• Sonuç bulunamadı

on real balls and von Neumann inequality Shift operators on harmonic Hilbert function spaces Journal of Functional Analysis

N/A
N/A
Protected

Academic year: 2021

Share "on real balls and von Neumann inequality Shift operators on harmonic Hilbert function spaces Journal of Functional Analysis"

Copied!
32
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Shift operators on harmonic Hilbert function spaces on real balls and von Neumann inequality

Daniel Alpaya, H. Turgay Kaptanoğlub,∗

aSchmidCollegeofScienceandTechnology,ChapmanUniversity,Orange,CA 92866,UnitedStatesofAmerica

bBilkentÜniversitesi,MatematikBölümü,06800Ankara,Turkey

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received5August2020 Accepted15April2021 Availableonline22April2021 CommunicatedbyStefaanVaes

MSC:

primary47A13,47B32,33C55 secondary31B05,33C45,42B35, 46E20,46E22,47B37

Keywords:

Harmonicshift Harmonictypeoperator VonNeumanninequality Drury-Arvesonspace

On harmonicfunction spaces, wedefine shift operators us- ingzonalharmonicsandpartialderivatives,anddeveloptheir basicproperties.Theseoperatorsturnout tobe multiplica- tionsby thecoordinatevariablesfollowedby projectionson harmonicsubspaces.Thisdualitygivesrisetoanewidentity forzonalharmonics.Weintroducelargefamiliesofreproduc- ingkernel Hilbertspacesof harmonicfunctionson theunit ballof Rn andinvestigate theactionof theshift operators on them. We prove a dilation result for a commuting row contractionwhichisalso whatwecallharmonictype.Asa consequence,weshowthatthenormofoneofourspacesG is˘ maximalamongthosespaceswithcontractivenormsonhar- monicpolynomials.WethenobtainavonNeumanninequality forharmonicpolynomialsofacommutingharmonic-typerow contraction.Thisyieldsthemaximalityoftheoperatornorm ofaharmonicpolynomialoftheshiftonG making˘ thisspace anaturalharmoniccounterpartoftheDrury-Arvesonspace.

©2021ElsevierInc.Allrightsreserved.

* Correspondingauthor.

E-mailaddresses:alpay@chapman.edu(D. Alpay),kaptan@fen.bilkent.edu.tr(H.T. Kaptanoğlu).

URLs:http://www1.chapman.edu/~alpay/(D. Alpay),http://www.fen.bilkent.edu.tr/~kaptan/

(H.T. Kaptanoğlu).

https://doi.org/10.1016/j.jfa.2021.109058

0022-1236/©2021ElsevierInc. Allrightsreserved.

(2)

1. Introduction

AfterthepioneeringworkofDrury[10] andArveson[6] onextendingthevonNeumann inequality tocommuting operatortuples, there havebeen several other generalizations to Hilbertspace operatorsinother settings.Wecancite [20],[3],[16],[11],[13],and[8]

to name afew. There is alsothe earlier[19] on noncommutingoperator tuples. Butin allvon Neumanninequalitiesthatweknow of,thepolynomialsactingontheoperators are holomorphic functionsof theirvariables. It isthe aimof this workto obtainavon Neumanninequalityinwhichthepolynomials areharmonicintheusualsense inRn.

MultivariableversionsofvonNeumanninequalityoftendependonshiftoperatorson a specific Hilbertfunction space. This immediately brings outthe first major obstacle in dealingwith harmonicity. Eventhe definitionof a shiftoperator on aspace of har- monic functionshasnotbeen madebefore, becauseharmonicity isnotpreservedunder multiplication, and amultiplication byacoordinatevariablemust be followedbysome form ofaprojectiononharmonicfunctions.Wemakeadefinitionandcheck itbyusing another approach.

Another obstacle is to decide which space among harmonic function spaces plays a role like thatofthe Drury-Arvesonspace among holomorphicspaces.We findoutthat consideringafamilyofreproducingkernelHilbertspacesGqofharmonicfunctionsonthe unitballofRnindexedbyq∈ R ismorefeasiblesinceitexposesthecompositionsofthe spaces better.Thenitiseasierto pickoneofthesespaces astheharmoniccounterpart of theDrury-Arvesonspaceusingitsextremalpropertiesinthefamily.

Onemoreobstacleisthatthemorecomplicatedstructure ofharmonicfunctionsper- sistsat theoperatorleveland weare obligedtorestrictourattentioninvon Neumann inequalitytoaclassofcontractionsthatwecall harmonictype.

We now present our major results; for them it helps to have some familiarity with the classical knowledge on harmonic polynomials summarized in Section 3. For m = 0,1,2,. . .,let Pm and Hm denote thehomogeneouspolynomials ofdegree m and spherical harmonicsofdegreem on Rn,respectively.LetHm:Pm → Hm be thestan- dard projection. The zonal harmonics Zm(x,y) arethe reproducing kernels of theHm

with respecttotheL2 innerproductontheunitsphere.Forj = 1,. . . ,n,wedefine the shiftoperators Sj:Hm→ Hm+1actingonx by

SjZm(x, y) := 1 n + 2m

∂yjZm+1(x, y).

Our first main result shows thatSj is closely relatedto the operatorof multiplication Mxj bythejthcoordinatevariable.

Theorem 1.1.Sj= Hm+1Mxj forallj = 1,. . . ,n andm= 0,1,2,. . ..

Inthecourseofprovingthistheorem,weobtainthefollowingidentitiesfortheGegen- bauer polynomials Cmλ and theChebyshev polynomialsTm which seemnew.There, K

(3)

istheKelvintransformwhichtransformsaharmonicfunctionontheunitballtooneon itsexterior.

Theorem1.2. Forξ,η∈ S, wehave K

(η· ∂)mK[1]

(ξ) = (−1)mm! Cmn/2−1(ξ· η) (n≥ 3, m = 0, 1, 2, . . .), K

(η· ∂)mK[ log| · | ]

(ξ) = (−1)m(m− 1)! Tm(ξ· η) (n = 2, m = 1, 2, . . .).

Wedefine thespacethatweclaim tobe theharmonic versionoftheDrury-Arveson spaceasthereproducingkernelHilbertspaceG on˘ theunitballofRn withreproducing kernel

G(x, y) :=˘

 m=0

1 Am

Zm(x, y),

whereAm isthecoefficientof(x· y)m intheexpansionofZm(x,y).Wecall commuting operators(T1,. . . ,Tn) arowcontractioniftheyareacontractionasatuple.Acontractive normisoneinwhichthetupleofshiftoperatorsisarowcontraction.Anothermainresult ofoursshowsthatthenormofG is˘ as largeas possible.

Theorem1.3. If · isacontractiveHilbertnormonharmonic polynomialsthatrespects theorthogonalityof L2,then· ≤ · G˘1.

Wecall anoperatortuple (T1,. . . ,Tn) harmonic type ifT1T1+· · · + TnTn = 0. The harmonicshiftS = ( ˘˘ S1,. . . ,S˘n) onG is˘ theprimeexampleofaharmonic-typeoperator.

Ourfinalmain resultisavonNeumanninequality.

Theorem1.4. Let(T1,. . . ,Tn) beaharmonic-typerowcontraction onaHilbertspace. If u isaharmonic polynomial,thenu(T1.. . . ,Tn)≤ u( ˘S1,. . . ,S˘n).

Allterminology is explained indetail in an appropriate section inthe paper. After introducinginSection2thebasicnotation,wemakeareviewofharmonic polynomials inSection3andgiveformulasfortheZm,Hm,andK.InSection4,wedefinetheshift operators on harmonic spaces, explain the meaning of the coefficient 1/(n+ 2m), and thenproveTheorem1.1.InSection5,we introduceanewfamilyofreproducing kernel HilbertspacesofharmonicfunctionsandisolateoneofthemasG by˘ makingitclearwhy we need the coefficients1/Am in G.˘ In Section 6, we find the basicproperties of shift operatorsandtheiradjointsactingontheHilbertspacesjustintroduced.InSection7,we investigatetherowcontractionsonharmonicHilbertspaces,explainthetermharmonic type,and proveanessentialdilation resultforharmonic-typeand self-adjoint operator tuples.InSection8,weproveTheorems1.3and1.4.

(4)

Acknowledgments

ThefirstauthorthankstheFosterG.andMaryMcGawProfessorshipinMathematical Sciences of Chapman University for its support. The second author thanks Aurelian GheondeaofBilkentUniversityandSerdarAyofAtılımUniversityforusefuldiscussions.

The authors also thank an anonymous referee for suggesting to consider self-adjoint operatorswhichencouragedustoobtaintheresultsonsuchoperatorsinthenexttolast section.

2. Notation

LetB andS betheopenunitballanditsboundarytheunitsphereinRnwithrespect to the usualinner product x· y = x1y1+· · · + xnyn and thenorm |x|=

x· x, where alwaysn≥ 2.Wewritex= rξ, y = ρη withr =|x|,ρ=|y|,andξ,η∈ S,andusethese throughout withoutfurther comment.When n = 2,the ball is justthe unitdisc D in the complexplanebounded bytheunitcircleT , and x,y∈ D arecomplexnumbersof moduluslessthan1.

In afewplaces, we alsouse thecomplexspace CN and its Hermitianinner product

z,w = z1w1+· · · + zNwN.Wecontinueto use|· |,B,andS in CN too.

Weletσ andν bethesurfaceandvolumemeasuresonS andB normalizedasσ(S)= 1 and ν(B)= 1. Weabbreviatetheall-importantLebesgue classL2(σ) to simplyL2. An overline(·) denotesclosureforsetsandcomplexconjugationforelements;forpolynomials inx,theconjugationaffectsonlythecoefficientsnaturally.Thegreatestintegerlessthan or equalto areal numberisshownby· .Therightside of:= definesitsleftside.

Harmonic functionsby definitionarethosesufficiently smoothfunctionsannihilated by the usual Laplacian Δ := ∂2/∂x21+· · · + ∂2/∂x2n. We leth(B) denote thespace of complex-valued harmonic functionsonB with the topologyof uniform convergence on compact subsets.

In the multi-indexnotation, α = (α1,. . . ,αn) isan n-tuple of nonnegative integers,

|α|= α1+· · · + αn, α!= α1!· · · αn!,00= 1,andxα= xα11· · · xαnn. Lettingj := ∂/∂xj and∂ := (∂1,. . . ,∂n),wealsohaveα= ∂1α1· · · ∂nαn,αxα= α! andp(∂)=

α

aααfor apolynomialp(x)=

α

aαxα.Soforp(x)=|x|2,

|x|2(∂) = Δ. (1)

ThePochhammersymbol (a)b is definedby

(a)b=Γ(a + b) Γ(a)

(5)

when a and a+ b are off the pole set −N ofthe gamma function Γ.This is a shifted risingfactorialsince(a)k = a(a+ 1)· · · (a+ k− 1) forpositive integerk.Inparticular, (1)k = k! and(a)0= 1.Stirlingformulagives

Γ(c + a)

Γ(c + b) ∼ ca−b, (a)c

(b)c ∼ ca−b, (c)a

(c)b ∼ ca−b (Re c→ ∞), (2) whereA∼ B meansthat|A/B| isboundedaboveandbelowbytwopositiveconstants, thatis,A=O(B) andB =O(A),forallA,B ofinterest.Soforexample,1−|x|∼ 1−|x|2 forallx∈ B.Such constantsthatareindependent oftheparametersandthefunctions in the equation are all denoted by the generic unadorned upper case C. We also use A B to meanA=O(B).

WedenoteaninnerproductonafunctionspaceH by[·,·]Handtheassociatednorm by· H.

Definition 2.1.A functionk(x,y) is called thereproducing kernel of aHilbertspace H offunctionsdefinedonB ifk(x,·)∈ H foreachx∈ B and

u(x) = [ u(·), k(x, ·) ]H (u∈ H, x ∈ B).

Thereisaone-to-onecorrespondencebetweenreproducingkernelHilbertspacesand positivedefinitekernels.Weusewordslike positiveandincreasingtomeannonnegative andnondecreasing.

Thealgebraofallboundedlinearoperators onacomplexHilbertspaceH isdenoted B(H).AnoperatorT onH iscalled positive andwewrite T ≥ 0 if[T v,v]H ≥ 0 forall v∈ H.Fora,b∈ H,a⊗ b denotestherank-1 operatordefinedby(a⊗ b)(v)=

v,b

Ha forv∈ H.

3. Harmonicpolynomials

Wereview theessentialsof zonalharmonics andtheKelvin transformfor complete- ness,becausewerefertothese factsmanytimesinthepaper.These resultsaremostly well-knownandcanbe consultedin[7,Chapters4&5].

Form= 0,1,2,. . .,letPmdenotethecomplexvectorspaceofallpolynomialshomo- geneous(withrespecttoreal scalars)ofdegreem onRn. Itisimmediatethat

(x· ∂)pm= m pm (pm∈ Pm). (3)

Let Hm be the subspace of Pm consisting of all harmonic homogeneous polynomials of degree m. By homogeneity, a pm ∈ Pm is determined by its restriction to S, and we freely identifypm with its restriction. The restrictionsof those um ∈ Hm to S are calledsphericalharmonics.WealsoletP andH denoteallpolynomialsandallharmonic polynomialsonRn.

(6)

WeregardPmandHmassubspacesofL2inissuesrequiringanormorinnerproduct.

Forexample,ifm= l,thenHmisorthogonal toHlwithrespect to[·,·]L2. Proposition 3.1. [7,Exercise5.12] If um,vm∈ Hm,then

um(∂)(vm) = n(n + 2)· · · (n + 2m − 2)

S

umvm

= 2m(n/2)m

um, vm]L2.

Proof. Letum(x)= 

|α|=m

bαxαandvm(x)= 

|α|=m

dαxα.By[7,Theorem5.14],theright sidesare 

|α|=m

α!bαdα. Itiseasytocheck thatthisis equaltoum(∂)(vm). 

Ifpm∈ Pm,thenthereareuniqueul∈ Hl suchthat

pm(x) = um(x) +|x|2um−2(x) +· · · + |x|2kum−2λ(x) (x∈ Rn),

where λ=m/2 .This decompositionis simplypm = um+ um−2+· · · + um−2λ when restrictedto S.Let

Hm:Pm→ Hm, pm→ um

bethemapthatprojectspmtoum.TheexplicitformulaforHmrequiressomeconstants cm, m= 1,2,. . .,definedby

cm:=

(−1)m2m(n/2− 1)m, if n≥ 3, (−1)m−12m−1(m− 1)!, if n = 2.

It alsomakesuseoftheKelvin transform K definedonafunctionf by K[f ](x) :=|x|2−nf (x) (x= 0), where x:= x

|x|2,

whichreducestoK[f ](x):= f (x) whenn= 2.NotethatK[f ]= f onS foranyn≥ 2.

TheKelvintransform islinearandinvertiblewith K−1= K.Afunctionis harmonicif andonlyifitsKelvintransformisharmonic.Sou(x)=|x|2−nisharmonicespeciallyfor n≥ 3 whereveritisdefinedsinceitistheKelvintransformoftheconstant1.Forn= 2, itis replacedinformulasbytheharmonicfunctionu(x)= log|x|.

Theorem 3.2.[7,Theorem5.18] Letm≥ 1 and pm∈ Pm.

(a) Hm(pm)(x)= 1 cm

K

pm(∂)|x|2−n

, if n≥ 3, K

pm(∂) log|x|

, if n = 2.

(7)

(b) When pm is restricted to S, then Hm (without any need for K) is an orthogonal projection with respectto[·,·]L2

ThespacesHm arefinitedimensional,henceclosed subspacesofL2,and

δm:= dimHm= (n + 2m− 2)(n− 1)m−1

m! (m≥ 1), (4)

which gives δm = 2 for m ≥ 1 when n = 2. When m = 0, H0 = C and δ0 = 1.

The next few are δ1 = n, δ2 = (n− 1)(n+ 2)/2, and δ3 = (n− 1)n(n+ 4)/6. Thus evaluation functionals at points η ∈ S arebounded on Hm, and Hm is a reproducing kernelHilbertspace.ItsreproducingkernelZm(ξ,η) withrespectto[·,·]L2 iscalledthe zonalharmonic ofdegreem;soZmisapositivedefinitefunction.EachZmisrealvalued andsymmetricinitsvariables,henceitisaharmonichomogeneouspolynomialineach ifitstwo variables.ThehomogeneityoftheZmgivesZm(x,y):= rmρmZm(ξ,η);so

Zm(0, y) = Zm(x, 0) = 0 (m≥ 1). (5) Theirreproducingpropertywrittenexplicitlyis

um(x) =



S

um(η) Zm(x, η) dσ(η) =

um(·), Zm(x,·)

L2 (x∈ B, um∈ Hm). (6) ThePoissonkernelis

P (x, η) := 1− |x|2

|x − η|n =

 m=0

Zm(x, η) (x∈ B, η ∈ S);

theseriesconvergesuniformly forx inacompactsubsetofB.

ThereisanexplicitformulafortheZmwhichisof majorinteresttous; itis

Zm(x, y) = (n+2m−2)

m/2

l=0

n(n+2)· · · (n+2m−2l−4)

(−1)l2ll! (m− 2l)! |x|2l(x·y)m−2l|y|2l

= Am0(x· y)m+Am1|x|2(x·y)m−2|y|2+Am2|x|4(x·y)m−4|y|4+· · · , (7)

whereAm:= Am0 istheleadingcoefficientobtainedforl = 0.Then

Am:= n(n + 2)· · · (n + 2m − 2)

m! = 2m(n/2)m

m! , (8)

where thenumeratoris thecoefficientinthe equationinProposition3.1. Thefirst few areA0= 1,A1= n,A2= n(n+ 2)/2,andA3= n(n+ 2)(n+ 4)/6.NotethatAm= 2m forallm= 0,1,2,. . . whenn= 2.

(8)

Interesting andusefulrelationsinclude

|Zm(ξ, η)| ≤ Zm(ξ, ξ) =

m/2

l=0

Aml= δm (ξ, η∈ S). (9)

If{Ym1,. . . ,Ym} isanorthonormalbasisforHm⊂ L2,then

Zm(ξ, η) =

δm



k=1

Ymk(ξ) Ymk(η). (10)

In particular, Z0 ≡ 1 and we takeY01 ≡ 1;also Z1(x,y)= n(x· y) and we canchoose Y1k(x)=

n xk fork = 1,. . . ,δ1= n. Itisalways possibleto choosetheYmk withreal coefficients.

Theorem 3.3. Every u ∈ h(B) has the homogeneous expansion u = 

m=0

um in which um∈ HmandwhichconvergesabsolutelyanduniformlyoncompactsubsetsofB.Letting umk=

um,Ymk

L2∈ C, wealso have

u(x) =

 m=0

δm



k=1

umkYmk(x) (x∈ B)

with thesametype ofconvergence.

Whenn= 2,we canusecomplexanalysis andFourieranalysis toconnecttheabove theory to better knownobjects. Then for all m ≥ 1, an orthonormal basis for Hm is {Ym1(x) = xm,Ym2(x) = xm : x ∈ C }. The expansion of a u ∈ h(B) with the Ymk

inTheorem 3.3 withsuitableboundarybehavior is itsFourierseries ontheunitcircle.

Lettingξ = e andη = e,wecanwrite

Zm(x, y) = xmym+ xmym= 2rmρmcos(φ− ψ) (m≥ 1).

It isamazing that this simpleform is equal to thesum in(7) for n= 2, whichis still complicated.

A comparison with thecomplex case donein [15, Section3] when n iseven is very instructive.WethinkofRn asCN byequatingn= 2N .Sphericalharmonicscorrespond to thespace of holomorphic polynomials homogeneousof degree m whichsimply have the form 

|α|=m

bαzα. Thedimensionofthis space is (N )m

m! , whichequals 1 foreverym when N = 1.Thecounterpartsofzonalharmonicsarethesesquiholomorphickernels

Mm(z, w) = (N )m

m! z, w m.

(9)

Thus the complex version of the sum in (7) has only the leading term Mm, and its coefficientisexactlythedimensionofthespaceofwhichMm isthereproducingkernel.

Note thatAm= δminthe harmoniccaseeven when n= 2. However,writing(7) with x= y = ξ andusing(9),wesee that

m/2

l=0

Aml= δm.By(2),wehave

δm∼ mn−2 and Am∼ 2mmn/2−1 (m→ ∞). (11) Yetthereproducingkernel oftheholomorphic Drury-Arvesonspace is 

m=0z,w m and not 

m=0

Mm(z,w).

Thereforewe must find theharmonic counterparts of thez,w m and we are ledto the

Xm(x, y) := 1

AmZm(x, y) = (x· y)m− · · · , (12) whichwecallthexonalharmonics.ThefirstfewareX0= 1,X1(x,y)= x· y,

X2(x, y) = (x· y)2−|x|2|y|2

n , X3(x, y) = (x· y)3 3

n + 2|x|2(x· y)|y|2. Byhomogeneity, (9),(4),and (8),weseethatforallx,y∈ B,

|Xm(x, y)| = rmρm|Xm(ξ, η)| = (rρ)m|Zm(ξ, η)|

Am ≤ (rρ)mδm

Am ≤ (rρ)m< 1 (13) incomplete analogywith|z,w m|≤ |z|m|w|m< 1 for z,w intheunitballofCN. 4. Shiftoperators

Wedefinetheshiftoperatorsonharmonicfunctionsfirstinanunusualway,butlater showthattheyareequivalent essentiallyto multiplicationsbythecoordinatevariables.

Themotivationforourdefinitionliesintheobservation 1

m + 1

∂wj

z, w m+1

= zjz, w m

forz,w∈ CN andtherealizationthatXm(x,y) replacesz,w m.

Definition4.1. For1≤ j ≤ n,wedefine thejth shiftoperator Sj:Hm→ Hm+1 acting onthevariablex byfirstletting

SjXm(x, y) := 1 m + 1

∂yjXm+1(x, y)

(10)

and thenextendingtoallofHmbylinearityandthedensityoftheXm(·,y) inHm. Note that all this make sense; a partial derivative of a harmonic function is again harmonic,andfinitelinearcombinationsofthereproducingkernelsZmandhenceofthe XmaredenseinHmin· L2.Alsonote thattheshiftactsonthefirstvariablex,but the partial derivativeis with respect to the second variable y. So occasionally we also use notation like Sx or y to indicatethe variables onwhich theyact. In termsof the morefamiliar zonalharmonics,

SjxZm(x, y) = Am

Am+1 1 m + 1

∂yjZm+1(x, y) = 1 n + 2m

∂yjZm+1(x, y).

Let’s denoteby Sj:Hm→ Hm−1 the adjointofSj with respectto [·,·]L2 inwhich the reproducingkernel ofHmis Zm= AmXm. Thisis ofcoursethe jthbackward shift operator.FirstwesetSj(X0)= Sj(1)= 0.Nextform≥ 1,using(6),symmetryofXm

initsvariables,anditsreal-valuedness, weobtain (Sjx)Xm(x, y) =

(Sjt)Xm(t, y), Am−1Xm−1(x, t)

L2

= Am−1

Xm(t, y), SjtXm−1(x, t)

L2

= Am−1

Xm(t, y), 1 m

∂xjXm(x, t)

L2

= 1 m

Am−1

Am

AmXm(t, y),

∂xjXm(x, t)

L2

= 1 m

Am−1 Am

∂xj

Xm(x, y),

wherey actsjustlikeaparameter.ThislastformulaforSjisindependentofthepartic- ular form ofthefunction onwhichit acts,so worksequallywell forum∈ Hm inplace of Xmbylinearityand densityagain. Thus

Sjum= 1 m

Am−1 Am

jum= 1

n + 2m− 2∂jum (um∈ Hm, m≥ 1). (14) It is clearthat theSj commute with eachother. Sothe shift S = (S1,. . . ,Sn) is a commutingtuple.

Shiftoperatorsonholomorphicfunctionspacesareoperatorsofmultiplicationbythe coordinate variables. Here we make a distinction between the two, becausethe latter doesnotingeneralcarryharmonicfunctionstoharmonicfunctionsunliketheformer.If f,g arefunctionsonthesamedomain,welet

Mgf = gf be theoperatorofmultiplication byg.

(11)

OneofourresultsconcernsalimitedversionoftheobviousfactthatifS isthetuple of shift operators ona space of holomorphic functionson a domain in CN and p is a holomorphicpolynomialinN complexvariables,then p(S)= Mp.It isafirstresulton theconnectionbetweenshiftsand multiplicationoperators.

Proposition 4.2.If u isa harmonic polynomial,then u(S)(1)= u.In other words,1 is acyclic vectorforh(B).

Proof. Itsufficesto consideru= um∈ Hm. By(6),repeated useof(14),and Proposi- tion3.1,

um(Sx)(1)(x) =

um(Sη)(Z0)(η, y), Zm(x, η)

L2

=

Z0(η, y), um((Sη))(Zm)(x, η)

L2

=

Z0(η, y), 1

n(n + 2)· · · (n + 2m − 2)um(∂η)(Zm)(x, η)

L2

= 1

2m(n/2)m

um(∂η)(Zm)(x, η), Z0(y, η)

L2

= 1

2m(n/2)mum(∂y)(Zm)(x, y)

=



S

um(·) Zm(x,·) dσ(·) = um(x).

Above,Sη andη mustbeinterpretedasSy

y=η andy

y=η,respectively.Notethatwe usetheharmonicityofumonlyinpassingtothelast line. 

Ifthefunctionactedonismorecomplicatedthan1,thenweofferthefollowingpartial result.

Proposition4.3. If pm∈ Pm,then

pm(Sx)(X)(x, y) = 1 (1 + )m

pm(∂y)(Xm+)(x, y).

Proof. FollowingthesameideaandnotationintheproofofProposition4.2, pm(Sx)(Z)(x, y) =

pm(Sη)(Z)(η, y), Zm+(x, η)

L2

=

Z(η, y), pm((Sη))(Zm+)(x, η)

L2

=

Z(η, y), pm(∂η)(Zm+)(x, η)

(n + 2 )(n + 2 + 2)· · · (n + 2 + 2m − 2)

L2

= 1

2m(n/2 + )m

pm(∂η)(Zm+(x, η), Z(y, η)

L2

(12)

= 1 2m(n/2 + )m

pm(∂y)(Zm+)(x, y).

Lastly, we pass to the xonal harmonics X = Z/A and simplify the resulting coeffi- cient. 

Our goal now is to express the shift operators Sj : Hm → Hm+1 in terms of the operators of multiplication by the coordinate variables Mxj : Hm → Pm+1, where for both j = 1,. . . ,n.ItisTheorem 1.1andwerestateit.

Theorem 4.4. For all j = 1,. . . ,n and m = 0,1,2. . ., if Sj : Hm → Hm+1, then Sj= Hm+1Mxj.

So the harmonic shiftsare really Toeplitz operators. Wefacilitate the longproof of this theorem withsomecomputationallemmas inwhichj = 1,. . . ,n,y is aparameter, and allpartial derivativesandKelvintransformsarewithrespecttox.

Lemma 4.5.Fora,b∈ R,easy computations give

j|x|a= a|x|a−2xj and j(x· y)b= b(x· y)b−1yj, (y· ∂)|x|a= a|x|a−2(x· y) and (y· ∂)(x · y)b= b(x· y)b−1|y|2.

Lemma 4.6. If a polynomial p has |x|2 as a factor, then p(∂)|x|2−n = 0 and also p(∂)log|x|= 0 whenn= 2.Consequently

Xm(∂, y)|x|2−n= (y· ∂)m|x|2−n and Xm(∂, y) log|x| = (y · ∂)mlog|x| (n = 2).

Proof. The firststatementfollows immediately from (1) and theharmonicity of|x|2−n andoflog|x| whenn= 2.Thesecondstatementfollowsfromtheexplicitformsofzonal harmonics in (7), because all the terms in Xm(x,y) except the first have a factor of

|x|2. 

This lemma isveryuseful, becauseitletsustreatXm asthesingle term(x· y)m in thepresenceof K orHm likeitsholomorphiccounterpartz,w m.

Lemma 4.7.Form≥ 1,

(y· ∂)m|x|2−n= cm Xm(x, y)

|x|n+2m−2 (n≥ 3), (y· ∂)mlog|x| = cm

Xm(x, y)

|x|2m (n = 2);

and hence

(13)

K

(y· ∂)m|x|2−n

= cmXm(x, y) (n≥ 3), K

(y· ∂)mlog|x|

= cmXm(x, y) (n = 2).

The identitiesform≥ 3 aretrue also form= 0 ifweset c0= 1.

FromLemma4.7,Theorem1.2 followseasilywhichwerestate.

Theorem4.8. Forξ,η∈ S, wehave K

(η· ∂)mK[1]

(ξ) = (−1)mm! Cmn/2−1(ξ· η) (n≥ 3, m = 0, 1, 2, . . .), K

(η· ∂)mK[ log| · | ]

(ξ) = (−1)m(m− 1)! Tm(ξ· η) (n = 2, m = 1, 2, . . .), where Cmλ is the Gegenbauer (ultraspherical) polynomial of degree m and indexλ, and TmistheChebyshev polynomialof thefirstkindof degree m.

Proof. Let’s first note that K[1] = |x|2−n for n = 3 and K[ log|x|] = log|x| for n= 2. Thefirstidentity isaconsequenceof thewell-knownrelationbetweenthe zonal harmonicsandGegenbauerpolynomials;see[12,(14.8)] forexample.Thesecondidentity holdsbecauseofthecloseconnectionbetweenGegenbauerpolynomials withparameter 0 andChebyshevpolynomials;see[18,18.1.1] forexample. 

The identities in Lemma 4.7 and Corollary 4.8 seem new; we are unable to locate theminstandardreferencessuchas[18].Theyalsogivefurtherindicationthatthexonal harmonicsXmareimportantintheirownrightsincethecoefficientsintheidentitiesin Lemma4.7 withtheZmarenotsimpleknownones.

Proof of Lemma4.7. Thesecondset ofidentitiesfollowsimmediately fromthefirstset, andfortheseweproceedbyinductiononm.Wegivetheproofonlyforn≥ 3;theproof for n = 2 is obtained by replacing |x|2−n by log|x| and setting n = 2 in appropriate places.Form= 1,byLemma4.5,

(y· ∂)|x|2−n= (2− n)|x|−n(x· y) = c1

X1(x, y)

|x|n .

NextweassumethefirstidentityinLemma4.7holdsform,andshowthatitalsoholds form+ 1.Byapplying theinductionhypothesis,differentiatingwiththequotient rule, andusingLemma4.5,weobtain

(y· ∂)m+1|x|2−n= (y· ∂)

cm Xm(x, y)

|x|n+2m−2



= cm|x|n+2m−2(y· ∂)Xm− Xm(n + 2m− 2)|x|n+2m−4(x· y)

|x|2n+4m−4

(14)

= cm|x|2(y· ∂)Xm− (n + 2m − 2)(x · y)Xm

|x|n+2m .

Writing outthecoefficients,wemustshow

(x· y)Xm |x|2

n + 2m− 2(y· ∂)Xm= Xm+1. By(7) andLemma4.5,theleftsideequals

n + 2m− 2 Am

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l)! |x|2l(x· y)m−2l+1|y|2l

1 Am

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l)! 2l|x|2l(x· y)m−2l+1|y|2l

1 Am

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l)! (m− 2l)|x|2l+2(x· y)m−2l−1|y|2l+2

= 1 Am

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2ll! (m− 2l)! |x|2l(x· y)m−2l+1|y|2l

+ 1 Am

m/2+1

l=1

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2l−1(l− 1)! (m − 2l + 1)!|x|2l(x· y)m−2l+1|y|2l

= m + 1 Am

m/2

l=1

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2ll! (m + 1− 2l)! |x|2l(x· y)m+1−2l|y|2l+ extra term + (x· y)m+1,

where theextra termis due to l =m/2 + 1 in the second sumon theprevious line.

Theright sideequals

n + 2m Am+1

(m+1)/2

l=1

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2ll! (m + 1− 2l)! |x|2l(x· y)m+1−2l|y|2l+ (x· y)m+1. Since (m+ 1)/Am = (n+ 2m)/Am+1, the two sides are equal except for the extra termandthatthesumontherightsideendsperhapsatalargervalue.Whenm iseven, thel givingrisetotheextratermequalsm/2+ 1,andthenm− 2l + 1=−1< 0 inthat term, sothere isreallynoextraterm.Also(m+ 1)/2 = m/2=m/2 ,andthesums onbothsidesendatthesamevalue.Whenm isodd,thel givingrisetotheextraterm equals (m+ 1)/2.Also(m+ 1)/2 = (m+ 1)/2.Sotheextratermandthelasttermin thesumontherightarethesame. 

(15)

Proof of Theorem4.4. Againwewritetheproofonlyforn≥ 3.Itsufficestodotheproof onlyforum(·)= Xm(·,y) asinDefinition4.1.InviewofLemma4.6andbyTheorem3.2, allweneedtoshowis

1 m + 1

∂yj

Xm+1(x, y) = 1 cm+1

K

∂xj

(y· ∂)m|x|2−n

forallm= 0,1,2,. . .,whereK and∂ arewithrespecttox.ApplyingLemma4.7onthe rightandcombiningtheconstants,thisequationtakes theform

∂yj

Xm+1(x, y) =− m + 1 n + 2m− 2K

∂xj

Xm(x, y)

|x|n+2m−2



(15)

By(7) andLemma4.5, theleft sideequals n + 2m

Am+1

(m+1)/2



l=0

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2ll! (m− 2l)! xj|x|2l(x· y)m−2l|y|2l

+

(m+1)/2

l=1

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2l−1(l− 1)! (m + 1 − 2l)!yj|x|2l(x· y)m+1−2l|y|2l−2

 .

ByLemma4.5,

∂xj

Xm(x, y)

|x|n+2m−2



= |x|n+2m−2jXm− Xm(n + 2m− 2)|x|n+2m−4xj

|x|2n+4m−4

= |x|2jXm− (n + 2m − 2)xjXm

|x|n+2m .

AftertakingtheKelvintransform,therightsideequals

(m + 1)

xjXm 1

n + 2m− 2|x|2∂Xm

∂xj



= m + 1 Am



(n + 2m− 2)

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l)! xj|x|2l(x· y)m−2l|y|2l

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l)! 2l xj|x|2l(x· y)m−2l|y|2l

m/2

l=0

n(n + 2)· · · (n + 2m − 2l − 4)

(−1)l2ll! (m− 2l − 1)! yj|x|2l+2(x· y)m−2l−1|y|2l



= m + 1 Am

m/2



l=0

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2ll! (m− 2l)! xj|x|2l(x· y)m−2l|y|2l

(16)

+

m/2+1

l=1

n(n + 2)· · · (n + 2m − 2l − 2)

(−1)l2l−1(l− 1)! (m + 1 − 2l)!yj|x|2l(x· y)m+1−2l|y|2l−2

 .

Since thecoefficients multiplying thesums areequal,the twosides areequalexcept perhaps inthe upperlimitsof thesums.Let m beeven. Theupper limitonthe leftis l =(m+ 1)/2 = m/2=m/2 .Inthesumwithxj,thisisalsotheupperlimitonthe right.Thesumwithyj ontherightendswithl = m/2+ 1,butthenm+ 1−2l = −1< 0, so this term is not really there. Next let m be odd. The upper limit on the left is l = (m+ 1)/2 = (m+ 1)/2 =m/2 + 1. Inthe sumwith yj,this is also theupper limit onthe right.Thesum withxj onthe right endswith l = (m− 1)/2,so it seems as ifthetermontheleftwithl = (m+ 1)/2 isextra,butthenm− 2l = −1< 0,sothis termisnotreallythere,either. 

Example 4.9. Let’s compute the action of shifts on a very simple harmonic function.

Let’s find S1u andS2u for u(x)= x1. We apply Theorem 4.4 and follow therecipe in Theorem 3.2separately for n≥ 3 and n= 2.Straightforward computations yield that S1x1 = x21− |x|2/n for any n ≥ 2. On theother hand,simply S2x1 = x2x1 since this product isalreadyharmonic.

5. HarmonicHilbertfunctionspaces

Weareinspiredbyafewearlierworksindefiningnewreproducingkernelswithdesired properties.In[16],familiesofweightedsymmetricFockspacesofholomorphicfunctions thatincludetheDrury-Arvesonspacearestudiedfollowing [6]. In[12],Bergman-Besov kernels are definedas weightedinfinite sumsofzonal harmonics muchlike the Poisson kernel.Andwehavealreadynotedthattherighttoolisthexonalharmonicsratherthan thezonal harmonics.

Definition 5.1.Letβ :={βm> 0: β0= 1, m= 0,1,2,. . .} beasequencesatisfying

lim sup

m→∞

δm Am

βm

1/m

≤ 1. (16)

Wedefine positivedefinite kernelsby

Gβ(x, y) :=

 m=0

βmXm(x, y) (x, y∈ B)

and spacesGβ asthereproducingkernelHilbertspacesgeneratedbythese kernels.

Wecanalsowrite

Gβ(x, y) =

 m=0

δm



k=1

βm

Am

Ymk(x) Ymk(y) (x, y∈ B)

(17)

by(10).Nothingabouttheboundedness,summability,ormonotonicityofβ isassumed atthispoint.Butthecondition(16),via(13),ensuresthattheseriesdefiningthekernels Gβ converge absolutely and uniformly on compact subsets of B× B and hencedefine harmonicfunctionsof x,y∈ B.Forany β,

Gβ(0, y) = Gβ(x, 0) = 1 (17)

by(5) since β0 = 1, Gβ(x,y)= Gβ(y,x), and Gβ is real-valued. The Gβ depend onx andy viax· y sincetheZm areconstantmultiplesof Gegenbauerpolynomials ofx· y;

see[12,(14.8)]

Theorem5.2. Theelements of Gβ are harmonicfunctions onB.

Proof. This is by [5, p. 43]; the result there is stated for sesquiholomorphic kernels, butworks equallywell for harmonic kernels since both function classeshave thesame topology,thetopologyofuniformconvergenceoncompactsubsets.Thehypothesesthere aresatisfied,becauseeachGβ(x,y) islocallybounded by(13) andaharmonicfunction ineachvariableonB. 

AlsoeveryGβ− βmXm= 

l=mβlXl ispositive definite.Then by[5,Theorem II.1.2], everyHm iscontinuouslyimbeddedineachGβ.

Theorem5.3. Thespace Gβ coincideswith thespaceofharmonic functionsu on B with expansionsasin Theorem3.3forwhich

u2Gβ :=

 m=0

um2Gβ:=

 m=0

Am

βm um2L2 <∞ (18) equippedwith theinnerproduct

u, v

Gβ :=

 m=0

um, vm



Gβ :=

 m=0

Am

βm

um, vm



L2. (19)

Moreover,



Wmkβ :=

βm

AmYmk: k = 1, . . . , δm, m = 0, 1, 2, . . .



isanorthonormal basisforGβ.

Proof. Weadapttheproofof[5,Theorem III.3.1] tooursituationmainlytoshowhow theL2 normcomesin.Considerthespaceofu∈ h(B) satisfyingthefinitenesscondition

Referanslar

Benzer Belgeler

Hobbs ve Horn (1997), farklı ÇKKV yöntemlerinin birbirini tamamlayan güçlü yönleri olduğunu ve bu nedenle en iyi yaklaşımın genellikle birbirini tamamlayan iki

A novel iterative thermal size reduction technique is used to stepwise reduce a macroscopic rod material down to ordered arrays of extremely long nanowires embedded in a

Once the fact was established that the teaching staff and the administration saw a need for in - service TTPs as a means of professional development at the Freshman Unit , it

As well as the sympathy we have for others’ physical sufferings which is defined by Grouchy as the sympathy we are naturally inclined to show because the physical suffering is

 Accessory fruit can be simple, aggregate, or multiple, i.e., they can include one or more pistils and other parts from the same flower, or the pistils and other parts of

If f is differentiable at a, then f is continuous at a.. The proof is in

Since the properties (uniqueness and continuous dependence on the data) are satis…ed, Laplace’s equation with u speci…ed on the boundary is a

eld, and it is the unique function eld with this genus, up to isomorphism. More- over, it has a very large automorphism group. Until recently there was no known maximal function