• Sonuç bulunamadı

capillary electrophoresis and by stability-indicating HPLCmethods Determination and of tetrahydrozoline antazoline in ophthalmicsolutions Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2021

Share "capillary electrophoresis and by stability-indicating HPLCmethods Determination and of tetrahydrozoline antazoline in ophthalmicsolutions Journal of Pharmaceutical and Biomedical Analysis"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / j p b a

Determination

of

antazoline

and

tetrahydrozoline

in

ophthalmic

solutions

by

capillary

electrophoresis

and

stability-indicating

HPLC

methods

Mehmet

Gumustas

a

,

Usama

Alshana

b,c

,

Nusret

Ertas

b

,

Nilgun

Gunden

Goger

b

,

Sibel

A.

Ozkan

a

,

Bengi

Uslu

a,∗

aDepartmentofAnalyticalChemistry,FacultyofPharmacy,AnkaraUniversity,06100Ankara,Turkey bDepartmentofAnalyticalChemistry,FacultyofPharmacy,GaziUniversity,06330Ankara,Turkey cDepartmentofAnalyticalChemistry,FacultyofPharmacy,NearEastUniversity,99138Mersin10,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16October2015

Receivedinrevisedform19February2016 Accepted23February2016

Availableonline27February2016 Keywords: Antazoline Capillaryelectrophoresis Coreshell HPLC Ophthalmicsolutions Tetrahydrozoline

a

b

s

t

r

a

c

t

Capillaryelectrophoretic(CE)andhighperformanceliquidchromatographic(HPLC)methodswere

devel-opedandoptimizedforthedeterminationofantazoline(ANT)andtetrahydrozoline(TET)inophthalmic

formulations.Optimumelectrophoreticconditionswereachievedusingabackgroundelectrolyteof

20mMphosphatebufferatpH 7.0,acapillarytemperatureof 25◦C,aseparation voltageof22kV

andapressureinjectionofthesampleat50mbarfor17s.HPLCanalysiswasperformedwith

Kine-tex(150×4.6mmID×5␮m)(Phenomenex,USA)analyticalcolumnwith1mLmin−1flowrateofmobile

phasewhichconsistedof0.05%TFAinbidistilledwater(pHadjustedto3.0with5MNaOH)and

acetoni-trile/bufferintheratioof63:37(v/v)atroomtemperature.Injectionvolumeofthesampleswas10␮L

andthewavelengthofthedetectorwassetat215nmformonitoringbothanalytes.

Calibrationgraphsshowedagoodlinearitywithacoefficientofdetermination(R2)ofatleast0.998

forbothmethods.Intradayandinterdayprecision(expressedasRSD%)werelowerthan2.8%forCEand

0.92%forHPLC.Thedevelopedmethodsweredemonstratedtobesimpleandrapidforthedetermination

ofANTandTETinophthalmicsolutionsprovidingrecoveriesintherangebetween97.9and102.70%for

CEandHPLC.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Antazoline(ANT)(Scheme1a)isahistamineH1receptor antag-onist.Itcanpreventhistaminefromactingontargetcellsthrough areversiblecompetitioneffectonhistaminereceptorsitesofthose cells[1–4].Itisclassifiedasafirstgenerationantihistaminehaving anticholinergicpropertiesusedtoreducenasalcongestionandin eyedrops,usuallyincombinationwithnaphazolineand/or tetrahy-drozoline(TET)(Scheme1b)toreducethesymptomsofallergic conjunctivitis.TETisaderivativeofimidazolinethatisfoundin over-the-counter eye drops and nasal sprays. It is a sympath-omimeticagentwith␣-adrenergicactivityanditsmainmechanism ofactionistheconstrictionofconjunctionalbloodvesselsanditacts asalocalvasoconstrictor.Thisservestoreducetherednessofthe

夽 Selectedpaperfrom26thInternationalSymposiumonPharmaceuticaland BiomedicalAnalysis(PBA2015),July5thto8th,2015,Tbilisi,Georgia.

∗ Correspondingauthorat:AnkaraUniversity,FacultyofPharmacy,Department ofAnalyticalChemistry,06100,Tandogan/Ankara,Turkey.

E-mailaddress:buslu@pharmacy.ankara.edu.tr(B.Uslu).

eyecausedbyminorocularirritants.Solutionsandsuspensionsof TETareusedasaconjunctivaldecongestant[1–5].Acombination ofthesetwodrugsisnowavailableinthepharmaceuticalmarket forophthalmicuseintheworldsuchasGermany,India,Nigeria, Malaysia,etc.

High-performanceliquidchromatography(HPLC)iscommonly reported for thedetermination of ANT and TET [6,7]. Capillary electrophoresis(CE)isacomplementarytechniquetoHPLCwhich offers several unique characteristics that make it particularly attractive,whichincludeitshighresolvingpower,minimalreagent consumption,rapidnessandlowanalysescost.

Tothebestofourknowledge,neitherCEnorstability-indicating HPLCmethodcanbefoundinliteratureforthesimultaneous deter-minationofANTandTETinpharmaceuticaldosageforms.Afew methodsusingHPLC[6,8]andonlyonehigh-performancethinlayer chromatographymethod[9]havebeenreportedforthe simultane-ousdeterminationofthesedrugs.Theproposedmethoddescribes theoptimizationofthetwomethodsanditpresentstheeffectof core-shellparticlesonthechromatographicseparations.

http://dx.doi.org/10.1016/j.jpba.2016.02.032

(2)

M.Gumustasetal./JournalofPharmaceuticalandBiomedicalAnalysis124(2016)390–398 391

Core–shellparticlesarethebest-suitedmaterialsforrapid anal-ysesbecausetheiroptimumlinearvelocityissignificantlyhigher thanthatoffullyporousparticles.Ontheotherhand,these particle-packedcolumnsshowapressure dropthatcanbehalforeven lessthanthatoffullyporouspackedcolumns.Thistypeof mate-rialprovideshigherplatenumber (efficiency)than fullyporous stationaryphasesunderthesameconditionsandwiththesame instrumentation.Asaresultofthehigherefficiency,better resolu-tion,narrowerandmoresymmetricalsharppeakscanbeobserved. Analyzingcomplexmatricesandimpurity-profilingstudiesrequire thatthemethodbesensitive[10,11].Inaddition,consumptionof organicsolventsshouldbeminimizedforthemethodtobe inex-pensiveandtofitintogreenchemistryregulations.Accordingly, core-shellmaterialscanbeidealforqualitycontrolandresearch anddevelopmentlaboratories,wherecostandtimeareofessential consideration,sincetheydecreasetheruntimesperanalysis.

Thegoalofthisstudyistopresentthedevelopmentand vali-dationofrapidandeasyCEandstability-indicatingHPLCmethods forthesimultaneousdeterminationofANTandTETinraw materi-alsandpharmaceuticalpreparations.Theproposedmethodsoffer automaticsampleprocessing,aswellasimprovedselectivityand efficiencythatmaybeadequateforsensitivepharmaceutical stud-ieswithsmallsamplesizeinadditiontominimumconsumption oforganicsolvents, symmetricalpeaksand highresolution val-ues.BothmethodswerevalidatedaccordingtotheUnitedStatesof Pharmacopeia(USP32)andguidelinesoftheInternational Confer-enceonHarmonization(ICH)[12–15].Forceddegradationstudies arealsopresentedtoshowthestability-indicatingcapacityofthe developedHPLCmethod.

2. Materialsandmethods

2.1. Chemicalsandreagents

ANT phosphate,TET Hydrochlorideand methanolwere pur-chasedfromSigma-Aldrich(St.Louis,MO,USA).Quetiapinethat wasusedasaninternalstandard(IS)forHPLCstudywaskindly suppliedfromMustafaNevzatIlacSan.Tic.A.S.(Istanbul,Turkey). Potassiumdihydrogenphosphate(KH2PO4), dipotassium

hydro-genphosphate(K2HPO4),sodiumhydroxide(NaOH),hydrochloric

acid (HCl), trifluoro acetic acid (TFA) and hydrogen peroxide (H2O2) werepurchased from Merck (Darmstadt, Germany). All

reagentswereatleastofananalyticalgrade.Deionized(DI)water (18.2M.cm)whichwastreatedwithMillipore(Simplicity,185 waterpurificationsystem)wasusedunlessotherwisestated.

2.2. Equipmentandconditions

HP3DCE(AgilentTechnologies,Waldbronn,Germany)equipped

withanonlinediode-arrayUVdetector(DAD)wasoperatedata wavelengthof192nmformonitoringtheanalytes,anoptimum wavelengthasdeterminedusing‘Isoabsorbance’and‘3D’plotsin theinstrument’s‘Data Analysis’ software (AgilentTechnologies, Waldbronn,Germany),wasused.Separationswereachievedusing anuncoatedfused-silicacapillary(AgilentTechnologies,USA)of

Scheme1.ChemicalstructuresofANT(a)andTET(b).

75␮mi.d.and 64.5cm totallengthwitheffectivelengthtothe detectorof56cm.

AgilentTechnologies1100HPLCsystem(Wilmington,USA)was usedformethoddevelopment,forceddegradationandmethod val-idationstudies.This systemequippedwitha G1379Adegasser, G1311Aquaternarypump,G1313autoinjectorandG1315BDAD. The chromatogramswererecorded andthepeakswere quanti-fiedandintegratedusingChemstation®softwareandpHoftheall

buffersolutionswasmeasuredwithaThermoScientificBenchtop pHmeter(Orion3StarTMPlus,USA)usingacombinedelectrode

withanaccuracyof±0.05pH.

HPLC analyses were performed with Kinetex (150×4.6mm ID×5␮m)(Phenomenex,USA)analyticalcolumnthathave core-shellparticles.Aflowrateof1.0mLmin−1wasappliedforpumping of themobilephase which consistedof0.05%TFA inbidistilled water(pHadjustedto3.0with5MNaOH)andacetonitrileinthe ratioof63:37(v/v)atroomtemperature.Sampleswereinjected withthevolumeof10␮Landthewavelengthofthedetectorwas setupat215nm.

2.3. Samplepreparation

2.3.1. Standardandworkingsolutions

Individual stocksolutions of ANTand TET werepreparedin methanolataconcentrationof2000␮gmL−1andstoredat−15◦C.

Mixed standardsolutions werefreshlyprepared fromthestock solutionsbyproperdilutionswithDIwaterforCEexperiments. ForHPLCstudy,stocksolutionsofANTandTETwerepreparedas (1000␮gmL−1)andISwaspreparedinmethanolat100␮gmL−1in ultrasonicbathfor10minandwasthenkeptinthedarknessat4◦C. Workingsolutionswerepreparedbydilutionofthestocksolutions inthemobilephase.

2.3.2. Preparationofforceddegradationsolutions

Thestability-indicatingwereperformedunderalkaline,acidic, oxidative,photolyticandthermalstressconditionsatafinal con-centrationof50␮gmL−1.

Forceddegradationwasachievedbytreatingthestocksolution with0.1Mand1MHClforacidichydrolysis,0.1Mand1MNaOHfor alkalinehydrolysis,and3%and30%H2O2foroxidativedegradation

forbothanalytes.ThesolidformoftheanalyteswasexposedtoUV lightat254nmandroomtemperature,andthermaldegradation wasrealizedinanoventhatwasadjusted100◦Cfor6and24h. Purityresultsofeachpeakwerethenscreenedonthesoftware. 2.3.3. Analysisofpharmaceuticaldosageformsandrecovery assay

For the analysis of pharmaceutical preparations with HPLC, Allergoconjunct® solutionwhichcontainedANTat0.15mgmL−1

andTETat0.50mgmL−1wasdilutedwithmethanoltothemarkina 25-mLvolumetricflask.Thecontentsoftheflaskweresonicatedfor 10mintoachievecompletedissolution.Appropriatesolutionswere preparedbytakingsuitablealiquotsanddilutingwiththemobile phase.ConcentrationoftheISwaskeptconstantinalldilutionsand thechromatographicprocedurewasapplied.ForCEexperiments, dilutedsolutionsoftheabove-mentionedformulationwerefreshly preparedbyproperdilutionswithDIwater.

2.4. Validationofthemethods

HPLCandCEmethodswerevalidatedtoquantifyANTandTET in thecommercialformulationaccordingtoparameterssuchas specificity,linearity,lineardynamicrange(LDR),precision, accu-racy, limit ofdetection(LOD) and limitof quantification (LOQ). Priortothevalidationstudies,theseparationconditionswere care-fullyoptimized.Todoso,systemsuitabilitytestswereperformed

(3)

Fig.1.Optimizationofcapillaryelectrophoresisparameters.Effectofbuffertype(a),Effectofbufferconcentration(b),Effectoforganicmodifier(c),Effectofseparation voltage(d),Effectofseparationtemperature(e)andEffectofinjectiontime(f).

Table1

Parametersofsystemsuitabilitytests.

Technique HPLC CE

Compounds TET IS ANT TET ANT

Retention/MigrationTime 1.785 2.819 3.165 3.80 4.05

SelectivityFactor(␣) – 1.580 1.120 – 1.07

ResolutionFactor(Rs) – 7.330 2.190 – 6.370

TheoreticalPlateNumbers(Plate/column) 3369 5053 6525 114770 231831

RSD%ofRetentionTimea 0.047 0.135 0.149 0.850 0.798

aEachvalueisthemeanoffiveexperiments.

inordertoensurethatthemethodcangenerateresultsof accept-ableaccuracyandprecision.Testparametersincludedtheoretical platenumber,resolutionfactorandselectivity.

2.4.1. Specificity

Specificityofthemethodcanbedescribedbasedontheability of the methodto verify the analyte in the presence of excipi-ents, matrix andimpurities [15–17]. Accordingtothe obtained chromatograms,thepharmaceuticalpreparationanditsplacebo (mixtureoftheactivepharmaceuticalingredient(API)and excipi-ents)showedalmostnointerferingpeakswithintheretentiontime ranges.Inaddition,forceddegradationstudieswereperformedto provethespecificityofthechromatographicmethod.

2.4.2. Linearityandlineardynamicrange

InCEstudies,concentrationsoftheanalyteswerevariedwithin therangeof5.3–100␮gmL−1 and2.3–125␮gmL−1 forANTand TET,respectively.InHPLC,widerLDRswereachievedwithinthe concentrationrange of0.5–200␮gmL−1 forboth analytes. Cali-brationgraphswereconstructedbyplottingtheratioofthepeak areaofthedrugtothatoftheISagainsttheactivepharmaceutical ingredient(API)concentrationforHPLCandplottingconcentration versuspeakareaforCEwithrealizingrepeatedanalysis(Itwas checkedoverthesameconcentrationrangeonthreeconsecutive days).Thelinearregressionwasdemonstratedandtabulatedbythe necessaryparameters.

(4)

M.Gumustasetal./JournalofPharmaceuticalandBiomedicalAnalysis124(2016)390–398 393

Fig.2.OptimizationofHPLCmethod.(a)Optimizationofmobilephase,column:KinetexC18(150×4.6mm;5␮m),pHofthemobilephaseadjustedto3.0,25◦Ctemperature withtheflowrateof1mLmin−1,(b)Choiceofcolumn,pHofthemobilephaseadjustedto5.30,withaflowrateof1mLmin−1,compositionofmobilephase60:40(v/v)

ACN:Buffer(0.05%TFA),andtemperature25◦C.

2.4.3. Limitsofdetectionandquantification

LODandLOQwerecalculatedfromtheequationsinwhichthe standard deviationof response andtheslope of thecalibration curvewereused[18].

2.4.4. Precisionandaccuracy

Theintermediateprecisionwasassessedbycarryingout the analysisofatleastthreeworkingsolutionsinthreeconsecutive daysforinter-dayrepeatabilityanditwasevaluatedbyassayingat leastfiveinjectionswithusingoneconcentrationfromtheworking rangewithinthesamedayforintra-dayunderthesame experimen-talconditions.

Accuracy is one of the main requirements of any chro-matographicorcapillaryelectrophoreticmethodespeciallywhen workingon pharmaceuticals which is defined astheproximity oftheexperimentalvaluetothetruevaluefortherealsamples

[17,18].Recoverywascarriedoutbyspikingthealreadyanalyzed samplesofdosageformwiththeknownamountsofstandard solu-tionsofpharmaceuticalactivecompoundsindosageforms.

3. Resultsanddiscussion

3.1. OptimizationofCEconditions 3.1.1. Selectionofwavelength

OptimizationofCEconditionsaswellastheselectionof opti-mumdetectionwavelengthwasbasedoncorrectedpeakarea(CPA) whichofferedtheadvantageofhavingahigherreproducibilitythan wouldbeobtainedusingpeakareaorpeakheight.Absorptionof ANTandTETwasscannedintherangeof192–600nmanda3D absorptionspectrum(absorption-migrationtime-wavelength)was recorded.Itwasfoundthatbothanalytesabsorbedintherangeof 192–200nmwithabsorptionmaximabeingat192nm.

3.1.2. Typeofbufferanditsconcentration

Acidic,neutralandbasicbuffers(i.e.,acetatepH4.6,phosphate pH7.0andboratebufferatpH9.2)wereevaluatedtoachieve opti-mumefficiency.AlthoughpHofthebackgroundelectrolyte(BGE) had nonoticeableeffectonresolution(datanotshown), migra-tiontimeaswellaspeakareasdecreasedwithincreasingthepH whichwasthoughttobeduetothelowermagnitudeofthe elec-troosmoticflow(EOF)insidethecapillaryunderacidicconditions.

(5)

Fig.3.TypicalHPLCchromatogramsofpurebulksampleof50␮gmL−1TET(a)andmildstressedconditionsofsamples:in0.1MHClfor60min(b);in0.1MNaOHfor60min (c);in3%H2O2for60min(d);underUVlightat254nmfor6h(e);andat100◦Cfor6h(f).

Thus,thehighestCPAwasachievedusingacetatebufferatpH4.6 (Fig.1a).Despitethis,phosphatebufferatpH7.0waspreferredas acompromisebetweenpeakareaandmigrationtime.Theeffectof bufferconcentrationonCPAwasstudiedintherangeof5–50mM. Itwasobservedthatthehigheststabilitywasobtainedwithinthe rangeof10–25mMabovewhichcausedahighcurrentandwasthus avoided.Therewasnoconsiderableeffectofbufferconcentration onmigrationtimewithinthewholerange(i.e.,5–50mM).Above 20mMpeakareastartedtodecreasewhicheventuallydecreased CPA(Fig.1b).Thus,20mMphosphatebufferatpH7.0wasused throughouttheexperiments.

3.1.3. Organicmodifier

Addingasmallamountofanorganicsolvent(modifier)suchas methanol,ethanoloracetonitriletotheBGEiscommoninCEto improveresolution.Inthisstudy,theireffectwasstudiedwithno modifieraddedtotheBGEaswellasintherangeof5–15%(v/v). Itwasnoticedthatwithallofthesesolvents,theresolutionand thepeakareaswerealmostthesame.Thus,CPAdecreasedwith

increasingtheorganicpercentage(Fig.1c).Hence,nomodifierwas usedinthisstudy.

3.1.4. Separationvoltageandtemperature

Separationvoltagewasinvestigatedintherangeof18–27kV. Increasingtheseparationvoltagewithinthisrangedecreasedboth the migration time and peak areas. Calculating CPA, however, revealed that it increasedgradually up to22kV after which it startedtodecrease(Fig.1d).Thus,22kVwasappliedthereafter.

Capillarytemperaturewastestedovertherangeof12–30◦C. CPAincreasedgraduallyupto25◦Candthenstartedtodecrease. Increasingtheseparationtemperaturedecreasedboththe migra-tiontimeandpeakareas.ItwasseenthatCPAincreasedrapidlyup to25◦Candthenstartedtodecreaseafterwards(Fig.1e).Hence, thisvaluewasconsideredoptimumforfurtherexperiments.

3.1.5. Injectiontime

Theeffectofinjectiontimewasinvestigatedbyapplyinga pres-sureof50mbarfor5–17s.Although,increasingtheinjectiontime

(6)

M.Gumustasetal./JournalofPharmaceuticalandBiomedicalAnalysis124(2016)390–398 395

Fig.4.TypicalHPLCchromatogramsofpurebulksampleof50␮gmL−1ANT(a)andmildstressedconditionsofsamples:in0.1MHClfor60min(b);in0.1MNaOHfor60min (c);in3%H2O2for60min(d);(e)underUVlightat254nmfor6h;andat100◦Cfor6h(f).

withinthisrange hadnonoticeableeffectonmigration time,it eventuallyincreasedpeakareasandhenceCPA(Fig.1f).Despitethe factthatevenata17-sinjectiontimeagoodresolutionbetweenthe peakswasstillobserved,higherinjectiontimeswerenotapplied duetostartofdeteriorationofpeaksymmetry.Hence,aninjection timeof17swasconsideredoptimum.

Undertheelectrophoreticconditionswerealloptimized,the twoanalyteswereseparatedandsimultaneouslydeterminedin thecommercialpharmaceuticalpreparations.

3.2. OptimizationofHPLCconditions

ToobtainthebestHPLCconditions,stepbystepoptimization wasadopted. The point of anHPLC methoddevelopment is to achievesufficientresolutionofthetargetanalytesfromallother excipients,interferencesandmatrixeffectwithinashortanalysis timeandtoobtainsuitablepeaksymmetrywithacceptable effi-ciency[15,19].Differentnewgenerationstationaryphaseswhich werepackedas fullyporousand core-shellmaterialswere pri-marily tested. Using the same isocratic conditions, an efficient separationwasobtainedusingKinetexC18(150mm×4.6mmi.d., 5␮m)astheanalyticalcolumn.Fig.2ademonstratesthatwhen

core-shellparticleswereused,sharperpeakswereobtainedwhen comparingwithothercolumnsthathavetraditionalfullyporous particleswhichprovidedmuchmoreefficientanalysisinaddition of reduced analysistime.Poor separation wasobservedwithX Selectcolumnwhichnotonlyincreasedtheanalysistimebutalso producedbackpressurethatwasalmostthreetimesthatofthe other.XBridgecanalsobechosenforthesimultaneous determina-tionofANTandTETbutafteroptimizingallconditions,theelution timeswiththiscolumnwerelongerthanthoseobtainedwiththe core-shellpackedKinetexcolumn.

Theeffectofdifferentorganicsolventswithvariedcompositions inthemobilephasewasevaluatedwithdifferentbuffers.Forthis reason,acetonitrileandmethanolwereinvestigatedastheorganic solvents.Becauseofthenarrowandsharppeakshapesobtained withacetonitrile,thissolventwasselected.Theeffectof acetoni-trilecompositioninthemobilephasewastestedintherangeof 35–55%and theresultsare shownin Fig.2a. pHof themobile phaseisanotherremarkablepointforthemethoddevelopment. Becauseofthesharperandefficientsignals,TFA(0.05%)wasadded tothebufferandthepHwasadjustedto3.0with5MNaOH. Tem-peratureofthecolumnovenwasadjustedandstudiedwithinthe rangeof25–40◦C.Noremarkableeffectofcolumntemperaturewas

(7)

Fig.5. Representativeelectropherogram(a)andchromatogram(b)ofunspikedophthalmicsolutionsample.100␮gmL−1TETand30␮gmL−1ANTrespectively.2␮gmL−1 ISwasusedforHPLCanalysis.

observed.Therefore,25◦Cwaschosenastheoptimum tempera-ture.Thesystemsuitabilitytestresults,evaluatedaccordingtothe ICH,showedthatthedevelopedmethodwassuitableforthe simul-taneousdeterminationandquantificationofANTandTET.Under optimizedconditions,retentiontimesobtainedwere1.785,2.819 and3.165minforTET,ISandANT,respectively(Table1).

3.3. Analyticalperformanceandvalidation

Forpresentingthestabilityindicatingcapabilityofthe devel-opedHPLCmethod,forceddegradationstudieswereperformed. ThechromatogramsareshowninFigs.3and4anddegradation per-centagesweretabulatedaftereachtreatmentasshowninTable2. ThestocksolutionsofthecompoundsweredilutedwithHCl, NaOHandH2O2to50␮gmL−1andwaitedfor1h.Asamild

con-ditiontherewasveryfewamountofTETdegraded(2.57%)(Fig.3)

with0.1MHClandnodegradationobservedonANT(Fig.4).When applyingdrasticconditions(e.g.,1MHCl),3.37%ofTETand1.21% ANTdegraded.Incontrast,basichydrolysiswasmoreeffectivethan theacidicone.Asaresultofmildalkalinehydrolysis,8.43%ANT and5.38%TETdegradedafter1hoftreatment.Ontheotherhand, 1MofNaOHdegradedTETcompletelyand80%ofANT.The addi-tionof3%H2O2didnotshowanyeffectontheanalytesbutpeak

broadeningofTETwasobserved.Aftertreatmentwith30%H2O2,

theresultswerefoundas13.42%and5.24forTETandANT, respec-tively.SolidformsofbothcompoundswerekeptunderUVlightat 254nmforphotolyticandat100◦Cinanovenforthermal degrada-tion.Nodegradationwasobservedontheshortterm(6h)butafter 24h,theresultswithphotolyticdegradationwerefoundas27.76% and10.39%andtheresultofthermaldegradationwerefoundas 17.27%and35.50%forTETandANT,respectively.Asaresultofthese

(8)

M.Gumustasetal./JournalofPharmaceuticalandBiomedicalAnalysis124(2016)390–398 397

Table2

Resultsofhydrolytic,oxidizing,thermalandphotolyticstressconditions.

Stressconditions %DegradationofTET %DegradationofANT

Mildconditions HCl(0.1M) 2.57 ND NaOH(0.1M) 8.43 5.38 H2O2(3%) NDa 0.49 6hUV ND ND 6h100◦C ND ND Drasticconditions HCl(1M) 3.37 1.21 NaOH(1M) 100 80.63 H2O2(30%) 13.42 5.24 24hUV 27.76 10.39 24h100◦C 17.27 35.50

Eachvalueisthemeanoffiveexperiments.ND:Nodegradation.

aPeakshapegettingbroader.

Table3

RegressiondataofthecalibrationgraphsforquantitativedeterminationofTETand ANTbyHPLCandCE.

Compounds HPLC CE

TET ANT TET ANT

Linearityrange(␮gmL−1) 0.5−200 0.5−200 2.3–100 5.3–100 Slope 0.155 0.171 6.060 4.830 Intercept 0.023 0.038 −1.130 −7.440 Correlationcoefficient 0.999 0.999 0.999 0.998 SEofslope 1.16×10−3 6.63×10−4 0.050 0.080 SEofintercept 1.05×10−1 6.01×10−2 1.130 2.420 Limitofdetection(␮gmL−1) 0.068 0.078 0.70 1.60 Limitofquantification(␮gmL−1) 0.206 0.238 2.30 5.30 Within-dayprecisiona(RSD%) 0.426 0.388 2.10 1.80 Between-dayprecisiona(RSD%) 0.918 0.517 2.80 1.90 aEachvalueisthemeanoffiveexperiments.

experiments,thedevelopedHPLCmethodwasfoundasspecificfor theanalyzedAPIs.

Standard calibrationgraphs were constructed as mentioned above.Underoptimizedconditions,LODswerefoundas1.6and 0.7␮gmL−1 byCEand0.068and0.078␮gmL−1forTETandANT byHPLC,respectively(Table3).LOQswerecalculatedas5.3and 2.3␮gmL−1withCEand0.206and0.238␮gmL−1forANTandTET, respectively.Theresponsewaslinearovertheconcentrationranges of2.3–100,5.3–100withCEand0.5–200␮gmL−1withHPLCfor ANTandTET,respectively,withR2notlowerthan0.998withboth

methods.Reproducibilitywasevaluatedintermsofintradayand interdayprecision,byinjectingthestandardsatfiveconcentration levelsinthesamedayandinthreeconsecutivedays,respectively. AnacceptableprecisionwasobtainedinbothcasesRSD%values below2.8%forinterdayand2.1%forintradayexperimentswithCE and0.426%forinterdayand0.918%forintradayassayswithHPLC.

3.4. Analysisofpharmaceuticaldosageforms

In order to evaluatetheapplicability, recovery and possible matrix effectof theproposedCEmethod,thecommercial oph-thalmicsolution(Allergoconjunct®)withreportedconcentration

of0.15mgmL−1ANTand0.50mgmL−1TETwasexamined.Itwas ensuredthattheremovaloftheexcipientswithanextractionstep beforeanalysiswasunnecessary.AsindicatedbyTable4,the recov-eryresultswerefoundintherangebetween97.90–102.87%for bothmethods.Itwasconcludedthattheproposedmethodswere sufficiently accurateand precisefor thepharmaceutical dosage formofTETandANT.Theproposedmethodswerecompared sta-tistically.Bothmethods showedsimilaraccuracyand precision. A statistical comparison wasperformed ondataobtained from bothtechniques.Student’st-andFtestrevealednostatistically significant difference between methods with regard to accu-racyandprecision(Table4)[16–19].Typicalchromatogramand

Table4

AssayresultsandmeanrecoverystudiesofTETandANTinpharmaceuticaldosage forms.

Compounds HPLC CE

TET ANT TET ANT

Labeledclaim(mgmL−1) 0.500 0.150 0.500 0.150 Amountfound(mgmL−1)a 0.484 0.152 0.489 0.147 RSD(%)a 1.029 0.390 97.80 98.00 Bias(%) 3.200 −1.333 2.20 2.00 Added(mgmL−1) 0.250 0.075 0.250 0.075 Found(mgmL−1)a 0.254 0.077 0.246 0.073 Recovery(%) 101.565 102.870 98.20 97.90 %RSDofrecoverya 0.246 0.282 1.90 2.15 Bias(%) −1.565 −2.870 1.80 2.10

aEachvalueisthemeanoffiveexperiments.

electropherogram of ophthalmic solution sample are shown in

Fig.5aandb.Theanalyteswerebaselineseparatedinless than 4.5minwithbothtechniques.

4. Conclusion

Neither CE norstability-indicating HPLC methods are found intheliteratureforthesimultaneousdeterminationofANTand TETfrompharmaceutical dosageforms. For thisreason, CEand stability-indicatingHPLCmethodswerefullyvalidatedaccording totheICHguidelinesandwerepresentedforthedeterminationof ANTandTETinophthalmicformulationswhichoffersnumerous advantages,suchasrapidity,useofminimumamountsoforganic solvents, simplicity,low cost,easeofoperation,and high selec-tivity.Goodrecoveries,highreproducibilityandinterference-free electropherogramsandchromatogramswerealsoachieved.Even CEisstudiedasacomparisonmethod,itshowedbetterpeak capac-ityandefficiency.Furthermore,theconditioningtimeofCEshowed anadvantageoverHPLC.

The proposed methods present a step by step optimization procedure.Inthisstudy,newgenerationstationaryphaseswere comparedforthefirsttimewiththenewcolumnpacking mate-rialsespeciallythecore-shellparticles.Asa resultofthisstudy, theproposedmethodsare suitableforquality control laborato-ries,whereeconomy andtimeareessential.Highpercentageof recoveryresultsshowedthattheproposedmethodswerefreefrom interferences ofcommonlyusedexcipientsandadditives inthe formulations.

Acknowledgment

The authorsarethankful toGaziUniversity for thefinancial supportofthiswork“ProjectNo:BAP-02/2010-02’.

(9)

References

[1]R.Wang,Y.Chu,X.Li,B.Wan,T.Yu,L.Wang,Determinationofantazoline hydrochlorideinratplasmaandexcretabyreversed-phaseion-pair chromatographyanditsapplicationtopharmacokinetics,Biomed. Chromatogr.27(12)(2013)1595–1602.

[2]Martindale,in:S.C.Sweetman(Ed.),TheExtraPharmacopoeia,35thed., PharmaceuticalPress,London,UK,2007.

[3]K.D.Sanborn(Ed.),PhysiciansDeskReference(PDR),61sted.,Medical EconomicsCo.,Montvale,NJ,2007.

[4]GoodmanandGilman’s,in:L.L.Brunton(Ed.),ThePharmacologicalBasisof Therapeutics,11thed.,McGraw-HillMedicalPublicationsDivision,NewYork, 2006.

[5]M.S.Ali,M.Ghori,A.Saeed,Simultaneousdeterminationofofloxacin, tetrahydrozolinehydrochloride,andprednisoloneacetateby

high-performanceliquidchromatography,J.Chromatogr.Sci.40(8)(2002) 429–433.

[6]G.Puglisi,S.Sciuto,R.Chillemi,S.Mangiafico,Simultaneous

high-performanceliquidchromatographicdeterminationofantazoline phosphateandtetrahydrozolinehydrochlorideinophthalmicsolution,J. Chromatogr.A369C(1986)165–170.

[7]X.Li,Y.Chu,Y.Ke,L.Wang,T.Yu,L.Hao,Determinationofantazoline hydrochlorideinBeagledogplasmabyHPLC-UVanditsapplicationto pharmacokinetics,J.Chromatogr.B929(2013)97–101.

[8]N.A.Santagati,R.Pignatello,M.Fresta,Simultaneoushigh-performanceliquid chromatographydeterminationofantazolinephosphateand

tetrahydrozolinehydrochlorideinanophtalmicsolution,Boll.Chim.Farm. 131(3)(1992)117–119.

[9]A.Bekele,A.Hymete,A.A.Bekhit,DevelopmentandvalidationofHPTLC densitometricmethodforsimultaneousdeterminationofantazoline hydrochlorideandtetryzolinehydrochlorideineyedropanditsapplication asstabilityindicator,ThaiJ.Pharm.Sci.37(3)(2013)134–145.

[10]F.Gritti,C.A.Sanchez,T.Farkas,G.Guiochon,Achievingthefullperformance ofhighlyefficientcolumnsbyoptimizingconventionalbenchmark high-performanceliquidchromatographyinstruments,J.Chromatogr.A1217 (18)(2010)3000–3012.

[11]F.Gritti,G.J.Guiochon,Masstransferresistanceinnarrow-borecolumns packedwith1.7mparticlesinveryhighpressureliquidchromatography,J. Chromatogr.A1217(31)(2010)5069–5083.

[12]ICH,ICHGuideline(Q2A)(R1)ValidationofAnalyticalProcedures:Textand Methodology,ICH,2005.

[13]ICH,ICHGuideline(Q1AR)StabilityTestingofNewDrugSubstancesand ProductsInternationalConferenceonHarmonizationIFPMA,ICH,Geneva, 2000.

[14]TheUnitedStatesPharmacopeia(TheUSP32-NF27),TheOfficialCompendia ofStandards,UnitedStatesPharmacopeialConvention,TheUnitedStates Pharmacopeia,MD,Rockwille,USA,2009.

[15]M.Gumustas,S.Kurbanoglu,B.Uslu,S.A.Ozkan,UPLCversusHPLCondrug analysis:advantageous,applicationsandtheirvalidationparameters, Chromatographia76(2013)1365–1427.

[16]M.Gumustas,G.Coskun,S.A.Ozkan,Selectiveandsensitivedeterminationof repaglinideinpharmaceuticalsbyvoltammetricandLCmethods,Rev.Roum. Chim.60(5–6)(2015)477–490.

[17]M.Gumustas,C.Sengel-Turk,C.Hascicek,S.A.Ozkan,Optimizationofa validatedstability-indicatingRP-LCmethodforthedeterminationof fulvestrantfrompolymericbasednanoparticlesystems,drugsandbiological samples,Biomed.Chromatogr.28(2014)1409–1417.

[18]S.A.Ozkan,J.M.Kauffmann,P.Zuman,ElectroanalysisinBiomedicaland PharmaceuticalSciences,(Voltammetry,Amperometry,Biosensors, Applications),Springer-Verlag,BerlinHeidelberg,2015.

[19]D.M.Bliesner,ValidatingChromatographicMethods,APracticalGuide,John Wiley&Sons,Inc.,NJ,2006.

Referanslar

Benzer Belgeler

Necessary information on the delivery type, cord blood gas, head circumference, birth height and birth weight, gender, preductal and postductal oxygen saturations, newborn

Objectives: The aim of this study was to develop and optimize a simple, cost-effective, and robust high-performance liquid chromatography (HPLC) method by taking an experimental

Analytical method development and validation for simultaneous estimation of teneligliptin hydrobromide hydrate and metformin hydrochloride from its pharmaceutical dosage form by

Conclusion: The method developed for LFNM is simple and precise and can be applied for the separation and quantification of LFNM and its related impurities in bulk drug

In order to find out the accuracy of the proposed method, recovery studies were performed by spiking the sample of a capsule with an appropriate amount of a

No method reported previously estimation of triamcinolone in human blank plasma by using the protein precipitation (PPT) extraction in the literature.. The present work was

Simultaneous estimation of six anti-diabetic drugs: glibenclamide, gliclazide, glipizide, pioglitazone, repaglinide and rosiglitazone: development of a novel HPLC method

In this work, third party roles, structural interventions, and conflict transformation are treated as foreign policy tools that are available to international actors,