).Thelength oftheinputsignalis64s.tistakenas0.1sasin[2].Thesampling intervalforthemeasurementistakenas1s.

ThenoisestatisticscanbefoundinTable3.Forthemeasurement noisevk,wefirstusedthenumericalvaluee−6asthestandarddevi- ationv.Notethatthiscorrespondstoanoisevarianceofv2=e−12, anditisanequivalentchoicetothenoisecharacteristicsgiveninthe histogramplotsin[2,10].Weincludedfourmorescenariostotest therobustnessandaccuracyoftheEKSandSCKSmethodsunder differentprocessandmeasurementnoiseconditionsascanbeseen fromTable3.Fortheparameterestimation,weestimatedthesame parameters,,asin[3].Asindicatedby[3],Grubb’sexponent

˛andtherestingoxygenextractionfractionϕwerealsofixedin theworkof[10].Thereasonforfocusingonthethreeparameters aboveisthatthereisconditionaldependencyamongtheparame- tersofthehemodynamicmodel.Thismeansthattheparameters consideredabovecanaccountfornormalvariationsinthehemo- dynamic responsefunction. In effect,this correspondsto fixing Grubb’sexponentandoxygenextractionfractiontotheirphysio- logicallyexpectedvalues[23,3].Furthermore,wealsoassumedthat theneuronalefficiencyisknownandtakenas0.5.IntheMonte

Table3

Noisestatisticsandinitialvalues.

Variable Value

InitialstatevalueX0 [0000]

Initialstatepdf N(0,0.01)foreachcomponent Initialparameterpdf N(true,1/12)foreachcomponent Parameternoisew N(0,10−5)foreachcomponent

Scenario1:wk,vk N(0,w2=te−16)foreachstatecomponent, N(0,v2=e−12)

Scenario2:wk,vk N(0,w2=te−12)foreachstatecomponent, N(0,v2=e−12)

Scenario3:wk,vk N(0,w2=te−8)foreachstatecomponent, N(0,v2=e−12)

Scenario4:wk,vk N(0,w2=te−8)foreachstatecomponent, N(0,v2=e−11)

Scenario5:wk,vk N(0,w2=te−8)foreachstatecomponent, N(0,v2=e−10)

Table4

RMSstateerrors:samplemeanandstandarddeviation.

Scenarionumber EKF PF EKS

Scenario1 0.0070±0.0031 0.0075±0.0030 0.0066±0.0029 Scenario2 0.0095±0.0026 0.0098±0.0026 0.0092±0.0023 Scenario3 0.0408±0.0034 0.0411±0.0035 0.0344±0.0028 Scenario4 0.0433±0.0041 0.0434±0.0042 0.0381±0.0036 Scenario5 0.0454±0.0051 0.0455±0.0050 0.0423±0.0048

Carloanalysis,wedisturbedtheinitialestimationoftheparameters

,,bythevarianceN(0,1/12)asdonein[3].

Basedontheaboveproblemformulation,inthenextsection,we performadetailedcomparisonofPF,EKS,IEKS,anditerativeSCKS underfivedifferentsimulationscenarios.

4. Results

4.1. Simulationresults

Inthissection,weperformMonteCarlosimulationsunderfive differentscenarioswithdifferentprocessandmeasurementnoise conditions.Theground-truthvaluesforalltheparametersofthe hemodynamicmodeldefinedinEqs.(41)–(44)aretakenasshown inTables1and2[22].Foreachscenario,100MonteCarlorunsare performed.Inthefirstsetofscenarios1,2,and3,wefixthemea- surementnoisestandarddeviationtov=e−6asin[3]andchange processnoiselevels.Inscenario1,theprocessnoisestandarddevi- ationisasin[3](i.e.,w=√

te−8).Inscenarios2and3,wetry morechallengingprocessnoiseconditionswithw=√

te−6and w=√

te−4.Inthesecondsetofscenarios,3,4,and 5,wefix theprocess noise standard deviationtow=√

te−4,which is thevalueinscenario3,andchangethemeasurementnoiselev- els.Weincreasethemeasurementnoisevarianceto2v =e−11and v2=e−10forscenarios4and5,respectively.

A prioriinformation aboutthestates are takenasshown in Table3similarto[3].Thestatecomponentsareallinitializedwith 0.

Inthesimulation,forsomerarecases,weobservedthatthesec- ondstatex2cangoto−∞.Thiscorrespondsto0fortheoriginal untransformedvariableh2.Sincethetransformationisoftheexpo- nentialtype,wesetalowerlimitx2=−4(h2=0.0183)foreachtime stepatthefilteringstepofEKS.Thesamelimitisalsoappliedtothe othervariables.ThesamethingisalsodoneforPF.PFisevenmore pronetodivergetheselimits.Thereasonisthefollowing:EKFtracks themeanofthestate,whichisexpectedtobeinthestableregion.

ButthePFtriestorepresenttheconditionalpdfp(xk|y1:k),including theextremeconditionsalso.Forthatreason,theyaremoreprone todivergeforthoseparticles.ThesamelimitsarealsoputforSCKS.

4.1.1. Comparisonofthefilteringalgorithms

Inthissection,wewanttoshowthatthecommonlyheldview thatEKFisnotanappropriatefilteringalgorithmisnotright.John- stonetal.[2]comparedEKFstateestimationwithparticlefilter andconcludedthatPFoutperformsEKF,anditisstatedthatEKF divergesmostofthetime,andasaresult,itisnotrobustandpoor inperformance.Weseeinthissectionthat,onthecontrary,not onlystateestimationbutalsojointestimationofparameterand stateisrobustandperformsbetterthanPF.Inthissubsection,we firstcomparetheEKFandPFstateestimationandshowthatEKF performsbetter.InTable4,theMonteCarloresultsofEKFwithPF arecompared.Inallscenarios,EKFperformsbetterthanPF,andit isrobust.Theparticlenumberischosenas500,whichisfivefold morethanthecasewheretheoriginalcomparisonwasmade[2].

(6)

0 2 4 6 8 10 12 14 16 18 20 0

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

RMS State Error

Iteration Number

RMS State Error vs Iteration Number

IEKS

Fig.1.IEKSandimportanceofiteration.

4.1.2. PerformanceimprovementbyEKSoverEKF

In the fMRI state estimation literature, extended Kalman- type estimation algorithmsare only used inthe filteringsense [2,10]. Eventhe parameterestimation algorithms which rested onextendedKalmanfilteralgorithms,relyonthefilteringalgo- rithm[10].Inthissubsection,assumingthatwehaveknownand fixedparameters,ouraimistoestimatethehiddenhemodynamic statesbyusingextendedKalmanfilterandsmootheralgorithms.

WeshowtheperformanceimprovementinTable4.Wesummarize theEKFandEKSstateestimationerrorsinRMS.Forhighprocessand measurementnoiseconditions,theimprovementismoreapparent.

4.1.3. JointparameterandstateestimationwithiterativeEKS Aprioriinformationabouttheparametersaretakenasshownin Table3similarto[3].Thestatecomponentsareallinitializedwith 0.Notethattheinitialvaluesofalltheparametersareassumedto beGaussiandistributedaroundtheirtruevalueswithavarianceof 1/12asin[3].Intheliterature,Riera[10]usedextendedKalmanfil- terwiththediscretizationproposedbyJimenezetal.[11]without anyiteration.ThisisthestandardusageofEKFandEKS.Forthat reason,inthissectionwealsocomparetheEKSstateRMSerror withIEKSutilizedinthispaper.Fig.1alsoshowstheimportanceof theiteration.Thisfigureisatypicalrepresentativeforshowingthe decreaseofRMSstateerrorwithrespecttotheiterationnumber.

TheexampleplotisaparticularMCmeanestimateforscenario2.By increasingtheiterationnumber,theRMSstateerrorsaredecreased substantially.Thereasonthatthestateestimationimproveswith subsequentiterationsisthattheparameterestimatesbecomepro- gressivelymoreaccurate;therebyenablingabetterestimationof thestates.Obviously,thisperformanceshowsthatiterativeEKS outperformsthedirectusageofEKSwithoutiteration.

We alsosummarized theMonte Carloparameter estimation resultsofthealgorithmsIEKSanditerativeSCKSinTables5–7.The truevaluefortheparameterswere=0.65,=1.0204and=0.41.

In all five different process/measurement noise levels, for all parametervalues,theaccuracyoftheestimationofEKSwasbetter thanthatofSCKS.Onlyinonecaseweretheyequal.Wenotethat thebiasoftheEKSMonteCarloestimateislessthanthebiasofthe SCKScase.Similarly,forthestateestimation,theerrorinRMSis summarizedinTable8.Althoughthedifferencewasnotbig,forall cases,IEKSwasbetterthantheSCKSmethod.Furthermore,itwas muchfasterthanSCKS.Bothalgorithmsarerobustunderdifferent

Table5

Simulationresultsfortheparameterestimates.

Scenario EKSEstimate SCKSEstimate EKSBias SCKSBias Scenario1 0.6489±0.0282 0.6511±0.0280 0.0011 0.0011 Scenario2 0.6494±0.0289 0.6517±0.0288 0.0006 0.0017 Scenario3 0.6545±0.0556 0.6580±0.0556 0.0045 0.0080 Scenario4 0.6561±0.0627 0.6588±0.0630 0.0061 0.0088 Scenario5 0.6560±0.0748 0.6571±0.0752 0.0060 0.0071

Table6

Simulationresultsfortheparameterestimates.

Scenario EKSEstimate SCKSEstimate EKSBias SCKSBias Scenario1 1.0219±0.0739 1.0282±0.0740 0.0015 0.0078 Scenario2 1.0224±0.0739 1.0288±0.0740 0.0020 0.0084 Scenario3 1.0372±0.1327 1.0460±0.1335 0.0168 0.0256 Scenario4 1.0492±0.1665 1.0578±0.1679 0.0288 0.0374 Scenario5 1.0721±0.2266 1.0791±0.2277 0.0517 0.0587

Table7

Simulationresultsfortheparameterestimates.

Scenario EKSEstimate SCKSEstimate EKSBias SCKSBias Scenario1 0.4116±0.0092 0.4131±0.0093 0.0016 0.0031 Scenario2 0.4111±0.0092 0.4127±0.0092 0.0011 0.0027 Scenario3 0.4100±0.0164 0.4116±0.0165 0.0000 0.0016 Scenario4 0.4112±0.0182 0.4136±0.0184 0.0012 0.0036 Scenario5 0.4124±0.0219 0.4158±0.0221 0.0024 0.0058

measurement noise conditions. As expected, by increasing the measurementnoise,thegradualdecreaseoftheperformanceof theestimatesisobserved.Thebiasandsamplevarianceestimates areincreasedbyincreasingtheprocessand measurementnoise variance.

Table8

RMSstateerrors:samplemeanandstandarddeviation.

Scenarionumber EKS SCKS

Scenario1 0.0128±0.0038 0.0130±0.0039

Scenario2 0.0140±0.0035 0.0143±0.0036

Scenario3 0.0374±0.0046 0.0376±0.0047

Scenario4 0.0418±0.0053 0.0420±0.0054

Scenario5 0.0483±0.0071 0.0486±0.0074

(7)

0 50 100 150 200 250 300 350

−10

−8

−6

−4

−2 0 2 4 6 8 10

time bin with Δ t =3.22 sec.

BOLD Signal

BOLD Signal vs. time

BOLD Signal

Fig.2.RealBOLDdataiscollectedfromthemotionsensitiveareaV5.TimeintervaltisinthedurationofthesamplingtimeTR=3.22s.Thefirst256sampleswereusedfor modelinversion.

4.2. Discussion

InthefMRIinversionliteratureakeypaper[2]hasassertedthat EKFis notarobustmethodforstateestimation,and itsperfor- mancewaspoorcomparedwithPF.Inthispaper,weexamined EKFfor a varietyofnoise conditionsand concludedthatthis is notthecase.Itevenperformedbetterthanparticlefilter.Wetake fivefoldmoreparticlesthanthepaper,whichmakesthatasser- tion.Standardparticlefilterswereallegedtoperformbetterthan theotherhemodynamicstateestimationalgorithms.Inthispaper, weconcludedthat,onthecontrary,EKFperformedbetterthanthe otherfilteringalgorithms.Thereasonisthatstandardparticlefilters useanonoptimalproposalfunction,whichdegradestheperfor- mance.Thereisstillroomforparticlefilters,whichmayusemore sophisticatedproposalfunctions.

In thispaper,the importanceofthesmoothing for boththe hemodynamic state and the parameter estimation is empha- sized.TheextendedKalmanfilterismodifiedbyincorporatingthe smoother.For fixed hemodynamicparameters, we checkedthe stateestimationimprovementforvariousnoiseconditions.Espe- ciallyforhigherconditions,theimprovementwasmoreapparent.

WenotethatextendedKalman-typealgorithmsinthefMRIlitera- turewerenotusedwithsmoothinguptonow[10,2].

Thestandardapplicationofthefilteringandsmoothingisper- formedonlyonce.ByiterativelycallingEKFandEKSaftereachnew parameterestimate,wenoticedthehugeimprovementovernon- iterativeusage.ThisimprovementisshowninFig.1.EKSisjust thespecialcaseofIEKSwithjustoneiteration.LikeHavliceketal.

[3],treatingtheparametersastime-varyingvariablesbyadding artificialdynamics,thejointstateandparameterestimationofthe hemodynamicmodelisperformedbyEKSinthispaper.Havlicek etal.compared theiterativeusageofSCKSwithDEMand con- cludedthatSCKSismoreaccurateintheirpaper[3].Inthisreport, IEKSiscomparedwithiterativeSCKSunderdifferentnoisecondi- tions.Thefirstscenarioweusedhasthesamenoiseconditionsas in[3].Thismodelhasaverylowprocessnoisecovariance.Evenin thiscondition,ourmethodwasmoreaccurateforboththestate andtheparameterestimation.Overall,bothmethodsweregood.

Forlowprocessandmeasurementnoise,itisquitereasonableto approximatethedensitiesbyGaussianpdf,becausethesystemis almostdeterministic.Asa result,weexpectthat EKSand SCKS performwell.However,innonlinearsystems, eventheadditive

noiseisGaussian;theconditionalpdfsp(xk|y1:k)andp(xk+1|y1:k) actually deviate fromthe Gaussian assumption.The higher the covariancesofthenoises,themoreseveretheseconditionalpdfs deviatefromtheGaussianassumption.Wetestedthealgorithms underfivedifferentprocess/measurementnoiseconditions.IEKS wasmoreaccuratethaniterativeSCKSforbothparameterandstate estimationforallcases.

BesidestheeaseofimplementationofEKS,itwasalsomuch fasterthanSCKS.EKSisaround2.3timesfasterthanSCKS.

Sooverall,asasserted,EKFisnotanunreliablemodelinversion method.ItisbetterthantheallegedmostsuccessfulalgorithmPF.

TheiterativeEKSissubstantiallymoreaccuratethantheformerly usedEKF-typealgorithmsinthefMRImodelinversionliterature.

EKSisrobustunderawiderangeofnoiseconditions.EKSisfaster andhaslowerparameterbiasandmoreaccuratestateestimation thantheSCKSmethod,whichseemstoworkbestamongthecur- rentfMRImodelinversionmethods[3]forallthenoiselevelswe worked.

5. Applicationtorealdata

5.1. Backgroundinformation:testsetupandBOLDdata

Inthissection,wewanttoshowthevalidityoftheIEKSmethod onarealBOLDdataasshowninFig.2.Thisdatawasalsousedby Fristonetal.toshowthepracticalapplicabilityoftheirmodelinver- sionmethodsDEM,variationalfilter(VF)andgeneralizedfilter(GF) [15–17].2

TheBOLDdatawascollectedfromthemotionsensitiveareaV5 [15–17].Duringthetest,thesubjectwasexposedto5differentcon- ditions.Thefirstonewastoallowformagneticsaturationeffects [15–17].Inthesecondonecalled“Fixation”,subjectwasviewing afixationpointinthescreen.Inthethirdonecalled“Attention”, subjectwasviewing250dots.Thosedotsweremovingradiallyby 4.7fromthecenter.Atthesametime,thesubjectwassupposed todetectthechangesinradialvelocity.Inthefourthonecalled

“NoAttention”,thesubjectjustviewedthemovingdots.Inthefifth one,thepersonwassupposedtoviewthestationarypoints.During

2WethankProfessorKarlFristonforhiskindnesstogiveuspermissiontousethe BOLDdata.

(8)

0 1000 2000 3000 4000 5000 6000

−1

−0.5 0 0.5 1 1.5

Neuronal Input

time bin with Δt=0.2

Neuronal Input vs. time

Neuronal Input − Vision Neuronal Input − Motion Neuronal Input − Attention

Fig.3.Inthissetup,thepersonwasexposedto3differentneuronalinputs.TheyareVision,MotionandAttention.Thoseneuronalinputsaremodeledasboxcarfunctions.

Duringthetest,thepersonwassubjectto5differentconditions.ThoseareSaturation,Fixation,Attention,NoAttentionandMotionView.Dependingonthecondition,for eachneuronalinput,wehavethevalueofeither1or0.However,followingFristonetal.[15–17],DCvaluesoftheinputsareremoved.

Fig.4. Inthisfigure,weshowthesimulationswhichconvergetoglobaloptimag.Specifically,weestimatetheparameterset=[1,2,3,,,].Theconvergedglobal optimaisg=[0.1024,0.2102,0.0175,0.7285,0.4981,0.6460].

theentiretest,thesubjectwasexposedtothefixationandvisual stimulusconditionsinanalternatively.

Fristonetal.[15–17]modeledthesefivedifferentconditionsas acombinationof3differentneuronalinputs.Thefirstoneisvisual stimulus,thesecondoneismotionstimulusandthethirdoneisthe attentionstimulusrepresentedbyu1,u2andu3,respectively.Each neuronalinputismodeledbyboxcarfunctions.Forexamplefor thethirdcondition“Attention”,inthosetimeinstantsu1,u2andu3 haveallthevalue1.Thereasonisthatinthe“Attention”condition thepersonissupposedtoview,trackthemotionandshallattend thechangesinradialvelocities.Inthe“Noattention”conditionu1, u2 andu3 are1,1and0,respectively.Thereasonisthatinthis conditionthepersonviews,tracksthemotionbutthereisnothing forattention.Inthefifthconditionu1,u2andu3are1,0and0.The reasonisthatthereisvisualstimulus,butthedotsarenotmoving andthereisnothingfortheattention.Similarly,inthe“Fixation”

conditionu1,u2andu3 areall0.OnefurthernoteisthatFriston etal.[15–17]havetherealBOLDsignalwithDCvalue0,forthat

reasonheremovestheDCvaluesfromu1,u2andu3.Asaresult, theyusedtheneuronalinputsequencesdepictedinFig.3[15–17].

5.2. Extendedhemodynamicmodelformulti-inputsystem

Sincewehaveinthissetuparathercomplicatedmulti-input system,weextendthenonlinearhemodynamicsystemtothefol- lowingnonlineardifferentialequationsystem.

˙h1(t)=1u1(t)+2u2(t)+3u3(t)−h1(t)−(h2(t)−1) (45)

˙h2(t)=h1(t) (46)

˙h3(t)=(h2(t)−F(h3(t))) (47)

˙h4(t)=



h2(t)E(h2(t))−F(h3(t))h4(t) h3(t)



(48)

Here1,2and3 aretheneuronalefficiencyfactorsforthe neuronalinputsu1,u2andu3,respectively.Inthissetup,1,2and

(9)

0 20 40 60 80 100 120 140 160 180 200 0.18

0.185 0.19 0.195 0.2 0.205 0.21 0.215

Iteration number

RMS Error

RMS Error vs Iteration Number, Global Optimum Case

RMS Error

Fig.5. Inthisfigure,weshowthesimulationswhichconvergetoglobaloptima.Foreveryiteration,theRMSerrorofthepredictionisshown.Ateverystep,theRMSerrors aredecreasing.Afteraround25iterations,thealgorithmconverges.

Fig.6. Inthisfigure,weshowthesimulationswhichconvergetolocaloptima.Specifically,weestimatetheparameterset=[1,2,3,,,].Theconvergedlocaloptima isl=[0.0329,0.0776,0.0091,0.6349,2.2990,0.2381].

3 giveinformation howmuchtheselectedbrainregionissen- sitivetovisioninputu1,motioninputu2andattentioninputu3, respectively.

Inordertohaveabestestimatefortheparameterset=[1,2,

3,,,].WeperformedaMonteCarlosimulationandbeganwith differentinitialparametersets.Theinitialparametersetandnoise conditionsarechosenaccordingtoTable9.

Table9

Noisestatisticsandinitialvalues.

Variable Value

InitialstatevalueX0 [0000]

Initialstatepdf N(0,0.01)foreachcomponent Initialparameterpdf N(0,1/12)for1,2,3

Initialparameterpdf N(0.65,1/12),N(1.02,1/12),N(0.41,1/12) for,,respectively

Parameternoisew N(0,t10−8)foreachcomponent Processnoise:wk N(0,w2=te−8)foreachstatecomponent Measurementnoise:vk N(0,v2=e−12)

5.3. Results:IEKSmodelinversion

Inthis section,weapplytheIEKS methodtotheBOLDdata.

WeperformMonteCarlosimulationwith100runstoestimatethe parameters.Theinitialparameterset=[1,2,3,,,]ischosen accordingtothepriorstatisticsgiveninTable9.Weiterateuntil thealgorithmconverges.TheIEKSalgorithmconvergedto2values whichareglobalandlocaloptima.Wecallthetwoparameterset asgandl.

g=[0.1024,0.2102,0.0175,0.7285,0.4981,0.6460] (49)

l=[0.0329,0.0776,0.0091,0.6349,2.2990,0.2381] (50) Whenwenotetheneuronalefficiencyfactors1,2 and3,we observecloseresemblanceoftheconvergedsequencestotheones reportedbyFristonetal.[15–17].Bothgandlshowstheneuronal activationmostfor2whichcorrespondsforthe“Motion”condi- tion.Somewhatfor1whichcorrespondstothe“Vision”condition andalmostnothingforthe“Attention”condition.Thedifferenceis inthestrength.

(10)

0 20 40 60 80 100 120 140 160 180 200 0.195

0.2 0.205 0.21 0.215 0.22 0.225 0.23

Iteration number

RMS Error

RMS Error vs Iteration Number, Local Optimum Case

RMS Error

Fig.7. Inthisfigure,weshowthesimulationswhichconvergetolocaloptima.Foreveryiteration,theRMSerrorofthepredictionisshown.Ateverystep,theRMSerrors areincreasing.Afteraround200iterations,thealgorithmconverges.

0 100 200 300 400 500 600

−5 0 5 10

time index

BOLD Signal

BOLD Signal vs time

input BOLD Signal

Fig.8.BOLDsignalchangewithrespecttochange.ischangedintheinterval[0.35;1.05].

0 100 200 300 400 500 600

−2 0 2 4 6 8 10

time index

BOLD Signal

BOLD Signal vs time

input BOLD Signal

Fig.9.BOLDsignalchangewithrespecttochange.ischangedintheinterval[0.32;2.32].

(11)

0 100 200 300 400 500 600

−2 0 2 4 6 8 10 12 14

time index

BOLD Signal

BOLD Signal vs time

input BOLD Signal

Fig.10.BOLDsignalchangewithrespecttochange.ischangedintheinterval[0.21;1.01].

0 100 200 300 400 500 600

−5 0 5 10 15

time index

BOLD Signal

BOLD Signal vs time

input BOLD Signal

Fig.11.BOLDsignalchangewithrespecttochange.ischangedintheinterval[0.01;0.51].

Foreachsimulationandateveryiteration,RMSerrorintheBOLD signalpredictionisevaluatedaccordingtotheformula.

erms=



1

N

N

k=1

yk−ypk

2 (51)

whereykandypkistherealandpredictedBOLDsignal,respectively.

RMSerrorsforglobaloptimumvaluearelowerthantheones forlocaloptimum.Furthermore,ateveryiteration,theglobalopti- mumRMSvaluesareimproved,whereasthelocaloptimumRMS errorsaregettingworse.Theparameterestimateswhichconverge toglobaloptimaandlocaloptimaareshowninFigs.4and6.Simi- larlytheRMSerrorsinpredictioncanbeseeninFigs.5and7.

5.3.1. ParametersweepandtheBOLDsignal

In this section, we want to observe the changes in the hemodynamicstatevariables and theBOLDsignalwithrespect

to the parameter changes. We let the parameter values as in Tables1and2.Wesweeptheparametersforintheinterval[0.35 1.05],intheinterval[0.322.32],intheinterval[0.211.01], intheinterval[0.010.51].Thoseintervalscontainthewidelyused parameterregimesusedintheliterature[15–18,10,13].Figs.8–11 theBOLDsignalchangewithrespecttotheparameters,,,, respectively.

5.4. Discussion

Inthissection,wediscusstheresultsindetail.Fortheglobal optima,theIEKSmethodconvergedtotheparametersetg.When wechecktowhichinputs theselectedregionismostsensitive, weobservethat2is,asexpected,significantlybiggerthan1and

3.ThisresultisincloseagreementwithFristonetal.[15].They usedDEMformodelinversion.Ashere,theyhaverelativelyhigh

2 estimatedregion.WealsovisualizetheresultsinFig.12.We

Referanslar

Benzer Belgeler

Çalışma bittikten bir ay sonra yapılan kalıcılık testleri ile sontest ölçümleri arasındaki farklılıklar, YAY ve kontrol grubu için hiçbir bağımlı değişkende

This study aims to examine EFL learners’ perceptions of Facebook as an interaction, communication, socialization and education environment, harmful effects of Facebook, a language

In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter

Exact inference is not feasible but this model class is conditionally conjugate, so standard approximate inference methods like Gibbs sampling, variational Bayes or sequential

Therefore, a scheme of allocation of compartments which we call vehicle loading problem to maximize the efficiency of the system while the demands for the products at the

interval; FrACT ⫽ Freiburg Visual Acuity Test; VbFlu ⫽ COWAT Verbal Fluency; DigitF ⫽ Digit Span Forward; DigitB ⫽ Digit Span Backward; WCST⫽ Wisconsin Card Sorting Test; SimpRT

On the practical side, the proposed controller is implemented on a high-fidelity model of a novel quad tilt-wing UAV developed by the authors, where (1) uncertainties emanating from

Bakli ortak- hk ve istirakteki islemlerin drttjlit kazan§ aktarimi olusturmasi Win, halka aik anonim ortaklik malvarliginda azalmaya yol a~masi gerektigi tespitine