• Sonuç bulunamadı

New Operators in Ideal Topological Spaces and Their Closure Spaces

N/A
N/A
Protected

Academic year: 2021

Share "New Operators in Ideal Topological Spaces and Their Closure Spaces"

Copied!
17
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Journal of Science and Engineering e-ISSN: 2587-1277

http://dergipark.gov.tr/asujse http://asujse.aksaray.edu.tr

Volume 3,Issue 2, pp. 112-128 doi: 10.29002/asujse.605003 Available online at

Research Article

2017-2019©Published by AksarayUniversity

112 New Operators in Ideal Topological Spaces and Their Closure Spaces

Shyamapada Modak*, Md. Monirul Islam

Department of Mathematics, University of Gour Banga, Malda 732 103, West Bengal, India

▪Received Date: Aug 10, 2019 ▪Revised Date:Nov 8, 2019 ▪Accepted Date:Dec 19, 2019 ▪Published Online: Dec 23, 2019

Abstract

In this paper, we introduce two operators associated with * and * operators in ideal topological spaces and discuss the properties of these operators. We give further characterizations of Hayashi-Samuel spaces with the help of these two operators. We also give a brief discussion on homeomorphism of generalized closure spaces which were induced by these two operators.

Keywords

Ideal topological spaces, -operator, -operator, Hayashi-Samuel space, isotonic spaces, homeomorphism.

1. INTRODUCTION

The study of local function on ideal topological space was introduced by Kuratowski [1] and Vaidyanathswamy [2]. The mathematicians like Jankovic and Hamlett [3, 4], Samuel [5], Hayashi [6], Hashimoto [7], Newcomb [8], Modak [9, 10], Bandyopadhyay and Modak [11, 12], Noiri and Modak [13], Al-Omari et al. [14, 15, 16, 17] have enriched this study. Natkaniec in [18] have introduced the complement of local function and it is called -Operator. In an ideal topological space ( , , )X  , the local function () is defined as: * A*( , ) (or, simply, A* ) = {xX U: x A }, where Ux( )x , the collection of all open sets containing x . Its

*Corresponding Author:Shyamapada Modak, spmodak2000@yahoo.co.in

(2)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 113 complement function, that is, -operator is defined as: ( )AX (X A)*. Using these two set functions, () and * , Modak and Islam [19, 20] have introduced two moreoperators in the ideal topological spaces and they are: * ( ) A  (A*) X (X A* *) and

* *

( )A ( ( ))A {x X U: x ( )A }

       , where Ux( )x .

Following example shows that the values of the operators * and * are not the same:

Example 1.1. Let X { , , }a b c ,   { ,{ },c X} and  { ,{ }}c . Then, * ( ) X  (X*) ({ , })a b X ({ })c * X

    and ( ( )) X *X* { , }a b . Therefore, *( )X * ( ) X .

The value of the operator * is an open set and the value of the operator * is a closed set. In this paper, we further consider the operators using joint operators * and * simultaneously and shall define two more operators using of * and * which is  and meet of * and * which is . We also consider the values of these two operators on various ideal topological spaces as well as various subsets of the ideal topological space. We also give a bunch of characterization of Hayashi-Samuel space. An ideal topological space ( , , )X  is called Hayashi-Samuel space [21], if   { }. Theauthors Hamlett and Jankovi

´

c[3] called it by the name of  -boundary, whereas the authors Dontchev, Ganster and Rose [22] called it by the name of codense ideal. In the study of ideal topological spaces, it played an important role. Two well known Hayashi-Samuel spaces are: Let  be a topology on a set X , then ( , ,{ })X   is a Hayashi-Samuel space and if n is the collection of all nowhere dense subsets of ( , )X  , then

( , ,Xn) is also a Hayashi-Samuel space.

Further, we also give the topological properties of the generalized closure spaces [23, 24]

induced by the above mentioned operators  and .

Now we shall give a few words about generalized closure spaces. The study of closure spaces was introduced by Habil and Elzenati [23] in 2003 and Stadler [24] in 2005. Generalized closure space is the generalization of closure space and its definition is as follows:

Definition 1.2. Let X be a set, ( )X be the power set of X and cl: ( X)(X) be any arbitrary set-valued set-function, called a closure function. We call cl A( ) the closure of A , and we call the pair ( ,X cl) a generalized closure space (see [23, 24]).

(3)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 114 Consider the following axioms (see [23, 24]) of the closure function for all , ,A B A( )X ,

 is an index set:

The closure function in a generalized closure space ( ,X cl) is called:

(K0) grounded, if cl( )  .

(K1) isotonic, if AB implies cl A( )cl B( ). (K2) expanding, if Acl A( ).

(K3) sub-additive, if cl A( B)cl A( )cl B( ). (K4) idempotent, if cl cl A( ( ))cl A( ).

(K5) additive, if cl A( ) cl( (A))

 

 .

Definition 1.3. [24, 25, 26] A pair ( ,X cl) is said to be an isotonic space if it satisfies the axioms (K0) and (K1). If an isotonic space ( ,X cl) satisfies (K2), then it is called a neighbourhood space. A closure space that satisfies (K4), is called a neighbourhood space. A topological space, that satisfies (K3), is a closure space.

‘int ’ is the complement function of the closure function ‘cl’ and it is defined as:

int( )A X cl X\ ( \ )A , for AX . 2. Operator

Definition 2.1. Let ( , , )X  be an ideal topological space. We define the operator : (X) (X)

   as:

( )A *( )A * ( ) A

    , for AX .

Observe that, for AX , ( )A is the union of an open set and a closed set.

The next example shows that union of an open set and a closed set is not always an expression of ( )A , for any AX .

Example 2.2. Let X { , , }a b c ,   { ,{ },{ , },a a b X} and  { ,{ }}b . Let A1{ }a and

2 { }

Ac . Then, A is open and 1 A is closed. Then 2 A1A2 { , }a c . Now ( ( ))   * ( ({ }))b *

   ( ({ }))c *  ( ({ , }))b c *,( ({ })) a *X  ( ({ , }))a b *  ( ({ , }))a c *

(4)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 115 ( ( ))X *

  and  ( *)   (({ }) )b *  (({ }) )c *  (({ , }) )b c * ,(({ }) )a *X (({ , }) )a b *

  (({ , }) )a c *  (X*). So there is no T(X) such that ( )TA1A2. If  { }, then ( )AInt Cl A( ( ))Cl Int A( ( )) (where ‘Int’ and ‘Cl’ denote the interior and closure operator of ( , )X  respectively) and if  n, then

( )A [Int Cl Int Cl Int Cl A( ( ( ( ( ( ))))))] [Cl Int Cl Int Cl Int A( ( ( ( ( ( ))))))]

  

( ( )) ( ( ))

Int Cl A Cl Int A

  .

Therefore, the value of , for any subset A of X on ( , ,{ })X   and ( , ,Xn) are equal.

The operator  is not grounded and it follows from the following example:

Example 2.3. Let X { , , , }a b c d ,   { ,{ },a X} and  { ,{ }}a . Then, ( ) *( ) * ( ) { } { }a a

            . So, the operator  is not grounded.

Theorem 2.4. An ideal topological space (X, , ) is Hayashi-Samuel, if and only if, the operator  : (X)(X) is grounded.

Proof. Suppose that ( , , )X  be a Hayashi-Samuel space. Then, XX* [4].

Now,      ( ) *( ) * ( )  (X X* *) (X X*)    * .

Conversely suppose that    ( ) . Then   *( ) * ( )   , implies,

* *

( ( ))      ( ) , implies, (X X* *) (X X*) . Thus, X X*   and (X X* *)  . Hence, (X, , ) is a Hayashi-Samuel space.

We recall following definition:

Definition 2.5. Let ( , , )X  be an ideal topological space and AX . Then, A is said to be a *-set [9] (resp. - C set [12], regular open set [27]) if A ( ( ))A * (resp.

( ( )), ( ( )) AClA AInt Cl A ).

The collection of all *-sets (resp. - C sets) in ( , , )X  is denoted as *( , )X  (resp.

( , )X

 ).

(5)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 116 Corollary 2.6. In an ideal topological space ( , , )X  , the following properties are equivalent:

1. ( , , )X  is a Hayashi-Samuel space [20];

2.    ( ) [20];

3. if AX is closed, then, ( )A A  [20];

4. * : ( )X ( )X is grounded;

5. if AX , then, Int Cl A( ( )) (Int Cl A( ( )))[20];

6. A is regular open, A ( )A [20];

7.  is grounded;

8. if U, then, ( )UInt Cl U( ( ))U*[20];

9. if I , then, ( )I  [20];

10. *( , )X   ( , )X  [20];

11. *( )ACl( ( )) A , for each AX [20];

12. GG*, for each G; 13. *( )XX;

14. if J , then, Int J( ) .

Proof. Follows from Theorem 2.4 and Corollary 2.18 of [20].

Theorem 2.7. Let ( , , )X  be an ideal topological space. Then the operator  : (X)(X) is isotonic.

Proof. Follows from the following facts:

(i) The operator * is isotonic.

(ii) The operator  is isotonic.

The following example shows that the operator  is not expanding.

Example 2.8. Let X { , , }a b c ,   { ,X} and  { ,{ }}a . Let A{ }a . Then,

*( )A * ( ) A

    . Thus, ( )A  *( )A * ( ) A  . Hence, A ( )A .

(6)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 117 Theorem 2.9. Let ( , , )X  be an ideal topological space. Then for A B, (X),

( )A ( )B (A B)

      .

Proof. Let A B, (X). Since, A A B and  is isotonic, hence, ( )A  (AB). Similarly, ( )B  (AB). Hence ( )A  ( )B  (AB).

Since Int Cl A( ( B))Int Cl A( ( ))Cl Int A( ( ))Cl Int B( ( ))Int Cl B( ( )), the operator  is not sub-additive, and hence it is not additive.

Theorem 2.10. Let ( , , )X  be a Hayashi-Samuel space. Then ( )AA*, for any AX .

Proof. Follows from the following facts:

(i) (A*)A*, for any A(X). (ii) ( ( )) A *A*, for any A(X).

Corollary 2.11.Let ( , , )X  be a Hayashi-Samuel space. Then ( )ACl A*( ), for any AX .

Corollary 2.12. Let ( , , )X  be a Hayashi-Samuel space. Then (X) X.

Following example shows that the converse of the Corollary 2.12 does not hold, in general.

Example 2.13. Let X { , , }a b c ,   { ,{ },c X} and  { ,{ }}c . Then,

* *

* ( ) X  (X ) ({ , })a bX ({ })cX and ( ( )) X *X* { , }a b . Therefore, ( )X *( )X * ( ) X X

     but ( , , )X  is not a Hayashi-Samuel space.

Theorem 2.14. Let ( , , )X  be a Hayashi-Samuel space. Then for U,

( ( )) ( ) * ( )

Int Cl U   UUCl U .

Proof. We have, ( )U  *( )U * ( ) U  ( ( ))U * (U*)Cl( ( ))U  (Cl U( )) [13]

( ( )) [ ( ( )) ] [* ( ) ( ( ))]

Cl U X X Cl U X Cl U Cl X Cl U

      . This implies that

( ( )) ( ) Int Cl U  U .

(7)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 118 Further, from Theorem 2.10, ( )UU*Cl U( ). Thus Int Cl U( ( )) ( )UU*Cl U( ).

The authors Jankovi

´

c and Hamlett have introduced a new topology *( ) [4] from ( , , )X  . Its closure operator is denoted as Cl* [4].

Theorem 2.15. Let ( , , )X be an ideal topological space and J . Then,

* *

( )J Cl X( X )

  .

Proof. Let J . Then, (X J)*X* [4].

* * *

( )J ( )J * ( ) J ( ( ))J (J )

       

* * * * * * *

(X (X J) ) ( ) (X X ) (X X ) Cl X( X )

       [12].

Corollary 2.16. Let ( , , )X be a Hayashi-Samuel space and J . Then, ( )J  . It is not necessary that ( )A   implies A .

Example 2.17. Let X { , , }a b c ,   { ,{ },{ , },a a b X} and  { ,{ }}b . Let A{ , }b c  . Then, *( )A * ( ) A  . So, ( )A  . This example shows that ( )A   but A .

Corollary 2.18. Let ( , , )X  be an ideal topological space. Then, (A J) (A J) ( )A

      , for AX J,  .

Proof. Obvious from [3] and [4].

3. Operator

In this section, we shall define another operator  and discuss the role of  in Hayashi-Samuel spaces.

Definition 3.1. Let (X, , ) be an ideal topological space. We define the operator : (X) (X)

   as:

( )A *( )A * ( ) A

    , for AX .

(8)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 119 It is obvious that for a subset A of X , the value ( )A is the intersection of a closed set and an open set, since, *( )A is a closed set and * ( ) A is an open set. Thus, ( )A is a locally closed set in ( , )X  for any A(X).

Example 3.2. Let X { , , },a b c   { ,{ },{ , },a a b X} and  { ,{ }}b . Also let H { }b . Then H { , }a b { , }b c . So H is a locally closed set. Now, ( ( ))  *    ( ({ }))b *

* *

( ({ }))c ( ({ , }))b c

    ,( ({ })) a *X  ( ({ , }))a b * ( ({ , }))a c *  ( ( ))X *and

* * * *

( ) (({ }) )b (({ }) )c (({ , }) )b c

          ,(({ }) )a *X  (({ , }) )a b *

* *

(({ , }) )a c (X )

    .

So, there does not exist any set A B,  X, such that H can be expressed as

* *

( ( )) ( )

H   A   B . Therefore, we conclude that locally closed set cannot be decomposed by the operators * and *.

If  { }, then ( )A  *( )A * ( ) A  ( ( ))A * (A*) [ Int Cl A( ( ))][Cl Int A( ( ))].

If  n, then ( )A  *( )A * ( ) A  ( ( ))A * (A*) [ Int Cl A( ( ))][Cl Int A( ( ))]

[Int Cl Int Cl Int Cl A( ( ( ( ( ( ))))))] [Cl Int Cl Int Cl Int A( ( ( ( ( ( ))))))]

  .

Moreover, X ( )A  (X A).

The value of  on a subset A of X on the spaces ( , ,{ })X   and ( , ,Xn) are equal.

Theorem 3.3. Let ( , , )X  be a Hayashi-Samuel space. Then the operator  : (X)(X) is grounded.

Proof. Obvious from the facts that:

(i) XX*, for the Hayashi-Samuel space ( , , )X  . (ii) * ( )   .

(iii)    *( ) .

The following example shows that the converse of the above theorem is not true, in general:

(9)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 120 Example 3.4. Let X { , }a b ,   { ,{ },a X} and  { ,{ }}a .

Then      ( ) *( ) * ( )    { }a  , but ( , , )X  is not a Hayashi-Samuel space.

Theorem 3.5. Let (X, , ) be an ideal topological space. Then the operator  : (X)(X) is isotonic.

Proof. Since, both the operators * and  are isotonic, then  is isotonic.

The following Example shows that the operator  is not expanding.

Example 3.6. Let X { , , }a b c ,   { ,X} and  { ,{ }}a . Let A{ }a . Then, *( )A   * ( ) A . Thus, ( )A  *( )A * ( ) A  . Hence, A ( )A .

The following example shows that the operator  is not subadditive.

Example 3.7. Let X { , , , }a b c d ,   { ,{ },{ },{ , },a b a b X} and  { ,{ }}c . Let A{ }a and B{ }b . Then, *( ) { , , }Aa c d , * ( ) A { }a and *( ) { , , }Bb c d , * ( ) B { }b . So

( )A *( )A * ( ) { } A a

     and ( )B  *( )B * ( ) { } Bb . So, ( )A ( )B { , }a b . Also, *(AB) X and * ( AB)X . Thus,  (A B) *(AB)* ( AB)X . Therefore, ( A B) ( )A ( )B . Hence,  is not subadditive.

Remark 3.8. Let ( , , )X  be an ideal topological space. Then the operator  : (X)(X) is not additive.

However following holds:

Theorem 3.9. Let ( , , )X  be an ideal topological space. Then for A B, (X), ( )A ( )B (A B)

      .

(10)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 121 Proof. Let A B, (X). Since, A A B and  is isotonic, then, ( )A   (A B). Similarly, ( )B   (A B). Hence, ( )A  ( )B  (AB).

Theorem 3.10. Let ( , , )X  be a Hayashi-Samuel space. Then ( )AA*, for any AX .

Proof. It is obvious from the following facts:

(i) * ( ) AA*, for the Hayashi-Samuel space ( , , )X  . (ii) *( )AA*, for the Hayashi-Samuel space (X, , ) .

Corollary 3.11. Let ( , , )X  be a Hayashi-Samuel space. Then ( )ACl A*( ), for any AX .

Corollary 3.12. Let ( , , )X  be a Hayashi-Samuel space. Then 1. ( )A ( )AA*, for any AX .

2. ( )A ( )AA*, for any AX .

Theorem 3.13. An ideal topological space ( , , )X  is Hayashi-Samuel, if and only if, ( )X X

  .

Proof. Let (X, , ) be a Hayashi-Samuel space. Then X*X .

Then, ( )X  *( )X * ( ) [( XX (X X) ) ]* * [X (X X* *) ] X* X X . Conversely suppose that X ( )X *( )X * ( ) X  ( ( )) X *(X*)

[X (X X) ]* *

 [X (X X* *) ][X (X X* *) ]X*X*. Thus, XX*, and hence the space is Hayashi-Samuel.

Corollary 3.14. In an ideal topological space ( , , )X  , the following properties are equivalent:

1. (X, , ) is a Hayashi-Samuel space [20];

2.    ( ) [20];

3. if AX is closed, then, ( )A A [20];

4. * : ( )X ( )X is grounded;

(11)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 122 5. if AX , then, Int Cl A( ( )) (Int Cl A( ( )))[20];

6. A is regular open, A ( )A [20];

7.  is grounded;

8. ( )XX;

9. if U, then, ( )UInt Cl U( ( ))U*[20];

10. if I , then, ( )I  [20];

11. *( , )X   ( , )X  [20];

12. *( )ACl( ( )) A , for each AX [20];

13. GG*, for each G; 14. *( )XX;

15. if J , then, Int J( ) .

Corollary 3.15. Let ( , , )X  be a Hayashi-Samuel space such that ( )XX . Then,

*( )X X

  and * ( ) XX .

Proof. Follows from the fact that, X  ( )X  *( )XX* and X  ( )X * ( ) XX*.

Theorem 3.16. Let (X, , ) be a Hayashi-Samuel space. Then, for U, ( ( )) ( ).

Int Cl U  U

Proof. We have

* * *

( )U ( )U * ( ) U ( ( ))U (U ) Cl( ( ))U (Cl U( ))

           

* *

[ ( ) ] [ ( ( )) ]

Cl X X U X X Cl U

 

[X Int Cl X( ( U))] [X Cl X( Cl U( ))]

 

[X (X Cl U( ))] Int Cl U( ( )) Cl U( ) Int Cl U( ( )) Int Cl U( ( ))

     .

Corollary 3.17. Let ( , , )X be a Hayashi-Samuel space. Then for U,

( ( )) ( ) * ( )

Int Cl U  UUCl U .

Theorem 3.18. Let (X, , ) be a Hayashi-Samuel space and J . Then, ( )J  .

(12)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 123 Proof. Let J . Then, J*  [4]. Now, ( )J  *( )J * ( ) J  ( ( ))J * (J*)

* * * *

(X (X J) ) ( ) (X X) (X X )

       .

The converse of this theorem is not true in general.

Example 3.19. Let X { , }a b ,   { ,{ },a X} and  { ,{ }}a . Let J { }a . Then, ( )J *( )J * ( ) J { }a

        . Here the space ( , , )X  is not a Hayashi-Samuel space.

Corollary 3.20. Let ( , , )X be a Hayashi-Samuel space and J , then ( )J  ( )J  .

Corollary 3.21. Let ( , , )X  be an ideal topological space. Then, for AX J,  , (A J) (A J) ( )A

      .

Proof. Obvious from [3] and [4].

Lemma 3.22. Let ( , , )X be a Hayashi-Samuel space. Then, for AX 1.* ( ) AX*(X A).

2.* ( X A)X*( )A .

More general relation between  and  is:

Theorem 3.23. Let (X, , ) be a Hayashi-Samuel space. Then for AX , ( )A X (X A)

   .

Proof. We have

* *

( ) [ ( ) * ( )] [ ( )] [ * ( )]

XAXA AXAX A

* *

* ( X A) [X (X (X A))] [ (X A) * ( X A)] (X A)

        .

(13)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 124 4. Spaces induced by and

In generalized closure space ( ,X cl), two concepts were defined: one is closure preserving [26]

and other is continuity [26]. But fortunately, two concepts are coincident in the isotonic space [24, 26]. Here we define continuity in isotonic space.

Definition 4.1. [24, 26] Let ( ,X clX) and ( ,Y clY) be two generalized closure spaces. A function :

f XY is continuous if clX(f1( ))Bf1(cl BY( )), for all B( )Y .

In isotonic spaces, ( ,X clX) and ( ,Y clY), we can represent the continuity by the following way:

Definition 4.2. [24, 26] Let ( ,X clX) and ( ,Y clY) be two generalized closure spaces. A function :

f XY is closure-preserving (or continuous), if for all A(X), (f clX( ))AclY( ( ))f A .

Now, for the isotonic spaces, (X, ) and (X, ) , it is obvious that f( ( )) Af( ( )) A , since, ( )A ( )A

   , for any function f :XX and for any A(X).

Further, if the function f : ( , )X  ( , )X  is closure-preserving (or continuous), then, ( ( )) ( )

fA  f A , for any subset A(X). Thus, we have following:

Theorem 4.3. Let f : ( , )X  ( , )X  be a closure-preserving function. Then, ( ( )) ( ( )) ( ( ))

fAfA   f A , for all A(X).

We define homeomorphism between two isotonic spaces from [25]:

Definition 4.4. If ( ,X cl) and ( ,Y cl) are isotonic spaces and f : ( ,X clX)( ,Y clY) is a bijection, then f is a homeomorphism if and only if (f clX( ))AclY( ( ))f A , for every A(X) .

Corollary 4.5. Let f : ( , )X  ( , )X  be a bijective closure-preserving function such that ( ) ( ( ))

f A f A

   , for all A(X). Then, f is a homeomorphism.

(14)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 125 Theorem 4.6. The identity function i: ( , )X  ( , )X  is always a closure-preserving (or continuous) function.

Proof. We know that i( ( )) A  i( ( ))A  ( )A  ( ( ))i A .

Example 4.7. Let X { , }a b ,   { ,{ },a X} and  { ,{ }}a . Let A{ }a and : ( , ) ( , )

i X   X  be the identity function. Then, i A( ) A, ( )A { }a and ( )A  . So, ( ( )) ( ( ))

iAi A . This example shows that the identity function i: ( , )X  ( , )X  may not be a closure-preserving function.

Corollary 4.8. A closure-preserving bijective mapping f : ( , )X  ( , )X  is homeomorphism, if and only if, ( ( ))f Af( ( )) A , for all A(X).

Proof. Suppose, ( ( ))f Af( ( )) A . Then, from the Corollary 4.5, f is a homeomorphism.

Conversely, suppose f : ( , )X  ( , )X  is a homeomorphism, then ( ( ))f Af( ( )) A is obvious.

Definition 4.9. [26] A generalized closure space ( ,X cl) is a T -space if and only if for any 0 ,

x yX with xy, there exists Nx ( )x (where ( )x {N(X) :xInt N( )}) such that yNx or there exists Ny ( )y (where ( )y {N(X) :yInt N( )}) such that

xNy.

Definition 4.10. [25] A generalized closure space ( ,X cl) is a T -space if, for any 1 x y, X with xy, there exists N ( )x and N ( )y such that xN and yN.

Definition 4.11. [25] A generalized closure space ( ,X cl) is a T -space if and only if, for all 2 ,

x yX with xy, there exists N ( )x and N ( )y such that NN .

(15)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 126 Definition 4.12. [25] A space ( ,X cl) is a 1

22

T -space if and only if, for all x y, X with xy , there exists N ( )x and N ( )y such that cl N( )cl N( ) .

Theorem 4.13. Let f : ( , )X  ( , )X  be a bijective closure-preserving function such that ( ( ))f A f( ( ))A

   , for all A(X). Then, the followings hold:

1. (X, ) is a T -space, if and only if, 0 (X, ) is a T -space. 0 2. (X, ) is a T -space, if and only if, 1 (X, ) is a T -space. 1 3. (X, ) is a T -space, if and only if, 2 (X, ) is a T -space. 2 4. (X, ) is a 1

22

T -space, if and only if, (X, ) is a 1

22

T -space.

Definition 4.14. Let ( ,X clX) and ( ,Y clY) be two generalized closure spaces. A function :

f XY is called anti closure-preserving if clY( ( ))f Af cl( X( ))A , for all A(X).

Existence of anti closure-preserving function:

Example 4.15. Let X { , , }a b cY. Let us define clX: ( ) X ( )X by, clX( )  , ({ }) { }

clX aa , clX({ }) { }bb , clX({ }) { }cc , clX({ , }) { , }a ba b , clX({ , }) { , }a ca b , ({ , }) { , }

clX b cb c , clX( )XX and clY : ( )X ( )X by clY( )  , clY({ }) { , }aa b , ({ }) { , }

clY bb c , clY({ }) { , }cb c , clY({ , })a bY, clY({ , })a cY, clY({ , }) { , }b cb c ,

Y( ) cl YY.

Define f : ( ,Y clY)( ,X clX) by f x( )x. Then clX( ( ))f   , clX( ( ))f YX, ( { }) { }

clX f aa ,clX( { }) { }f bb ,clX( { }) { }f cc ,clX( { , }) { , }f a ba bclX( { , })f a c , ( { , }) { , }

clX f b cb c and (f clY( ))  , (f clY({ })) { , }aa b , (f clY({ })) { , }bb c ( Y({ }))

f cl c

  f cl( Y({ , }))b c , (f clY({ , }))a bXf cl( Y({ , }))a cf cl Y( Y( )).

Thus clX( ( ))f   f cl( Y( )) ,clX( ( ))f Yf cl Y( Y( )),clX( { })f af cl( Y({ }))a ,

(16)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 127 ( { }) ( ({ }))

X Y

cl f bf cl b ,clX( { })f cf cl( Y({ }))c ,clX( { , })f a bf cl( Y({ , }))a b , ( { , }) ( ({ , }))

X Y

cl f b cf cl b c , clX( { , })f a cf cl( Y({ , }))a c . Thus we see that f is an anti closure-preserving function.

Note that the identity function i: ( , )X  ( , )Y  is always an anti closure-preserving function, since, for all AX , ( ( ))i A  ( )A  ( )A  i( ( ))A .

Remark 4.16. We can replace “( ( ))f Af( ( )) A ” in Corollary 4.5, Corollary 4.8 and Theorem 4.13 by “ f is an anti closure-preserving function”.

REFERENCES

[1] K. Kuratowski, Topology, Vol. I. New York: Academic Press, 1966.

[2] R.Vaidyanathswamy, The localisation theory in set topology, Proc. India Acad. Sci., 20 (1945) 51-61.

[3] T. R. Hamlett, D.Jankovi

´

c, Ideals in Topological Spaces and the Set Operator , Bollettino U. M. I., 7 (4-B) (1990) 863-874.

[4] D. Jankovi

´

c, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990) 295-310.

[5] P. Samuels, A topology formed from a given topology and ideal, J. Lond. Math. Soc., 10 (1975) 409-416.

[6] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964) 205-215.

[7] H. Hashimoto, On the *-topology and its application, Fund. Math., 91 (1976) 5-10.

[8] R.L. Newcomb, Topologies Which are Compact Modulo an Ideal, Ph.D. Dissertation, Univ.

of Cal. at Santa Barbara, 1967.

[9] S. Modak, Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 82 (3) (2012) 233-243.

[10] S. Modak, Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. BasicAppl.

Sci., 22 (2017) 98-101.

[11] C. Bandyopadhyay, S.Modak, A new topology via -operator, Proc. Nat. Acad. Sci.India, 76(A), IV (2006) 317-320.

(17)

Aksaray J. Sci. Eng. 3:2 (2019) 112-128 128 [12] S. Modak, C. Bandyopadhyay, A note on - operator, Bull. Malyas. Math. Sci. Soc., 30

(1) (2007) 43-48.

[13] S. Modak, T. Noiri, Connectedness of Ideal Topological Spaces, Filomat, 29 (4) (2015) 661-665.

[14] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J.

Math., 43 (2)(2013) 139-149.

[15] A. Al-Omari, T. Noiri, On*-operator in ideal m-spaces, Bol. Soc. Paran. Mat., (3s.), 30 (1)(2012) 53-66.

[16] A. Al-Omari, T. Noiri, On operators in ideal minimal spaces, Mathematica, 58 (81), No.

1-2 (2016) 3-13.

[17] W.F. Al-Omeri, Mohd.Salmi, Md.Noorani, T.Noiri, A. Al-Omari, The a operator in ideal topological spaces, Creat. Math. Inform., 25 (1) (2016) 1-10.

[18] T. Natkaniec, On -continuity and -semicontinuity points, Math. Slovaca, 36 (3) (1986) 297-312.

[19] Md. M. Islam, S. Modak, Operator associated with the * and operators, J. Taibah Univ. Sci., 12 (4) (2018) 444-449.

[20] S. Modak, Md. M. Islam, On* and operators in topological spaces with ideals, Trans.

A. Razmadze Math. Inst., 172 (2018) 491-497.

[21] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXIV:math.

Gn/9901017v1 [math.GN], 1999.

[22] J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topology Appl., 93 (1999) 1-16.

[23] D.E. Habil, A.K. Elzenati, Connectedness in isotonic spaces, Turk. J. Math. TUBITAK, 30 (2006) 247-262.

[24] B.M.R. Stadler, P.F. Stadler, Higher separation axioms in generalized closure spaces, Comment. Math. Prace Mat., ser.I.-Rocz. Polsk. Tow. Mat., Ser.I., 43 (2003) 257-273.

[25] D.E. Habil, A.K. Elzenati, Topological Properties in Isotonic Spaces, IUG Journal of natural studies, 16 (2) (2008) 1-14.

[26] B.M.R. Stadler, P.F. Stadler, Basic properties of closure spaces, J. Chem. Inf. Comput.

Sci., 42 (2002) 577-590.

[27] M.H. Stone, Application of the theory of Boolean rings to general topology, Trans.Amer.

Math. Soc., 41 (1937) 375-481.

Referanslar

Benzer Belgeler

— Sizi tevkife mecburuz de mişler ve nezaret altına almış­ lardı. Biraz evvel üçüncü kar­ deşleri Mahmut Hayrettin Bey de tevkif edilmiş bulunuyordu. Böylece

fstanbnlun yeni plânı yapılır­ ken şehir orijinalitesi için bulup seçeceğimiz kıymetli mimari eser­ ler arasında büyük Türk san’at- kârı Koca Sinanın

Literatürde yeterince çalışılmamış olan bir psikososyal yapı olarak kıskançlık duygusu çalışma yaşamına ilişkin örgütsel bir olumsuz çıktı olan ÜKÇD

Ameliyat öncesi tan›s› zor olan ve tedavisi üzerinde fi- kir birli¤i sa¤lanmam›fl bulunan Littre f›t›¤› ile karfl›lafl›ld›- ¤›nda komplikasyonlar›n›n

Hastanemizin Pediatri kliniklerine Ocak 2004 ile Ocak 2005 tarihleri aras›nda zehirlenme tan›s›yla yat›r›lan 60 hasta, yafl, cinsiyet, zehirlenme nedeni, toksik maddeyi alma

Aydın yılda 6 kez habersiz ürün denetimi ve 1 kere de sistem denetimi yaptığı, titiz Türkiye Hazır Beton Birliği, kaliteli beton Turkish Ready Mixed Concrete

Zengin kültürel mirasa sahip Selçuklu dünyası bu sergide; “Tarihçe-Selçuklular”, “Hanedan-İktidar Alametleri”, “İktidar- Siyasetname”, “Mimari-Kentler ve

İki alt kademeden oluşan Yönetim Kurulu Toplantısı- nın ana gündemi, beton standartla- rı konusunda değişiklik önerileri ve beton kullanımının yaygınlaştırılması