• Sonuç bulunamadı

Singular integral equation involving a multivariable analog of Mittag-Leffler function

N/A
N/A
Protected

Academic year: 2021

Share "Singular integral equation involving a multivariable analog of Mittag-Leffler function"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

R E S E A R C H

Open Access

Singular integral equation involving a

multivariable analog of Mittag-Leffler

function

Sebastien Gaboury

1*

and Mehmet Ali Özarslan

2 *Correspondence:

s1gabour@uqac.ca

1Department of Mathematics and

Computer Science, University of Quebec at Chicoutimi, Quebec, G7H 2B1, Canada

Full list of author information is available at the end of the article

Abstract

Motivated by the recent work of the second author (Özarslan in Appl. Math. Comput. 229:350-358, 2014), we present, in this paper, some fractional calculus formulas for a mild generalization of the multivariable Mittag-Leffler function, a Schläfli’s type contour integral representation, some multilinear and mixed multilateral generating functions; and, finally, we consider a singular integral equation with the function

E((γρrr),(1)),λ(x1, . . . , xr) in the kernel and we provide its solution.

MSC: 26A33; 33E12

Keywords: fractional integrals and derivatives; Mittag-Leffler function; contour integral representation; generating functions; singular integral equation; Laplace transform

1 Introduction

The celebrated Mittag-Leffler function [, ] is defined by

Eα(z) = ∞  k= zk (αk + ) (.)  α∈ C; (α) > ; z ∈ C,

whereC denotes the set of complex numbers.

The Mittag-Leffler function arises naturally in the solution of fractional integral equa-tions []. A generalization of the Mittag-Leffler function Eα(z) has been investigated by

Wiman []. He studied the following function:

Eα,β(z) = ∞  k= zk (αk + β) (.)  α, β∈ C; (α) > ; (β) > ; z ∈ C.

Other generalizations of the Mittag-Leffler functions were given in [, ]. Let us recall the one given by Srivastava and Tomovski []:

(2)

Eγα,β,K(z) = ∞  k= (γ )Kn (αk + β) zk k! (.)  α, β, γ ∈ C; (α) > max,(K) – ;(K) > ; (β) > ; z ∈ C,

where (λ)κdenotes the Pochhammer symbol defined, in terms of the Gamma function, by

(λ)κ:= (λ + κ) (λ) = ⎧ ⎨ ⎩ λ(λ + )· · · (λ + n – ) (κ = n ∈ N; λ ∈ C),(κ = ; λ∈ C \ {}), (.)

whereN denotes the set of positive integers.

Multivariable analog of the Mittag-Leffler function has been introduced and investi-gated by Saxena et al. [, p., Eq. (.)] in the following form:

E(γr) (ρr),λ(z, . . . , zr) = E ,...,γr) ,...,ρr),λ(z, . . . , zr) = ∞  k,...,kr= )k· · · (γr)kr (kρ+· · · + krρr+ λ) zk  · · · zrkr k!· · · kr! (.)  λ, zj, γj, ρj∈ C; (ρj) > ; j = , , . . . , r  .

This function is, in fact, a special case of the generalized Lauricella series in several vari-ables, introduced by Srivastava and Daoust [] and Srivastava and Karlsson [].

A mild generalization of the multivariable analog of the Mittag-Leffler function, which will play an important role in this paper, has been given by Saxena et al. [, p., Eq. (.)]:

E(γr),(lr) (ρr),λ (z, . . . , zr) = ∞  k,...,kr= )kl· · · (γr)krlr (kρ+· · · + krρr+ λ) zk  · · · zkrr k!· · · kr! (.)  λ∈ C \ Z–; γj, ρj, lj∈ C; (ρj) > ;(lj) > ; j = , , . . . , r  .

Recently, the second author in [] introduced a class of polynomials suggested by the multivariate Laguerre polynomials in the following form:

Z(α)n,...,nr(x, . . . , xr; ρ, . . . , ρr) =(ρn+· · · + ρrnr+ α + ) n!· · · nr! n,...,nr k,...,kr (–n)k· · · (–nr)krx ρk  · · · x ρrkr r (ρk+· · · + ρrkr+ α + )k!· · · kr! (.)  α, ρ, . . . , ρr∈ C; (ρj) >  (j = , , . . . , r)  .

It is easy to see that the following relation between the class of polynomials given by (.) and the generalized multivariable Mittag-Leffler function (.) exists:

(3)

Note that by further specializing the several parameters involved, we can obtain many well-known classes of polynomials such as the Laguerre polynomials of r variables defined by Erdélyi [] and the Konhauser polynomials [].

Another interesting generalization of the polynomials Z(α)n,...,nr(x, . . . , xr; ρ, . . . , ρr) is

given by Z(α;N,...,Nr) n,...,nr (x, . . . , xr; ρ, . . . , ρr) =(ρn+· · · + ρrnr+ α + ) n!· · · nr! [Nn],...,[nrNr]  k,...,kr= (–n)Nk· · · (–nr)Nrkrx ρk  · · · x ρrkr r (ρk+· · · + ρrkr+ α + )k!· · · kr! (.)  α, ρ, . . . , ρr∈ C, (ρi) > , Ni∈ N (i = , . . . , r)  .

Obviously, setting Ni=  (i = , . . . , r) leads to (.).

In this paper, we obtain a Schläfli’s type contour integral representation for the multi-variable polynomials given in (.). Next, we give some multilinear and mixed multilateral generating functions. We also recall the fractional order integral of the generalized mul-tivariable Mittag-Leffler function. Finally, we consider a singular integral equation with

E(γr),()

(ρr),λ (x, . . . , xr) in the kernel and we give its solution. Throughout this paper, the

vari-ables x, . . . , xrare assumed to be real variables.

2 Schläfli’s type contour integral representation of Z(α;N1,. . . ,Nr)

n1,. . . ,nr (x1, . . . , xr;

ρ1

, . . . ,

ρ

r)

Let us define the following polynomials set:

P(N,...,Nr) n,...,nr (x, . . . , xr; ρ, . . . , ρr) := [Nn],...,[Nrnr]  k,...,kr= (–n)Nk· · · (–nr)Nrkr k  · · · x ρrkr r k!· · · kr! (.)  ρj∈ C; (ρj) > ; Nj∈ N (j = , . . . , r)  .

The Schläfli’s type contour integral representation of Z(α;N,...,Nr)

n,...,nr (x, . . . , xr; ρ, . . . , ρr) in

terms of P(N,...,Nr)

n,...,nr (x, . . . , xr; ρ, . . . , ρr) is given in the next theorem.

Theorem . Let α, ρj∈ C with (ρj) >  (j = , . . . , r) and let Nj∈ N (j = , . . . , r). Then the following integral representation holds true:

(4)

Proof We have  π i (+) –∞ P (N,...,Nr) n,...,nr xt , . . . , xr t; ρ, . . . , ρr t–α–etdt =  π i (+) –∞ [Nn],...,[Nrnr]  k,...,kr= (–n)Nk· · · (–nr)Nrkr k!· · · kr! k  · · · xρrrkr et k+···+ρrkr+α+dt. (.)

With the help of Hankel’s formula []  (z)=  π i (+) –∞ t –zetdt, (.)

we find from (.) and (.) the result asserted by Theorem ..  3 Multilinear and multilateral generating functions

We begin this section by proving a linear generating function for the polynomials

Z(α;Nn,...,n,...,Nj j)(x, . . . , xj; ρ, . . . , ρj) by means of the mild generalization of the multivariate

ana-log of Mittag-Leffler functions. Theorem . We have ∞  n,...,nj= )n· · · (γj)njZ (α;N,...,Nj) n,...,nj (x, . . . , xj; ρ, . . . , ρj) (ρn+· · · + ρjnj+ α + ) tn  · · · t nj j = j i= ( – ti)–γiE (γj),(Nj) ρ,...,ρj,α+   (–t)N( – t)N , . . . ,x ρj j (–tj)Nj ( – tj)Nj , where|ti| <  (i = , . . . , j). Proof Direct calculations yield

(5)

where we have interchanged the order of summations which is guaranteed because of the uniform convergence of the series under the conditions|ti| <  (i = , . . . , j). 

Now let (γ ) := (γ, . . . γj), (λ) := (λ, . . . , λj), (η) := (η, . . . , ηj), (ψ) := (ψ, . . . , ψj), (ρ) :=

, . . . , ρj), (N) := (N, . . . , Nj) be complex j-tuples. By making use of the above theorem

we have the following.

Theorem . Corresponding to an identically non-vanishing function (η)(ξ, . . . , ξs) of complex variables ξ, . . . , ξs(s∈ N), let

(η),(ψ)(ξ, . . . , ξs; ς, . . . , ςj) := ∞  k,...,kj= ak,...,kj ηk,...,ηj+ψjkj(ξ, . . . , ξs)ς k  · · · ς kj j (ak,...,kj= ). (.)

Suppose also that (γ ),(λ),(η),(ψ),α,(N)n,...,nj;q,...,qj  ξ, . . . , ξs; x, . . . , xj; (ρ); ς, . . . , ςj  = [nq],...[njkj]  k,...,kj= ak,...,kj ηk,...,ηj+ψjkj(ξ, . . . , ξs) ×+ λk)n–qk· · · (γj+ λjkj)nj–qjkjZ (α;N,...,Nj) n–qk,...,nj–qjkj(x, . . . , xj; ρ, . . . , ρj) (ρ(n– qk) +· · · + ρj(nj– qjkj) + α + ) × ςk  · · · ς kj j (q, . . . , qj∈ N). (.) Then ∞  n,...,nj= (γ ),(λ),(η),(ψ),α,(N)n,...,nj;q,...,qj ξ, . . . , ξs; x, . . . , xj; (ρ); ςtq  , . . . ,ςj tjqj tn  · · · t nj j = j i= ( – ti)–γi(η),(ψ) ξ, . . . , ξs; ς( – t)λ , . . . , ςj ( – tj)λj × E(γj),(Nj) ρ,...,ρj,α+   (–t)N( – t)N , . . . ,x ρj j (–tj)Nj ( – tj)Nj , (.)

provided that each member of(.) exists and|ti| <  (i = , . . . , j).

Proof Following similar lines to [], the proof is completed. 

4 Fractional integrals and derivatives

In this section, we first recall the definitions of the Riemann-Liouville fractional inte-grals and derivatives. Next, we give the fractional integral and derivative of the gener-alized multivariable Mittag-Leffler function E(γr),(lr)

(ρr),λ (x, . . . , xr) where xjare real variables

(6)

Definition . Let = [a, b] be a finite interval of the real axis. The Riemann-Liouville fractional integral of order α∈ C with (α) >  is defined by

xIaα+[f ] =(α) x a f(t) dt (x – t)–α (x > a). (.)

It is well known [, p.] that

xIα+



xp= ( + p)

( + p + α)x

p+α (α) > ; (p) > –. (.)

Definition . Let = [a, b] be a finite interval of the real axis. The Riemann-Liouville fractional derivative of order α∈ C with (α) ≥  is defined by

xDαa+[f ] = d dx n x Ian+–α[f ]  n=(α)+ ; x > a, (.) where [(α)] denotes the integral part of (α).

Using (.), we see easily that

xDα+



xp= ( + p)

( + p – α)x

p–α (α) ≥ ; (p) > –. (.)

Now, let us give two fractional calculus formulas obtained by Jaimini and Gupta [, p., Eqs. () and ()] involving the generalized multivariable Mittag-Leffler function. Theorem . Let α, λ, ρj, γj, lj, ωj∈ C such that (α) > ; (λ) > ; (ρj) > ;(lj) > 

(j = , . . . , r). Then the following fractional calculus formulas:

xIα+  –E(γr),(lr) (ρr),λ  ω, . . . , ωrxρr  = xλ+α–E(γr),(lr) (ρr),λ+α  ω, . . . , ωrxρr  (.) and xDα+  –E(γr),(lr) (ρr),λ  ω, . . . , ωrxρr  = xλ–α–E(γr),(lr) (ρr),λ–α  ω, . . . , ωrxρr  (.) hold true.

Setting λ = λ + , lj= ωj=  (j = , . . . , r), replacing γ, . . . , γr, respectively, by –n, . . . , –nr,

where nj(j = , . . . , r) are positive integers in (.) and (.), and making use of (.) yield

the following special cases given by Özarslan [, p., Theorem  and Theorem ]:

(7)

Further special cases of (.) and (.) can be obtained by suitably specializing the coeffi-cients involved. For instance, if we set lj=  (j = , . . . , r), then (.) and (.) reduce to two

results obtained by Saxena et al. [].

We end this section by giving a recurrence relation for the generalized multivariable Mittag-Leffler function E(γr),(lr)

(ρr),λ (z, . . . , zr).

Theorem . Let λ, ρj, γj, lj∈ C such that (λ) > ; (ρj) > ;(lj) >  (j = , . . . , r). Then the following recurrence relation holds true:

E(γr),(lr) (ρr),λ (z, . . . , zr) = λE (γr),(lr) (ρr),λ+(z, . . . , zr) + r  i= ρizi ∂zi E(γr),(lr) (ρr),λ+(z, . . . , zr). (.)

Proof From (.), we have

λE(γr),(lr) (ρr),λ+(z, . . . , zr) + r  i= ρizi ∂zi E(γr),(lr) (ρr),λ+(z, . . . , zr) = ∞  k,...,kr= )kl· · · (γr)krlr (kρ+· · · + krρr+ λ + ) [λ + ρk+· · · + ρrkr] zk  · · · zkrr k!· · · kr! = E(γr),(lr) (ρr),λ (z, . . . , zr). (.) 

5 Singular integral equation

In this section, we solve a singular integral equation with the generalized multivariable Mittag-Leffler function in the kernel. To do so, we first find the Laplace transform of the function E(γr),(lr)

(ρr),λ ((μx)

ρ, . . . , (μx)ρr) and we compute an integral involving the product of

two generalized multivariable Mittag-Leffler functions.

We denote the Laplace transform of a function f [, p.] by

Lf(t)(p) =f(p) =

e–ptf(t) dt (p) > . (.)

Lemma . Let p, λ, μ, ρj, γj, lj∈ C such that (p) > ; (μ) > ; (λ) > ; (ρj) > ;(lj) >

(8)

Proof Using (.), we get L–E(γr),(lr) (ρr),λ  (μt)ρ, . . . , (μt)ρr(p) = ∞  k,...,kr= )kl· · · (γr)krlr (kρ+· · · + krρr+ λ) μρk+···+ρrkr k!· · · kr! · ∞  e–pttρk+···+ρrkr+λ–dt = ∞  k,...,kr= )kl· · · (γr)krlr (kρ+· · · + krρr+ λ) μρk+···+ρrkr k!· · · kr! · (kρ+· · · + krρr+ λ) pkρ+···+krρr+λ =  ∞  k,...,kr= )kl· · · (γr)krlr k!· · · kr! μ p ρk+···+ρrkr , (.)

where we used the well-known formula [, p., Eq. ()]  e–pttλ–dt=(λ)  min(λ), (p)> . (.)  Theorem . Let p, λ, μ, ν, ρj, γj, lj, σj, mj ∈ C such that (p) > ; (μ) > ; (ν) > ;

(λ) > ; (ρj) > ;(σj) > ;(lj) > ;(mj) >  (j = , . . . , r), we have x(x – t)λ–E(γr),(lr) (ρr),λ  μ[x – t]ρ , . . . ,μ[x – t]ρr × tν–E(σr),(mr) (ρr),ν  (μt)ρ, . . . , (μt)ρrdt = tλ+ν–Eγ,...,γr,σ,...,σ,l,...,lr,m,...,mr ρ,...,ρr,ρ,...,ρr,λ+ν  (μt)ρ, . . . , (μt)ρr, (μt)ρ, . . . , (μt)ρr. (.)

Proof With the help of the convolution theorem for the Laplace transform (see []) L xf(x – t)g(t) dt  (p) =Lf(x)(p)Lg(x)(p), (.) we have L x(x – t)λ–E(γr),(lr) (ρr),λ  μ[x – t]ρ, . . . ,μ[x – t]ρr × tν–E(σr),(mr) (ρr),ν  (μt)ρ, . . . , (μt)ρrdt  (p) =L–E(γr),(lr) (ρr),λ  (μt)ρ, . . . , (μt)ρr(p) · L–E(σr),(mr) (ρr),ν  (μt)ρ, . . . , (μt)ρr(p). (.)

(9)

=  ∞  k,...,kr= )kl· · · (γr)krlr k!· · · kr! μ p ρk+···+ρrkr ·  ∞  i,...,ir= )im· · · (σr)irmr i!· · · ir! μ p ρi+···+ρrir =  pλ+ν ∞  k,...,kr,i,...,ir= )kl· · · (γr)krlr· (σ)im· · · (σr)irmr k!· · · kr!· i!· · · ir! μ p ρ(k+i)+···+ρr(kr+ir) =Ltλ+ν–Eγ,...,γr,σ,...,σ,l,...,lr,m,...,mr ρ,...,ρr,ρ,...,ρr,λ+ν  (μt)ρ, . . . , (μt)ρr, (μt)ρ, . . . , (μt)ρr(p). (.)

Finally, taking the inverse Laplace transform on both sides of (.), the result follows.  Now, let us consider the following convolution equation involving the generalized mul-tivariable Mittag-Leffler in the kernel:

x(x – t)λ–E(γr),() (ρr),λ  μ[x – t]ρ , . . . ,μ[x – t]ρr· φ(t) dt = ψ(x), (.) where(α) > –.

Theorem . The singular integral equation(.) admits a locally integrable solution

φ(x) = x(x – t)ω–λ–E(–γr),() (ρr),ω–λ  μ[x – t]ρ , . . . ,μ[x – t]ρrtI–ω+ψ(t) dt, (.)

provided thattI–ω+ψ(t) exists for(ω) > (α + ) and is locally integrable for  < t < δ < ∞.

Proof Applying the Laplace transform on both sides of (.), using the convolution theo-rem as well as Lemma ., we find

∞  k,...,kr= )k· · · (γr)kr k!· · · kr! μ p ρk+···+ρrkr · Lφ(t)(p) =Lψ(t)(p), (.) which under the assumptions that|μp| <  can be rewritten as

r j=  – μ p ρj –γj · Lφ(t)(p) =Lψ(t)(p). (.) Therefore, we have Lφ(t)(p) =  r j=  – μ p ρj γj p–ω+λ  ·Lψ(t)(p). (.)

Taking the inverse Laplace transform on both sides of (.) and with the help of the fol-lowing property [, p., Eq. (.)]:

Lf(t)(p) =L tI–μ+f(t)



(10)

which holds for suitable f , we thus obtain φ(x) = x(x – t)ω–λ–E(–γr),() (ρr),ω–λ  μ[x – t]ρ, . . . ,μ[x – t]ρrtI–ω+ψ(t) dt. (.)  Competing interests

The authors declare that they have no competing interests. Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript. Author details

1Department of Mathematics and Computer Science, University of Quebec at Chicoutimi, Quebec, G7H 2B1, Canada. 2Eastern Mediterranean University, Gazimagusa, TRNC, Mersin, 10, Turkey.

Received: 10 July 2014 Accepted: 3 September 2014 Published:24 Sep 2014 References

1. Mitag-Leffler, GM: Sur la nouvelle function Eα(x). C. R. Acad. Sci. Paris 137, 554-558 (1903)

2. Mitag-Leffler, GM: Sur la représentation analytique d’une fonction monogène (cinquième note). Acta Math. 29, 101-181 (1905)

3. Saxena, RK, Mathai, AM, Haubold, HJ: On fractional kinetic equations. Astrophys. Space Sci. 282(1), 281-287 (2002) 4. Wiman, A: Über den fundamental Satz in der Theorien der Funktionen Eα(x). Acta Math. 29, 191-201 (1905)

5. Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971)

6. Srivastava, HM, Tomovski, Z: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198-210 (2009)

7. Saxena, RK, Kalla, SL, Saxena, R: Multivariable analogue of generalized Mittag-Leffler function. Integral Transforms Spec. Funct. 22, 533-548 (2011)

8. Srivastava, HM, Daoust, MC: Certain generalized Neumann expansion associated with Kampé de Fériet function. Proc. K. Ned. Akad. Wet., Ser. A, Indag. Math. 31, 449-457 (1969)

9. Srivastava, HM, Karlsson, PW: Multiple Gaussian Hypergeometric Series. Ellis Horwood, Chichester (1985) 10. Özarslan, MA: On a singular integral equation including a set of multivariate polynomials suggested by Laguerre

polynomials. Appl. Math. Comput. 229, 350-358 (2014)

11. Erdélyi, A: Beitrag zur theorie der konfluenten hypergeometrischen funktionen von mehreren veränderlichen. Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. IIa 146, 431-467 (1937)

12. Konhauser, JDE: Biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 21, 303-314 (1967) 13. Erdélyi, A, Magnus, W, Oberhettinger, F, Tricomi, F: Higher Transcendental Functions, vols. 1-3. McGraw-Hill, New York

(1953)

14. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier, Amsterdam (2006)

15. Jaimini, BB, Gupta, J: On certain fractional differential equations involving generalized multivariable Mittag-Leffler function. Note Mat. 32(2), 141-156 (2012)

16. Srivastava, HM, Manocha, HL: A Treatise on Generating Functions. Ellis Horwood, Chichester (1984)

17. Titchmarsh, EC: Introduction to the Theory of Fourier Integrals, 3rd edn. Chelsea, New York (1986). The first edition in Oxford University Press, Oxford (1937)

10.1186/1687-1847-2014-252

Cite this article as: Gaboury and Özarslan: Singular integral equation involving a multivariable analog of

Referanslar

Benzer Belgeler

In a trial conducted by Metcalfe (16) et al., rate of ath- erosclerotic renal artery disease in patients with PAD in ≥ 3 segments (43,4%) was found to be higher than in patients

“Şinasi’nin tesirinde kalmaya başlayınca, Divan nazmının özelliklerinde ve tasavvuftan sıyrılarak büyük bir hızla hayata, çevreye ve bu arada Batı dünyasına

sırada ise yüksekten düşme (%16) olduğu, Schatzker sınıflandırmasına göre olgularımızda en sık Tip I ve Tip V kırıkları (% 51 oranında) ,

Hair and serum trace element (copper, selenium, zinc, magnesium, manganese, and iron) levels in patients with AD showed no significant difference according to mini mental test

In this chapter we explore some of the applications of the definite integral by using it to compute areas between curves, volumes of solids, and the work done by a varying force....

4.7 The effect of palmitoleate on palmitate-induced inactivation of 5 ’ AMP activated protein kinase...54 4.8 The effect of PERK and IRE1 branches of the Unfolded Protein Response

Keywords: Mittag-Leffler; extended Beta functions; fractional derivative; Mellin transform; Laguerre polynomials; Whittaker functions; Wright generalized hypergeometric functions..

Keywords: Mittag-Leffler functions, Laguerre and Konhauser polynomials, Laplace transform, fractional integrals and derivatives, generating functions, convolution inte- gral