• Sonuç bulunamadı

Interacting Electromagnetic Shock Waves in General Relativity

N/A
N/A
Protected

Academic year: 2021

Share "Interacting Electromagnetic Shock Waves in General Relativity"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

NOTE BREVI

Interacting Electromagnetic Shock Waves in General

Relativity.

M. HALILSOu

Nuclear Engineering Department, King Abdulaziz University P.O. Box 9027, Geddah 21413, Saudi Arabia

(ricevuto il 12 Marzo 1987)

Summary. - - We study the interacting electromagnetic shock waves with nonconstant profiles in general relativity. It is shown that by modi- fying the metric functions of the Bell-Szekeres solution, such solutions can be obtained.

PACS. 04.20. - General relativity.

1 . - I n t r o d u c t i o n .

As a m a n i f e s t a t i o n of t h e nonlinear feature of general relativity, t w o light waves scatter each other to develop a new region of space-time k n o w n as the interaction region. A l t h o u g h this problem, in a n a l o g y with p h o t o n - p h o t o n scattering of q u a n t u m electrodynamics is an i m p o r t a n t one, little has been achieved t o w a r d a complete u n d e r s t a n d i n g of it. The first a n d a c t u a l l y the only available solution so far was given b y BELL a n d SZEKE~ES (1) (hence- forth, BS), describing t h e i n t e r a c t i o n of two constant-profile shock electro- m a g n e t i c (e.m.) waves. A m i n o r c o n t r i b u t i o n t o t h e BS solution was given later b y showing t h a t t h e n u m b e r of i n c o m i n g shock waves can be arbitrarily in- creased (2). I n this case the i n t e r a c t i o n region emerges as a region of m a n y BS cells whose e x a c t n u m b e r is d e t e r m i n e d b y t h e n u m b e r of i n c o m i n g shocks. The m a i n features of t h e BS solution however, such as g r a v i t a t i o n a l impulse waves (1) P. BELL and P. SZ~K~RES: Gen. l~el. Gray., 5, 275 (1974).

(3) M. GURSES and M. HALInSOY: Lett. Nuovo Cimento, 34, 588 (1982).

(2)

9 6 1K. HALILSOY

arising a t t h e null b o u n d a r i e s , c o n f o r m a l p r o p e r t i e s a n d the r e m o v a b l e sin- gularities r e m a i n u n c h a n g e d . T h e i n t e r a c t i o n region of t h e BS solution is iso- m e t r i c to t h e B e r t o t t i - l ~ o b i n s o n solution (a,4), which is k n o w n to be t h e u n i q u e c o n f o r m a l l y flat solution to Einstein-Maxwell (EM) equations for n o n n u l l e.m. field.

I n t h i s p a p e r we consider t h e i n t e r a c t i o n of n o n c o n s t a n t - p r o f i l e e.m. shock w a v e s a n d show t h a t ~he solutions can be o b t a i n e d b y m o d i f y i n g t h e a r g u m e n t s of t h e m e t r i c functions in t h e BS solution. T h e conclusion is t h a t locally we r e c o v e r t h e BS line e l e m e n t w i t h u o n c o n s t a n t e.m. field strength, w h e r e a s iu t h e null co-ordinates t h e t w o solutions differ. W e s t a t e our result d e p e n d i n g on t w o functions r e s t r i c t e d b y t w o c o n s t r a i n t conditions a n d t h e BS choice of null co-ordinates h a p p e n s t o b e t h e simplest f o r m satisfying those conditions.

2 . - I n t e r a c t i o n o f e l e c t r o m a g n e t i c w a v e s .

T h e generic f o r m of t h e 1Lae e l e m e n t describing t h e i n t e r a c t i o n region of t h e collinearly polarized (~) e.m. waves is g i v e n b y (~)

(1) ds~ = 2 e x p [ - M ] d u d v - - e x p [ - - U ] ( e x p [ V ] d x ~ + e x p [ - - V ] d y 2) ,

w h e r e t h e m e t r i c functions d e p e n d on t h e null co-ordinates u a n d v. T h e in- c o m i n g s t a t e s (regions I I a n d I I I ) are c h a r a c t e r i z e d b y nonflat m e t r i c s as- sociated w i t h incoming o.m. waves. Region I contains no e.m. w a v e s a n d m u s t n a t u r a l l y be fiat. F o r t h e details of t h e s p a c e - t i m e p i c t u r e we refer t o (5). T h e Maxwell a n d Einstein-Maxwell (EM) field equations as d e r i v e d in BS a r e given as follows (note t h a t we a d o p t t h e s a m e n o t a t i o n s of BS):

(2) 2q~,~ = u ~ : - - V.~o, (3) 2~o,,. = u,,q~o- v , , ~ , (4) ~1 = 0 , (5)

u.~= u~u~,

(6)

2 u . ~ - - ~ + 2 V . i ~ V~ + 4kl~l ~ , (7) 2 u ~ - ~ + 2 u~ ~rs~ = v~ + ~k[~o[,, (s)

2M.v+ u.u~= v.v~,

(k = const = G ) ,

(a) B. BERTOTTI: Phys. Rev., 116, 1331 (1959).

(3)

where t h e e.m. field a m p l i t u d e s (i.e. t h e s p i n o r c o m p o n e n t s ~o a n d ~ ) a r e t h e (~ scale i n v a r i a n t )> ones as defined in (5). T h e s o l u t i o n t o this s e t of e q u a t i o n s as o b t a i n e d b y B S is

(~o)

a b

M ~ 0 , ~2 : ~2 - - ~/~. - - c o n s t , ~0 ~-- ~0 ~-- V/~ - - c o n s t ,

cos (au -- by)

e x p [ - - U]---- cos (au -- by) cos (au ~- bv) , e x p IV] - -

cos (au -~ bv) T h e s o l u t i o n g i v e n in ref. (~), o n t h e o t h e r h a n d , is o b t a i n e d f r o m B S b y m o d i f y i n g t h e a r g u m e n t s of cosine t e r m s , n a m e l y b y m a k i n g t h e s u b s t i t u t i o n s

(:11)

auO(u) -~ ~ a~(u

--

u,)O(u

--

us),

n$

bvO(v) --> ~_, b~(v --v~)O(v -- vi)

(ai, bi c o n s t a n t s , r e l a t e d t o t h e fluxes of t h e s h o c k s ) .

T h e t h o r n f u n c t i o n s in t h e a r g u m e n t s g u a r a n t e e t h e c o n s i s t e n t m a t c h i n g of t h e disjoint s p a c e - t i m e regions, a l b e i t i t r e s t r i c t s t h e m e t r i c t o b e of class C ~ a n d piecewise C 1. T h e f a c t t h a t t h i s s u b s t i t u t i o n y i e l d s a n o n t r i v i a l r e s u l t is seen b y c o m p u t i n g t h e c o m p o n e n t s of t h e R i e m a u n t e n s o r .

3. - Interacting e l e c t r o m a g n e t i c w a v e s w i t h n o n c o n s t a n t field strength.

W e p r o v i d e n o w solutions to t h e a b o v e set of e q u a t i o n s (2)-(9) f o r t h e case w h e n ~o a n d ~, a r e n o t c o n s t a n t s (with still ~1--~ 0). F o r t h i s p u r p o s e we s u b s t i t u t e u --~ ](u) a n d v -> g(v), w h o r e ] a n d g a r e f u n c t i o n s t o b e d e t e r m i n e d below. T h e a n s a t z s o l u t i o n s e e k e d is e x p r e s s e d in t h e R o s e n f o r m b y

(12)

ds ~ ~ 2 ] ' g' d u dv -- cos ~ [a/(u) O(u) -- bg(v) 0(v)[ 4x ~ - -

- - cos ~ [a/(u) O(u) ~- bg(v) 0(v)[ d y ~ , w h e r e ]'-~ d//du, g ' = dg/dv a n d t h e e.m. s p i n o r c o m p o n e n t s a r e c h o s e n as

a b

(.13) ~ 2 = ~ / ' O ( u ) , % = ~ g ' O ( v ) .

(4)

9 8 5& HALILSOY

s i s t e n t l y yield t h e following conditions:

(J4)

/(u)~(u)

=

o,

(h

(~5)

~

O(u) ~ o

a n d similar conditions f o r t h e f u n c t i o n g. I t is r e a d i l y o b s e r v e d t h a t t h e simplest possible ](u) satisfying t h e s e c o n s t r a i n t s is t h e one corresponding to t h e BS solu- tion, n a m e l y , ](u) -~ u ( a n d g(v) -~ v). O t h e r i n t e r e s t i n g values which s~tisfy t h e a b o v e c o n s t r a i n t s w i t h o u t giving rise to d e g e n e r a c y in the s p a c e - t i m e m e t r i c a r e t h e following:

](u) = sinu, s i n h u , t g h u , u e x p [u], u c o s u , - ~ - ~ , ... ~ cos

(~6)

/

v }

g(v) = sin v, sinh v, t g h v, v e x p [v], v cos v, - - ~ , . . . . co8

I t is o b s e r v e d t h a t t h e n o n c o n s t a n c y of e.m. spinor c o m p o n e n t s serve t o gen- e r a t e t h e m e t r i c f t m c t i o n M~ which vanishes in t h e case of BS. I n t h e null t e t r a d lug-- e x p [ - - M/2]6~, n u = e x p [ - - M/216~,

(1

7) - - %/2mu : e x p

[--

U/'!](exp [V/'216~ + i e x p [V/216J), t h e scale-invariant, n o n v a n i s h i n g W e y l c o m p o n e n t s a r e given b y

(18)

I T ~ = - - a ( ~ u ) $ ( u ) t g b g ( ~ ) O ( v ) ,

I

~ g o = - - b

(~

~ ~(v) t g a ] ( u ) 0 ( u ) . L e t us n o t e t h a t t h e c o n s t r a i n t (15) is j u s t t h e r e q u i r e m e n t to p r o v i d e a non- flat m e t r i c .

I ~ order to i d e n t i f y t h e i n c o m i n g waves in t h e B r i n k m a n n (e) c o - o r d i n a t e s y s t e m , which is a h a r m o n i c s y s t e m , we express o u r solution in t h e BS f o r m

(19) ds 2 ---- 2 d] d g - - cos 2 (a/-- bg) dx ~ -- cos ~ (a] + bg) dy ~ ,

t h a t reduces in t h e region I I ( g - = 0) to

(20)

ds ~ ~ 2 d/dg -- cos ~ a](dx ~ + dy2).

(5)

This line element is obtained from t h e B r i n k m a n n metric

(21) ds ~ : 2 d U d V - d X ~ - d Y ~ - O ( U ) ( X 2 + y 2 ) d U s

b y the following co-ordinate t r a n s f o r m a t i o n (which is equivalent to a null rotation) :

/ U = / ,

X = x F ,

Y = y E ,

(22)

/

V ---- g -{- 89 (x * -{- y : ) F F , ,

where E ~ cos a]. I t is observed t h a t ] a n d g correspond to the null co-ordinates of regions I I a n d I I I , respectively, when t h e waves are expressed in har- monic co-ordinates.

4. - Electromagnetic-potential approach.

The basic El~r equations (5), (8) a n d (9) are obtained b y t h e variational principle of t h e Lagrangian

(23) L - - e x p [ - - U ] ( M ~ U , + M~U~-[- U ~ U v - - V ~ V ~ ) - - 2 k e x p [ - - V ] A u A v ,

where the e.m. 4-potential is given b y A , = A ~ . The e.m. spinor components are defined b y

('2~t

T h e variational equation, ~ L / ~ A : 0, yields the equation satisfied b y t h e potential function A, which is equivalent to the Maxwell equations given in eqs. (2) a n d (3). This is given b y

(25) (exp [-- V ] A , ) v + (exp [-- V I A l ) ~ : 0 ,

which admits t h e solution

We introduce now the following co-ordinates:

(6)

1 0 0 M. HALILSOY

so t h a t t h e space-time describing i n t e r a c t i n g e.m. waves is expressed b y

(~8)

1 ( d~ ~ d(~ ~ _ _ ( l _ _ ~ 2 ) d x ~ ( l _ ( ~ 2 ) d y 2

d s 2 = 2 a b ~ - - T 2 1 - - a 2]

a n d t h e o.m. p o t e n t i a l becomes A ~--~/(2/k)a.

A n o t h e r useful co-ordinate s y s t e m is p r o v i d e d b y t h e choice

(29) -~ a] + bg , ~ ---- a ] - - bg.

This co-ordinate system p r o v e s to be useful in s t u d y i n g geodesics m o t i o n a n d t h e Dirac equation in t h e i n t e r a c t i o n region (7). T h e space-time m e t r i c reads (we scaled x and y for obvious reason in t h e sequel)

(30) ds 2 = ~ [d~] 2 - d~ 2 - - cos2~ dy '2 - - cos 2 ~dx '*] .

This is easily t r a n s f o r m e d into B o r t o t t i - R o b i n s o n solution b y t h e following t r a n s f o r m a t i o n s :

(3:1) sin ~ r ' t x' ~ , 2y' In (r 2 - t 2) , ~ ~ ~ - - O, 2ab ] e 2

5 . - D i s c u s s i o n .

T h e p r o p e r solution for t h e problems of i n t e r a c t i n g (colliding) waves in general r e l a t i v i t y should go from region I (flat space), t h r o u g h regions IX a n d I I I (incoming regions) into region I V (the i n t e r a c t i o n region). T h e reverse order, n a m e l y from region I V to regions I I and I I I , a l t h o u g h h a p p e n s to be t h e simpler route, results m o s t l y in nonphysical incoming states. T h e choice of realistic wave forms yield u n f o r t u n a t e l y sot of coupled systems of p a r t i a l differential equations whose e x a c t solutions b e c o m e almost impossible.

F o r e.m. case, we h a v e shown t h a t changing t h e incoming waves o n l y serves to m o d i f y t h e metric functions in t h e BS metric. No m a t t e r how t h e profile of t h e incoming waves is chosen f r o m a set t h a t satisfies certain constraints, t h e e.m. waves continue into t h e i n t e r a c t i o n region unchanged. This m a y be a general f e a t u r e of i n t e r a c t i n g e.m. waves, a n d for this reason we p r e f e r to n a m e t h e problem interaction, r a t h e r t h a n collision. Locally, in t h e co-ordinates (v, o) or (~, 7) all solutions are expressed in BS f o r m , b u t in the null co-ordinates t h e details of incoming e.m. waves m o d i f y t h e a r g u m e n t s .

(7)

Referanslar

Benzer Belgeler

Definition: An entire function having growth not greater than of order 1 and normal type, that is satisfying the condition..

According to the analysis results; (i) women living in rural areas faced physical and emotional violence more than women living in urban areas at a rate of 1.9 times; (ii) women

Plane waves in general relativity, whether pure gravita- tional, scalar, electromagnetic (em), neutrino, or any combination of these are known to exhibit nonlinear features,

We present an exact solution that describes collision of electromagnetic shock waves coupled with axion plane waves.. The axion has a rather special coupling to the cross

We present a new family of exact solutions for the Einstein equations that describes colliding gravitational shock waves with cross polarizationI. In the limit of single polarization

Furthermore, the thin-shell under our investigation has spherically symmetric whose inside and outside space-times are both spherical solutions of the Einstein equations.. Our

It is well known that the extremals of the harmonic map action between two riemannian manifolds provide genuine solutions for the Einstein field equations in the

In this sec- tion, we shall consider the collision of the plane wave packets that contain; plane impulsive gravitational waves accompanied with shock gravitational waves coupled