• Sonuç bulunamadı

Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative

N/A
N/A
Protected

Academic year: 2022

Share "Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Available online at www.atnaa.org Research Article

Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative.

Adjimi Naasa, Maamar Benbachirb, Mohamed S. Abdoc, Abdellatif Boutiaraa

aLaboratory of Mathematics And Applied Sciences, University of Ghardaia, Ghardaia 47000. Algeria.

bFaculty of Sciences, Saad Dahlab University, Blida, Algeria.

cDepartment of Mathematics, Hodeidah University, Al-Hodeidah, Yemen.

Abstract

In this paper, we investigate the existence and uniqueness of solutions for a class of fractional dierential equations with boundary conditions in the frame of Riesz-Caputo operators. We apply the methods of functional analysis such that the uniqueness result is established by using Banach's contraction principle, whereas Schaefer's and Krasnoslkii's xed point theorems are applied to obtain existence results. Some examples are given to illustrate our acquired results.

Keywords: Riesz-Caputo derivative Boundary value problem xed point theorem 2010 MSC: 26A33, 34A07, 93A30, 35R11

1. Introduction

Fractional calculus (FC) is a mathematical branch that investigates the properties of derivatives and integrals of non-integer order. The interested readers in the subject should refer to the books [34, 35, 36]. Fractional order models, which provide an excellent description of memory and genetic processes, are more accurate and appropriate than models with integer order. For the development of FC, there are sundry common denitions of fractional derivatives and integrals, such as Rimann-Liouville type, Caputo type, Hadamard type, Hilfer type, ψ-Caputo, ψ-Hilfer type, Caputo-Fabrizio type, Atangana-Baleanu type, conformable type, and Erdelyi-Kober type, etc, (see [11, 15, 16, 25, 32, 33, 37, 3]).

Email addresses: naasadjimi@gmail.com (Adjimi Naas), mbenbachir2001@gmail.com (Maamar Benbachir), msabdo1977@gmail.com (Mohamed S. Abdo), boutiara_a@yahoo.com (Abdellatif Boutiara)

Received April 26, 2021, Accepted September 18, 2021, Online September 21, 2021

(2)

Some recent contributions have been investigated the existence and uniqueness of solutions for dierent kinds of nonlinear fractional dierential equations (FDEs) and inclusion (FDIs) by using various types of xed point theorems, which can be found in [13, 6, 17, 7, 39, 38, 8, 19, 20, 21, 4, 5, 1, 2, 18], and the references cited therein. The study of FDEs or FDIs with anti-periodic boundary conditions, that are applied in numerous dierent elds, like chemical engineering, physics, economics, dynamics, etc., has received much attention recently, (see [23, 27, 40, 10, 26]) and the papers mentioned therein.

On the other hand, the authors in [31] investigated the existence results of the following FDEs

 RC

0 DϑTκ(t) = g(t, κ(t)), 0 < γ ≤ 1, 0 ≤ t ≤ T , κ(0) = κ0, κ(T ) = κT,

where RC0 DϑT is the Riesz-Caputo derivative, g : [0, T ] × R → R is a continuous function, and κ0T are constants.

The positive solution of nonlinear FDEs with the Riesz space derivative

 RC

0 Dϑ1κ(t) = h(t, κ(t)), 0 < ϑ ≤ 1, t ∈ [0, 1], κ(0) = κ0, κ(1) = κ1, κ0, κ1≥ 0,

has been studied by Yun Gu et al., in [24]. Also, Chen et al., in [27] discussed a class of FDEs with anti-periodic boundary condithions of the form

 RC

0 DTϑκ(t) = g(t, κ(t)), 0 < γ ≤ 1, t ∈ [0, T ], κ(0) + κ(T ) = 0, κ0(0) + κ0(T ) = 0,

whereRC0 DϑT is the Riesz-Caputo derivative and g : [0, 1] × R → R is a continuous function.

Motivated by the above cited work, in this paper, we investigat the existence and uniqueness results of the following FDEs with the Riesz-Caputo derivative

 RC

0 DTϑκ(t) + F(t, κ(t),RC0 DTςκ(t)) = 0, t ∈ J := [0, T ],

κ(0) + κ(T ) = 0, µκ0(0) + σκ0(T ) = 0, (1) where 1 < ϑ ≤ 2 and , 0 < ς ≤ 1 , RC0 DκT is the Riesz-Caputo fractional derivative of order κ ∈ {ϑ, ς}, F: J × R × R → R, is a continuous function, and µ,σ are nonnegative constants with µ > σ. We refer here to some very recent works that dealt with a similar analysis, see [28, 29, 30].

The paper is marshaled as follows. Section 2 has denitions and some of the most important basic concepts of the FC. In section 3, we prove the existence and uniqueness of solutions for the proposed problem with the Riesz-Caputo derivatives via Banach's, Schaefer's, and Krasnoselskii's xed point theorems. Some illustrative examples associated with our suggested problem are provided in Section 4.

2. Preliminaries

In this section ,we recall some basic concepts, and preliminary facts. By E = C(J , R) we denote the Banach space of all continuous functions from J into R as follows

E = n

κ : κ ∈ C([0, T ]), RCDδκ ∈ C([0, T ]) o

, endowed with the norm

kκkE = kκk + kRCDδκk, and

kκk = sup

t∈J|κ(t)|, kRCDδκk = sup

t∈J

|RCDδκ(t)|.

We start with denitions.

(3)

Denition 2.1. [9, 36] For 0 ≤ t ≤ T, the classical RieszCaputo fractional derivative is dened by

RC0 DTϑF(t) = 1 Γ(n − ϑ)

Z T 0

|t − ξ|n−ϑ−1F(n)(ξ)dξ

= 1

2(C0Dϑt + (−1)n Ct DTϑ)F(t),

whereC0Dtϑ andCt DTϑ are the left and right Caputo derivative, respectively

C

0DϑtF(t) = 1 Γ(n − ϑ)

Z t 0

(t − ξ)n−ϑ−1F(n)(ξ)dξ,

C

t DϑTF(t) = (−1)n Γ(n − ϑ)

Z T t

(ξ − t)n−ϑ−1F(n)(ξ)dξ.

Remark 2.2. ([27, 31]) In particular if F(t) ∈ C([0, T ]) and 0 < ϑ ≤ 1, then

RC

0 DϑTF(t) = 1

2(C0DϑtCt DTϑ)F(t), if F(t) ∈ C2([0, T ]) and 1 < ϑ ≤ 2, then

RC

0 DϑTF(t) = 1

2(C0Dϑt + Ct DTϑ)F(t).

Denition 2.3. ([31]) The Riemann-Liouville fractional integrals concepts of order ϑ are dened as

0ItϑF(t) = 1 Γ(ϑ)

Z t 0

(t − ξ)ϑ−1F(ξ)dξ,

tITϑF(t) = 1 Γ(ϑ)

Z T t

(ξ − t)ϑ−1F(ξ)dξ,

0ITϑF(t) = 1 Γ(ϑ)

Z T 0

|ξ − t|ϑ−1F(ξ)dξ.

Lemma 2.4. ([27]) If F(t) ∈ Cn([0, T ]), then

0ItϑC0DtϑF(t) = F(t) −

n−1

X

k=0

F(k)(0)

k! (t − 0)k, and

tITϑCt DTϑF(t) = (−1)n

"

F(t) −

n−1

X

k=0

(−1)kF(k)(T )

k! (T − t)k

# . From the above denitions and lemmas, we have

0ITϑRC0 DϑTF(t) = 1 2



0ItϑC0Dtϑ+tITϑC0Dtϑ

 F(t) + (−1)n1

2



0ItϑCt DϑT +tITϑCtDϑT

 F(t)

= 1 2



0ItϑC0Dtϑ+ (−1)ntITϑCt DTϑ F(t).

In particular, if 1 < ϑ ≤ 2 and F(t) ∈ C2([0, T ]), then

0ITϑRC0 DTϑF(t) = F(t) − 1

2(F(0) + F(T )) −1

2F0(0)t + 1

2F0(T )(T − t). (2)

(4)

3. Main Results

Lemma 3.1. Assume that g ∈ C(J , R) and κ ∈ C2(J ). Then

RC0 DTϑκ(t) + g(t) = 0, t ∈ [0, T ], 1 < ϑ ≤ 2,

κ(0) + κ(T ) = 0, µκ0(0) + σκ0(T ) = 0, (3) is equivalent to the integral equation given by

κ(t) = (σ − µ)t + µT (µ + σ)Γ(ϑ − 1)

Z T 0

(T − s)ϑ−2g(s)ds − 1 Γ(ϑ)

Z t 0

(t − s)ϑ−1g(s)ds

− 1

Γ(ϑ) Z T

t

(s − t)ϑ−1g(s)ds. (2)

Proof. Applying Lemma (2.4) on equation (3), we obtain κ(t) = 1

2(κ(0) + κ(T )) +1

0(0)t −1

00RCITϑg(t)

= 1

2(κ(0) + κ(T )) +1

0(0)t −1

0(T )(T − t) − 1 Γ(ϑ)

Z t 0

(t − ξ)ϑ−1g(ξ)dξ

− 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1g(ξ)dξ. (3)

Then

κ0(t) = 1

2(κ0(0) + κ0(T )) − 1 Γ(ϑ − 1)

Z t 0

(t − ξ)ϑ−2g(ξ)dξ

+ 1

Γ(ϑ − 1) Z T

t

(ξ − t)ϑ−2g(ξ)dξ.

By the boundary conditions of (3), we nd that:

κ(0) = −σT

(µ + σ)Γ(ϑ − 1) Z T

0

(T − ξ)ϑ−2g(ξ)dξ + 1 Γ(ϑ)

Z T 0

(T − ξ)ϑ−1g(ξ)dξ,

κ(T ) = σT

(µ + σ)Γ(ϑ − 1) Z T

0

(T − ξ)ϑ−2g(ξ)dξ − 1 Γ(ϑ)

Z T 0

(T − ξ)ϑ−1g(ξ)dξ,

κ0(0) = 2σT (µ + σ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2g(ξ)dξ,

κ0(T ) = −2µT (µ + σ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2g(ξ)dξ.

Substituting the values of κ0(0)and κ0(T )into (3), we obtain (2).

Let us introduce the following notations:

1= µTϑ

(µ + σ)Γ(ϑ) + 2Tϑ Γ(ϑ + 1), Ω2= Tϑ−ς(µ − σ) + 2µTϑΓ(2 − ς)

2(µ + σ)Γ(2 − ς)Γ(ϑ) + 2Tϑ−ς Γ(ϑ − ς + 1), k1 = Tϑ−ς

Γ(ϑ − ς + 1), k2 = Tϑ−ς

Γ(ϑ − ς + 1).

(5)

3.1. Uniqueness result via Banach's xed point theorem

Theorem 3.2. Let F : [0, T ] × R × R → R is a continuous function. Assume that

(H1) there exists nonnegative real numbers L1, L2 such that for all (ξ, v), (ξ0, v0) ∈ R2, we have

|F(t, ξ, v) − F(t, ξ0, v0)| ≤ L1|ξ − ξ0| + L2|v − v0|, if

(Ω1+ Ω2)(L1+ L2) < 1.

Then the problem (1) has a unique solution on J .

Proof. We transform BVP (1) into xed point problem. Then we dene the integral operator H : E → E by

Hκ(t) = (σ − µ)t + µT (µ + σ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2F(ξ, κ(ξ),RCDςκ(ξ))dξ

− 1 (Γ)

Z t 0

(t − ξ)ϑ−1F(ξ, κ(ξ),RCDςκ(ξ))dξ

− 1 (Γ)

Z T t

(ξ − t)ϑ−1F(ξ, κ(ξ),RCDςκ(ξ))dξ.

Now, we prove that H is a contraction. For κ, $ ∈ E and for each t ∈ J , we have

|Hκ(t) − H$(t)|

≤ (σ − µ)t + µT | (µ + σ)|Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

+ 1

Γ(ϑ) Z t

0

(t − ξ)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

+ 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

≤ µTϑ

(2µ + σ)Γ(ϑ) L1kκ − $k + L2kRCDςκ −RCDς$k + 2Tϑ

Γ(ϑ + 1) L1kκ − $k + L2kRCDςκ −RCDς$k

 µTϑ

(µ + σ)Γ(ϑ) + 2Tϑ Γ(ϑ + 1)



L1+ L2)(kκ − $k + kRCDςκ −RCDς$k . Consequently, we obtain

kHκ(t) − H$(t)k ≤ Ω1 L1+ L2)(kκ − $k + kRCDςκ −RCDς$k . (12)

(6)

On the other hand, we have

RC0 DςTHκ(t) −RC0 DTςHκ(t)

≤ 1

Γ(ϑ − ς) Z t

0

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

+ 1

Γ(ϑ − ς) Z T

t

(ξ − t)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ +

t1−ς− (T − t)1−ς (σ − µ) + 2µΓ(2 − ς)T 2(σ + µ)Γ(2 − ς)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, (ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

≤ Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς)

(σ + µ)Γ(2 − ς)Γ(ϑ) L1kκ − $k + L2kRCDςκ −RCDς$k + 2Tϑ−ς

Γ(ϑ − ς + 1) L1kκ − $k + L2kRCDςκ −RCDς$k . Thus,

kRC0 DςTHκ(t) −RC0 DςTHκ(t)k ≤ Ω2 L1+ L2)(kκ − $k + kRCDςκ −RCDς$k

(13) From (12) and (13), we get

kHκ(t) − H$(t)kE ≤ (Ω1+ Ω2) L1+ L2)(kκ − $k + kRCDςκ −RCDς$k .

Hence, H is a contraction. As a consequence of Banach contraction principle, the problem (1) has a unique solution on J .

3.2. Existence result via Shaefer xed point theorem

Lemma 3.3. Let E be a Banach space. Assume that H : E → E be a completely continuous operator, and the set

ω(H) = {$ ∈ E : $ = λH$, λ ∈ (0, 1)} . ω(F)is bounded. Then H has a xed point in E.

Theorem 3.4. Assume that there exists a positive M such that

|F(ξ, κ, $)| < M for t ∈ J , κ, $ ∈ R.

Then the problem (1) has at least one solution on J .

Proof. We will use the Sheafer's xed point theorem, to prove H has a xed point on E, we subdivided the proof into several steps :

Step 1. H is continuous on E: in view of continuity of F, we conclude that operator H is continuous.

step 2. H maps bounded sets into bounded sets in E.

For each κ ∈ Br= {κ ∈ E : kκkE ≤ r} and t ∈ J , we get

|Hκ(t)| ≤ |(σ − µ)t + µT | (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z t

0

(t − ξ)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

− 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ µTϑM

(σ + µ)Γ(ϑ) + 2MTϑ Γ(ϑ + 1).

(7)

Which implies that,

kHκ(t)k ≤ MΩ1, (14)

and,

|RC0 DςTHκ(t)| ≤ 1 Γ(ϑ − ς)

Z t 0

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ − ς) Z T

t

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ +

t1−ς− (T − t)1−ς (σ − µ) + 2µΓ(2 − ς)T 2(σ + µ)|Γ(2 − ς)Γ(ϑ − 1)

× Z T

0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ Tϑ−ς(µ + σ) + 2µTϑΓ(2 − ς)

2|µ − σ|Γ(2 − ς)Γ(ϑ) M+ 2Tϑ−ς 2Γ(ϑ − ς + 1)M

≤ Tϑ−ς(σ − µ)) + 2µTϑΓ(2 − ς)

2(σ + µ)Γ(2 − ς)Γ(ϑ) M+ 2Tϑ−ς Γ(ϑ − ς + 1)M.

Which implies that,

kRC0 DTςHκ(t)k ≤ Ω2M. (15)

Adds side of inequality (14)and(15), we get

kRC0 DςTHκ(t)kE < M (Ω1+ Ω2) ∞.

Which implies that H maps bounded sets into bounded sets on E.

step 3. H maps bounded sets into equicontinuous sets in E.

Let Br be a bounded set of E as in step 2, and let κ ∈ Br. For each t1, t2 ∈ J , t1< t2, we have

|Hκ(t2) − Hκ(t1)| ≤ (σ − µ)(t2− t1) (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z t1

0

(t1− ξ)ϑ−1− (t2− ξ)ϑ−1

|F(κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z t2

t1

(ξ − t1)ϑ−1− (t2− ξ)ϑ−1

|F(κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z T

t2

(ξ − t1)ϑ−1− (ξ − t2)ϑ−1

|F(κ(ξ),RCDςκ(ξ))|dξ

(tϑ1− tϑ2) + (t2− t1)ϑ

Γ(ϑ + 1) M+(σ − µ)|t2− t1|ϑTϑ (σ + µ)Γ(ϑ + 1) M +

(T − t1)ϑ− (T − t2)ϑ + (t2− t1)ϑ

Γ(ϑ + 1) M

(tϑ1− tϑ2) + (t2− t1)ϑ

Γ(ϑ + 1) M+(σ − µ)|t2− t1|ϑTϑ (σ + µ)Γ(ϑ + 1) M +

(T − t1)ϑ− (T − t2)ϑ + (t2− t1)ϑ

Γ(ϑ + 1) M,

(8)

and,

|RC0 DTςHκ(t2) −RC0 DTςHκ(t1)| ≤ (tϑ−ς1 − tϑ−ς2 ) 2Γ(ϑ − ς + 1)M + (T − t2)ϑ−ς− (T − t1)ϑ−ς + (t2− t1)ϑ−ς

Γ(ϑ − ς + 1) M

+ (σ − µ)(t1−ς2 − t1−ς1 ) + ((T − t2)1−ς− (T − t1)1−ς) Tϑ−1M

2(σ + µ)Γ(2 − ς)Γ(ϑ) .

Hence,

kHκ(t2) − Hκ(t1)kκ

(tϑ1 − tϑ2) + (t2− t1)ϑ

Γ(ϑ + 1) M+(σ − µ)|t2− t1|ϑTϑ (σ + µ)Γ(ϑ + 1) M +

(T − t1)ϑ− (T − t2)ϑ + (t2− t1)ϑ

Γ(ϑ + 1) M

+ (tϑ−ς1 − tϑ−ς2 ) 2Γ(ϑ − ς + 1)M

+ (T − t2)ϑ−ς− (T − t1)ϑ−ς + (t2− t1)ϑ−ς

Γ(ϑ − ς + 1) M

+(σ − µ)(t1−ς2 − t1−ς1 ) + ((T − t2)1−ς− (T − t1)1−ς) Tϑ−1M

2(σ + µ)Γ(2 − ς)Γ(ϑ) .

Which implies that kHκ(t2) − Hκ(t1)kE → 0 as t2 → t1.By Arzela-Ascoli theorem, we conclude that H is completely continuous operator.

step 4. We show that the set ∆ dened by

∆ = {κ ∈ E, κ = ρH(κ), 0 < ρ < 1}

is bounded. Let κ ∈ ∆, for some ρ ∈ (0, 1). For each t ∈ J , we have 1

ρ|κ(t)| ≤ |(σ − µ)t + µT | (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z t

0

(t − ξ)ϑ|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z T

t

(ξ − t)ϑ|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ µTϑ

(σ + µ)Γ(ϑ)M+ 2Tϑ Γ(ϑ + 1)M.

Therefore,

kκk ≤ ρΩ1M. (16)

(9)

and,

1

ρ|RC0 DTςκ(t)| ≤ 1 Γ(ϑ − ς)

Z t 0

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ − ς) Z T

t

(ξ − t)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ +

t1−ς− (T − t)1−ς (σ − µ) + 2µΓ(2 − ς)T 2(σ + µ)Γ(2 − ς)Γ(ϑ − 1)

× Z T

0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ Tϑ−ς(µ + σ) + 2µTϑΓ(2 − ς)

2|µ − σ|Γ(2 − ς)Γ(ϑ) M+ 2Tϑ−ς 2Γ(ϑ − ς + 1)M

≤ Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς)

2(σ + µ)Γ(2 − ς)Γ(ϑ) M+ 2Tϑ−ς Γ(ϑ − ς + 1)M.

Therefore,

kRC0 DςTκ(t)k ≤ ρΩ2M. (17)

Adds side of inequality (16)and (17), we get

kκkE ≤ ρ(Ω1+ Ω2)M.

Hence,

kκkE < ∞.

This shows that ∆ is bounded.

As consequence of Schaefer's xed point theorem, the problem (1) has at least one solution in [0, T ].

3.3. Existence result via Karesnoslskii's xed point theorem

Lemma 3.5. (Karasnoselskii's xed point theorem) Let M a closed bounded, convex and nonempty subset of a Banach space E, let A, Bbe operator, such that

(a) Aκ + B$ ∈ M, whenever, κ, $ ∈ M, (b) A is compact and continuous,

(c) B is a contraction mapping, then there exist z ∈ M such that z = Az + Bz.

Theorem 3.6. Let F : J × R × R → R be a continuous function, and let the conditions (H1)-(H2) hold. In addition, the function F satisfying the assumptions :

(H3) There exists a nonnegative function Ω ∈ C(J ,R+) such that

|F(t, κ, $)| ≤ Ω(t) for any (t, κ, $) ∈ J × R × R, (H4) (k1+ k2)(L1+ L2) < 1 ,

Then the problem (1) has a least one solution in J . Proof. We dene two operators H1κ(t) and H2κ(t) as:

(H1κ)(t) = (σ − µ)t) + µT (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2F(ξ, κ(ξ),RCDςκ(ξ))dξ, (H2κ(t)) = − 1

Γ(ϑ) Z t

0

(t − ξ)ϑ−1F(ξ, κ(ξ),RCDςκ(ξ))dξ

− 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1F(ξ, κ(ξ),RCDςκ(ξ))dξ.

(10)

Choosing d ≥ (Ω1+ Ω2)(L1+ L2)kΩk, and we consider Bd= {κ ∈ E : kκkE ≤ d}. Step1 We shall prove that H1κ(t) + H2κ(t) ∈ Bd.

For any κ, $ ∈ Bd and for each then t ∈ J , we have

|H1κ(t) + H2$(t)| ≤ |(σ − µ)t + µT | (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ) Z t

0

(t − ξ)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

− 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ µTϑ

(σ + µ)Γ(ϑ)(L1+ L2) kΩk + 2Tϑ

Γ(ϑ + 1)(L1+ L2)) kΩk.

Then

kH1κ(t) + H2$(t)k ≤ Ω1(L1+ L2)kΩk (18) On the other hand,

|RC0 DςTHκ(t) +RC0 DςTH$(t)| ≤ 1 Γ(ϑ − ς)

Z t 0

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

+ 1

Γ(ϑ − ς) Z T

t

(ξ − t)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ))|dξ +

t1−ς− (T − t)1−ς (σ − µ) + 2µΓ(2 − ς)T 2(σ + µ)Γ(2 − ς)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς)

2(σ + µ)Γ(2 − ς)Γ(ϑ) (L1+ L2) kΩk + 2Tϑ−ς

Γ(ϑ − ς + 1)(L1+ L2) kΩk.

Hence

kRC0 DTςHκ(t) +RC0 DςTH$(t)k ≤ Ω1(L1+ L2)kΩk (19) It follows from (18) and (19) that

kH1κ(t) + H2$(t)kE ≤ (Ω1+ Ω2)(L1+ L2)kΩk ≤ d.

Hence, H1κ(t) + H2κ(t) ∈ Bd .

step2 We shall prove that H1is continuous and compact. The continuity of F implies that the operator H1

is continuous.

Now, we prove that H2 maps bounded sets into bounded sets of E.

For κ ∈ Bd,and for each t ∈ J , we have

|H1κ(t)| ≤

|(σ − µ) + µT | (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ µTϑ

(σ + µ)Γ(ϑ − 1)(L1+ L2)kΩk.

Hence

kH1κ(t)k ≤ µTϑ

(σ + µ)Γ(ϑ − 1)(L1+ L2)kΩk, (20)

(11)

and

|RCDςH1κ(t)| ≤

((T − t)1−ς− t1−ς)(σ − µ) + 2µT Γ(2 − ς) 2(σ + µ)Γ(2 − ς)Γ(ϑ − 1)

× Z T

0

(T − ξ)ϑ−2|F(ξ, κ(ξ),RCDςκ(ξ))|dξ

≤ Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς)

2(σ + µ)Γ(2 − ς)Γ(ϑ) (L1+ L2)kΩk.

Hence

kRCDςH1κ(t)k ≤ Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς)

2(σ + µ)Γ(2 − ς)Γ(ϑ) (L1+ L2)kΩk. (21) Combining (20) and (21), we get

kH1κ(t)kE

 µTϑ

(σ − µ)Γ(ϑ − 1) +Tϑ−ς(σ − µ) + 2µTϑΓ(2 − ς) 2(σ + µ)Γ(2 − ς)Γ(ϑ)



(L1+ L2)kΩk, Consequently

kH1κ(t)kE ≤ ∞.

Thus, it follows the above inequality that operator H1 is uniformly bounded.

The operator H1 maps bounded sets into equicontinuous sets of E. Let t1, t2 ∈ J , t1 < t2, κ ∈ Bd, then we have :

|H1κ(t2) − H1κ(t1)| ≤ (σ − µ)(t2− t1) (σ + µ)Γ(ϑ − 1)

Z T 0

(T − ξ)ϑ−2|F(κ(ξ),RCDςκ(ξ))|dξ +(σ − µ)|t2− t1|ϑTϑ

(σ + µ)Γ(ϑ + 1) (L1+ L2)kκk.

On the other hand,

|RCDςH1κ(t2) −RCDςH1κ(t1)|

≤ (σ − µ)(t1−ς2 − t1−ς1 ) + ((T − t2)1−ς− (T − t1)1−ς) Tϑ−1(L1+ L2)kΩk 2(σ + µ)|Γ(2 − ς)Γ(ϑ)

It follows from (22) and (23) that

kH1κ(t2) − H1κ(t1)kE ≤ (σ − µ)|t2− t1|ϑTϑ

(σ + µ)Γ(ϑ + 1) (L1+ L2)kκk

+(σ − µ)(t1−ς2 − t1−ς1 ) + ((T − t2)1−ς− (T − t1)1−ς) Tϑ−1(L1+ L2)kΩk 2(σ + µ)|Γ(2 − ς)Γ(ϑ).

As t2→ t1, the right-hand side of this inequality tends to zeros.

Then as a consequence od steps, we can conclude that H1 is continuous and compact.

Step3 Now, we prove that H2 is contraction mapping . Let κ, $ ∈ E. Then, for each t ∈ J , we have

|H2κ(t) − H2$(t)| ≤ + 1 Γ(ϑ)

Z t 0

(t − ξ)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

+ 1

Γ(ϑ) Z T

t

(ξ − t)ϑ−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

≤ 2Tϑ

Γ(ϑ + 1)(L1+ L2) kκ − $k + kRCDςκ −RCDς$k

(12)

Consequently we obtain

kH2κ(t) − H2$(t)k ≤ k1(L1+ L2)(kκ − $k + kRCDςκ −RCDς$k) (24) and

|RC0 DςTH2κ(t) −RC0 DςTH2κ(t)|

≤ 1

Γ(ϑ − ς) Z t

0

(t − ξ)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

+ 1

Γ(ϑ − ς) Z T

t

(ξ − t)ϑ−ς−1|F(ξ, κ(ξ),RCDςκ(ξ)) − F(ξ, $(ξ),RCDς$(ξ))|dξ

≤ 2Tϑ−ς

Γ(ϑ − ς + 1)(L1+ L2) kκ − $k + kRCDςκ −RCDς$k , and

kRCDςH2κ(t) −RCDςH2$(t)k ≤ k2(L1+ L2)(kκ − $k + kRCDςκ −RCDς$k) (25) It follows from (24) and (25) that

kH2κ(t) − H2$(t)kE ≤ (k1+ k2)(L1+ L2) kκ − $k + kRCDςκ −RCDς$k

Using the condition (H4), we conclude that H2 is a contraction mapping. As consequence of a krasnosselski's

xed point theorem, we deduce that H has a xed point which as solution of (1).

Example 3.7. Consider following nonlinear FDE with Riesz-Caputo derivative:





RC0 D

3 2

Tκ(t) + (

π+1)|κ(t)|

t2+144(1+|κ(t)|)+(1+e1)2cos(RCD13κ(t)) = 0, t ∈ [0, 1],

$(0) + $(1) = 0, 2$0(0) + 12$0(1) = 0, (26)

Here, ϑ = 32, ς = 13, µ = 2, σ = 12, and,

F(t, κ(t),RCDςκ(t)) = (√

π + 1)|κ|

t2+ 144(1 + |κ|) + 1

(1 + e)2cos(RCD13κ(t)).

We have

|F(κ, $) − F(κ0, $0)| ≤

√π + 1

12 kκ − κ0k + 1

(1 + e)2k$ − $0k.

Then, the assumption (H1) is satised with L1 =

π+1

12 , L2 = (1+e1)2. Using the Matlab program, Ω1 = 2, 1493, Ω2 = 1, 9057.

Therefore, (L1+ L2)(Ω1+ Ω2) = 0, 9369 < 1. By using the theorem (3.2), the problem (26) has a unique solution on [0, 1].

Example 3.8. Consider following nonlinear FDE with Riesz-Caputo derivative:





RC0 D

5 3

Tκ(t) +

e−2tsin(1+|κ||κ| )

(e+2) + |RCD

1 2κ(t)|(

π+1)

(|RCD12κ(t)|+1)(π+2)2

= 0, t ∈ [0, 1],

$(0) + $(1) = 0,35$0(0) + 23$0(1) = 0, (27)

Here, ϑ = 53, ς = 12, µ = 35, σ = 23, L1=

π+1

12 , L2 = (1+e1)2, and F(t, κ(t),RCDςκ(t)) =

e−2tsin(1+|κ||κ| )

(e+ 2) + |RCD12κ(t)|(

√π + 1) (|RCD12κ(t)| + 1)(π + 2)2

.

(13)

Moreover,

|F(κ, $) − F(κ0, $0)| ≤ 1

(e+ 2)kκ − κ0k +

√π + 1

(1 + π)2k$ − $0k.

Therefor,

|F(t, κ(t),RCDςκ(t))| ≤ e−2t e2π+2 +

√π + 1

(π + 2)2 = Ω(t).

1= 2, 1493, Ω2= 1, 9057, K1 = 1, 5045, k2 = 0, 9239 .

Then (k1+ k2)(L1+ L2) = 0, 2406 < 1, (H4) is satised, by using the theorem (3.6), the problem (27) has at least one solution on [0, 1].

4. Conclusion

We have eectively achieved several necessary conditions describing the the existence and uniqueness of solutions for a class of fractional dierential equations with boundary conditions involving Riesz-Caputo fractional derivatives. Under some xed point theorems such as Banach, Schaefer, and Krasnoselskii, the necessary results have been investigated. Moreover, by giving appropriate examples, all the main results have been testied. In future such type of analysis can be established for more general type fractional dierential equations involving ψ-Riesz-Caputo fractional derivatives.

References

[1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Dierential Equations, Springer, New York, 2012.

[2] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Dierential and Integral Equations, Nova Science Publishers, New York, 2015.

[3] T. Abdeljawad, On conformable fractional calculus, Journal of computational and Applied Mathematics 279(2015), 57-66.

[4] M.S. Abdo, T. Abdeljawad, K.D. Kucche, M.A. Alqudah , S. M. Ali, M.B. Jeelani, On nonlinear pantograph fractional dierential equations with Atangana- Baleanu-Caputo derivative, Advances in Dierence Equations 1(2021), 1-17.

[5] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leer kernel and nonlinear integral conditions, Advances in Dierence Equations 1(2021), 1-21.

[6] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order dierential equations, Chaos Solitons Fractals 141(2020), 110341.

[7] M.S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, Journal of Mathematical Analysis and Modeling 1(1)(2020), 33-46.

[8] M.S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of Impulsive Problems Under Mittag-Leer Power Law, Heliyon 6(10)(2020), e05109.

[9] O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal Phys 40(2007), 62876303.

[10] B. Ahmad, S.K. Ntouyas, A. Alsaedi, On fractional dierential inclusions with anti-periodic type integral boundary con- ditions, Boundary Value Problem 82(2013).

[11] B. Ahmad, S.K. Ntouyas, Existence results for fractional dierential inclusions with Erdelyi-Kober fractional integral conditions, Analele Universitatii" Ovidius" Constanta-Seria Matematica 25(2) (2017), 5-24.

[12] B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional dierential inclusions with antiperiodic boundary con- ditions, Boundary Value Problem (2009), 625347.

[13] M.A. Almalahi, S.K. Panchal, Some existence and stability results for ψ-Hilfer fractional implicit dierential equation with periodic conditions, Journal of Mathematical Analysis and Modeling, 1(1)(2020), 1-19.

[14] R. Almeida, Fractional variational problems with the Riesz-Caputo derivative, Appl.Math.Lett. 25(2012)142-148.

[15] R. Almeida, Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer.

Simul. 44 (2017), 460481.

[16] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci. 20(2)(2016), 76369.

[17] M. Benchohra, J.E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional dierential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62(1)(2017) 2738.

[18] A. Boutiara, M.S. Abdo, M. Benbachir, Existence results for ψCaputo fractional neutral functional integro-dierential equations with nite delay, Turk J Math (2020) 44: 23802401.

[19] A. Boutiara, Mixed fractional dierential equation with nonlocal conditions in Banach spaces, Journal of Mathematical Modeling 9(3)(2021), 451-463.

[20] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional dierential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics 5(1)(2020), 259272.

(14)

[21] A. Boutiara, M. Benbachir, K. Guerbati, Caputo Type Fractional Dierential Equation with Nonlocal Erdélyi-Kober Type Integral Boundary Conditions in Banach Spaces, Surveys in Mathematics and its Applications 15(2020): 399418.

[22] A. Boutiara, M. Benbachir, K. Guerbati, Measure Of Noncompactness for Nonlinear Hilfer Fractional Dierential Equation in Banach Spaces, Ikonion Journal of Mathematics 1(2)(2019).

[23] Y.K. Chang, J.J. Nieto, Some new existence results for fractional dierential inclusions with boundary conditions, Math.

Comput. Modelling 49 (2009), 605-609.

[24] G.Y. Chuan, Z. Jun, W.C. Guo, Positive solution of fractional diferential equations with the Riesz space derivative, Applied Mathematics Letters,Elsevier 95(2019)59-64.

[25] M. Caputo, M. Fabrizio, A new Denition of Fractional Derivative without Singular Kernel, Progress in Fractional Dier- entiation and Applications. 1(2) (2015), 7385.

[26] F.L. Chen, A.P. Chen, X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Adv. Dier. Equ.

2019(2019), 119.

[27] C. Fulai, C. Anping, W. Xia, Anti-periodic boundary value problems with the Riesz-Caputo derivative, Advanced in Dierence equations.Springer(2019).

[28] M.S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order dierential equations, Chaos Solitons Fractals 141(2020), 110341.

[29] M.A. Abdulwasaa, M.S. Abdo, K. Shah, T.A. Nofal, S.K. Panchal, S.V. Kawale, A. H. Abdel-Aty, Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results in Physics, 20(2021), 103702.

[30] M. Iqbal, K. Shah, R.A. Khan, On using coupled xed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph dierential equations, Math. Meth. Appl. Sci. 44(10), (2021), 8113-8124.

[31] C. Fulai, B. Dumitru, W.C. Guo, Existence results of fractional dierential equations with the Riesz-Caputo derivative, Eur. phys. J. special topics 226,4341-4325.

[32] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modication of the Hadamard fractional derivatives, Adv. Dierence Equ. 8(142) (2012).

[33] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1-15.

[34] A.A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Dierential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V, Amsterdam, 2006.

[35] F. Mainardi, Fractional calculus: Some basic problem in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics. Springer. Vienna (1997).

[36] I. Podlubny, Fractional Dierential Equations, Academic Press, San Diego (1999).

[37] J.V.C. Sousa, E.C.D. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula 60 (2018), 72-91.

[38] J.E.N. Valdes, P.M. Guzmán , M.L.M. Bittencurt, A note on the qualitative behavior of some nonlinear local improper conformable dierential equations, Journal of Fractional Calculus and Nonlinear Systems, 1(1)(2020), 13-20.

[39] H.A. Wahash, S.K. Panchal, Positive solutions for generalized Caputo fractional dierential equations using lower and upper solutions method, Journal of Fractional Calculus and Nonlinear Systems 1(1) (2020), 1-12.

[40] F. Xu, Fractional boundary value problems with integral and Anti-periodic boundary conditions, Bull.Malys.Math.Sci.Soc.

39, 571-587.

Referanslar

Benzer Belgeler

for Integral Boundary Problems of Nonlinear FDEs with p-Laplacian Operator. Rocky Mountain Journal

Recently, new existence results for nonlinear fractional differential equations with three-point integral boundary conditions are obtained in [39], existence of

Keywords: R-L Fractional Derivative, Caputo Fractional Derivative, Adams-Bashforth- Moulton Method, Fractional Differential

We prove the existence and uniqueness of mild solutions for initial value problems of nonlinear hybrid rst order Caputo fractional integro-dierential equations.. The main

Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional dierential equations, Internat.. Yang, Positive solutions for a coupled system

Keywords: Fractional calculus, Fractional differential equations, ψ-Caputo derivative, Fixed point theorem, Maximal mild solutions, ψ-Hölder continuity.. 2010 MSC: 35K05, 35K99,

Alsaedi, Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional dierential equations with nonlocal Hadamard type integral boundary conditions,

We want to obtain existence and uniqueness results for these problems with the Fourier method by creating a periodic and antiperiodic inverse