• Sonuç bulunamadı

Population of a low-spin positive-parity band from high-spin intruder states in Au-177: The two-state mixing effect

N/A
N/A
Protected

Academic year: 2021

Share "Population of a low-spin positive-parity band from high-spin intruder states in Au-177: The two-state mixing effect"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Population of a low-spin positive-parity band from high-spin intruder

states in 177 Au: The two-state mixing effect

M. Venhart

a,∗

, M. Balogh

a

, A. Herzá ˇn

a

, J.L. Wood

c

, F.A. Ali

b,d

, D.T. Joss

b

, A.N. Andreyev

e,f

,

K. Auranen

g

, R.J. Carroll

b

, M.C. Drummond

b

, J.L. Easton

h,i

, P.T. Greenlees

g

, T. Grahn

g

,

A. Gredley

b

, J. Henderson

e

, U. Jakobsson

g,1

, R. Julin

g

, S. Juutinen

g

, J. Konki

g,2

,

E.A. Lawrie

h,i

, M. Leino

g

, V. Matoušek

a

, C.G. McPeake

b

, D. O’Donnell

b,3

, R.D. Page

b

,

J. Pakarinen

g

, P. Papadakis

b,4

, J. Partanen

g,5

, P. Peura

g,6

, P. Rahkila

g

, P. Ruotsalainen

g

,

M. Sandzelius

g

, J. Sarén

g

, B. Saygı

j,k

, M. Sedlák

a

, C. Scholey

g

, J. Sorri

g,7

, S. Stolze

g,8

,

A. Thornthwaite

b

, R. Urban

a

, J. Uusitalo

g

, M. Veselský

l

, F.P. Wearing

b

,

aInstituteofPhysics,SlovakAcademyofSciences,SK-84511Bratislava,Slovakia bOliverLodgeLaboratory,UniversityofLiverpool,Liverpool,L697ZE,UnitedKingdom cDepartmentofPhysics,GeorgiaInstituteofTechnology,Atlanta,GA 30332,USA

dDepartmentofPhysics,CollegeofScienceEducation,UniversityofSulaimani,P.O.Box334,Sulaimani,KurdistanRegion,Iraq eDepartmentofPhysics,UniversityofYork,Heslington,YorkYO105DD,UnitedKingdom

fAdvancedScienceResearchCenter,JapanAtomicEnergyAgency(JAEA),Tokai-mura,Naka-gun,Ibaraki,319-1195,Japan gUniversityofJyvaskyla,DepartmentofPhysics,FI-40014UniversityofJyvaskyla,Finland

hiThembaLaboratoryforAcceleratorBasedSciences,P.O.Box722,7129SomersetWest,SouthAfrica iDepartmentofPhysicsandAstronomy,UniversityoftheWesternCape,P/BX17,Bellville7535,SouthAfrica jDepartmentofPhysics,FacultyofScience,EgeUniversity,Izmir,35100,Turkey

kDepartmentofPhysics,FacultyofScienceandArts,SakaryaUniversity,Sakarya,54187,Turkey lInstituteofExperimentalandAppliedPhysics,CzechTechnicalUniversity,Prague,CzechRepublic

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received1February2020

Receivedinrevisedform5May2020 Accepted11May2020

Availableonline14May2020 Editor: B.Blank

Keywords:

In-beamspectroscopy γrays

177Au 179Au

Two-statemixing

Theextremelyneutron-deficientisotopes177,179Auwerestudiedbymeansofin-beamγ-rayspectroscopy.

Specifictaggingtechniques,α-decaytaggingin177Auandisomertaggingin179Au,wereusedforthese studies. Feedingof positive-parity,nearly spherical states, whichare associated with 2d3/2 and 3s1/2 proton-holeconfigurations,from the1i13/2proton-intruderconfiguration was observedin177Au.Such adecaypathhasnoprecedentinodd-Auisotopesandit isexplainedbytheeffectofmixingofwave functionsoftheinitialstate.

©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthor.

E-mailaddress:martin.venhart@savba.sk(M. Venhart).

1 Presentaddress:DepartmentofChemistry,LaboratoryofRadiochemistry,P.O.

Box55,FI-00014UniversityofHelsinki,Finland.

2 Presentaddress:CERN,CH-1211Geneva23,Switzerland.

3 Presentaddress:SchoolofComputing,Engineering&PhysicalSciences,Univer- sityoftheWestofScotland,PaisleyPA12BE,UK.

4 Presentaddress:STFCDaresburyLaboratory,Daresbury,WarringtonWA44AD, UK.

5 Deceased.

6 Presentaddress:HelsinkiInstituteofPhysics,P.O.Box64FI-00014,Finland.

7 Presentaddress:STUK- RadiationandNuclearSafetyAuthority,P.O.BOX14, 00811Helsinki,Finland.

8 Presentaddress:PhysicsDivision,ArgonneNationalLaboratory,Argonne,Illinois 60439,USA.

In this Letter we present results on in-beam

γ

-ray spectro- scopic studies of177,179Au,withvarious taggingtechniques [1,2].

Previously, both isotopes were studied by means of in-beam

γ

- rayspectroscopyusingtheGammaspherespectrometercoupledto theFragmentMassAnalyser(FMA)atArgonneNationalLaboratory.

In 179Au [3], four rotational bands associated with 1h9/2, 2 f7/2, and 1i13/2 proton-intruder configurations were observed. Transi- tions connecting these structures to the ground state were not observed. In 177Au, only the yrast 1i13/2 band together with its decay patternwas reportedin the original publication [4]. Later, adataevaluationwas published [5], whichalsocontaineda rota- tionalbandbasedonthe9/2 state,probablyassociatedwiththe https://doi.org/10.1016/j.physletb.2020.135488

0370-2693/©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

intruderbands,namelythatdecoupling effectsresultinchanging spinorder ineachintruderband. Thisisestablished asoccurring in a systematicmanner in the positive-parity (“1i13/2”)band for thefirsttime.

A major step in understanding the structure of 179Au,and of odd-massAuisotopesingeneral,wasthediscoveryofa326 nsiso- mer,withspin-parity3/2 [6].Thediscoveryrequiredacombined analysisofdataacquiredattheUniversityofJyväskyläandatthe CERN-ISOLDEfacility, withapplicationofvarious techniquessuch as high-statistics

γ

-ray spectroscopy,

α

-decay spectroscopy,

α

- electronsummingeffects,includingGEANT4simulationsofatomic relaxationprocesses,andmass measurements. The326 ns isomer in 179Au de-excites by either a strong 62.4-27.1 keV cascade or via a weak 89.5 keV cross-over transition to the ground state.

Thedecaypatternsuggesteda positive-parity,proton-holeconfig- uration to be the ground state. The in-source laser spectroscopy experiment, performed recently at ISOLDE has assigned ground state spin-parities forboth 177,179Au unambiguously as1/2+ [7], confirming thepreviousconclusion.Measured magneticmoments suggest mixed 3s1/22d3/2 proton-hole configurations for these groundstates,inagreementwithfindingsreportedin [6].Theband headofstructuresreportedin [3] wasproposedtode-excitetothe 326 ns isomer. Connecting transitions were not observed, due to theirlowenergyandthusstronginternalconversion.However,the dataprovidedindirectevidenceforthem,seeadetaileddiscussion in [6].

The datapresented hereprove that intruder configurations in 179Au,identifiedinthestudy [3],decayexclusivelyviathe326 ns isomer. A newlevel scheme for177Au isconstructed, which sig- nificantly differs from that reported in [4]. A major difference betweenthe decayof the1i13/2 band in177Au and179Auis ob- served.Theheadofthisbandalsofeedspositive-paritystructures, whichis unprecedentedin odd-massAu isotopes. The 177Au iso- tope is a unique case, with mixing of coexisting strongly and weakly deformed configurations, caused by their proximity. This mixingopensthedecaypath,whichisotherwisesuppressed.

Twoseparate experiments were performedat the Accelerator Laboratory of the University of Jy ¨vaskylä. First, the 177Au nuclei wereproducedviathe92Mo(88Sr,p2n)177Aufusion-evaporationre- action.The bombardingenergyofthe88Sr10+ beamwas399 MeV withan averageintensity ofapproximately2 particle nA. Forpro- ductionof179Au,the82Kr(100Ru,p2n)179Aureactionwas used.The energy of the 82Kr15+ beam was 352 MeV with an average in- tensity of approximately 5 particle nA. In both experiments, self- supportingmetallictargetsofisotopicallyenrichedmaterialswere used. Heavy-ionbeams were delivered to the target chamber by theK = 130 MeVcyclotron.

Prompt

γ

radiation following reactions in the target was de- tectedby theJUROGAM-II array,whichconsistsof24clover- and 15single-crystalEUROGAM-typeCompton-suppressedgermanium detectors.Reactionproductswereseparatedin-flightfromthepri- marybeamby theRITUgas-filledseparator [8] accordingtotheir magnetic rigidities. At the focal plane of the separator, nuclei wereimplantedintodouble-sidedsiliconstripdetectors(DSSD)of thedetectionsystem GREAT [9]. Priorto theimplantation, nuclei passedthroughthemultiwireproportionalcounter(MWPC),which

The relatively long half life of 179Au (t1/2= 7.1(3) s [12]) and high implantation rate into the DSSD prevented the use of the recoil-decay tagging technique for this isotope. Fortunately, the high production rate of the 326 ns isomer [6], which decays via low-energy electric-dipole (E1) transitions that can be detected with highefficiency, offers an excellent option for applicationof the recoil-isomertagging technique. In the dataanalysis process, the recoil implantations that were followed by detection of the aforementioned isomeric

γ

rays within the time window up to 1 μs,wereselected.Prompt

γ

rays,observedinthetargetposition array, that preceded such implantations, were sortedinto a

γ

-

γ

matrix.Fig.2agivesaprojectionofthematrixwiththegateonthe 353.8 keV transition,whichisaknownde-excitationofthe25/2+ memberof theyrast 1i13/2 band [3]. Exceptforother knownin- bandtransitionsoftheyrastband,theunresolved144.7-145.3 keV doublettogether withthe220.3,241.9,349.9, and370.5 keVtran- sitions are evident. Energies of components of the doublet were determined using the “running” gate technique [13]. The 220.3 and 241.9 keV transitions are known de-excitations of the 11/2 and13/2 membersofthe2 f7/2 and1h9/2 proton-intruder con- figurations. The 144.7, and145.3 keV transitions, as correctlyas- signedinthepreviousin-beamstudy [3],arede-excitationsofthe 13/2+stateoftheyrastbandfeedingnearlydegenerate11/2and 13/2 states,see thelevelschemeinFig. 1.Inthestudy [3],the 349.9 and370.5 keVtransitionswereassignedasde-excitationsof 13/2+ and 9/2+ members of the 1i13/2 proton-intruder configu- ration feeding a floating state without spin assignment. Still the authorsofthestudy [3] discusstheoptionthatthese

γ

raysarise fromasingleinitialstateinthetext.

Since the 349.9 and 370.5 keV transitionsare observed in the spectrum tagged with the decayof the 326 ns isomer, they feed statesassociatedwithintruderstructuresabovetheisomer.Inthe previous study, no

γ

-ray detectors were employed at the focal plane of the FMA and thus this conclusion could not be made.

The energydifference of the 349.9 and370.5 keV transitions ex- actlymatchestheenergydifferenceofknown9/2,and7/2band heads of 1h9/2, and 2 f7/2 intruder configurations. This suggests that both transitions havea commoninitial state and feedthese bandheads,seethelevelschemeinFig.1.

Fig.2bdepictsaprojectionofthe

γ

-

γ

matrixtaggedwiththe decay ofthe326 ns isomer, withthe gateon the370.5 keV tran- sition.Thespectrumshowsonlyknownin-bandtransitionsofthe 1i13/2yrastband.Therefore,theinitialstateofthe370.5 keVtran- sitionisamemberofthisconfiguration.Analternativeassignment with, e.g., 1h9/2, or the2 f7/2 intruders, wouldrequire an obser- vation ofcorresponding rotational bandsin coincidence withthe 370.5 keV transition. This is not observed in the dataand there- fore the initial state is interpreted as the 9/2+ member of the 1i13/2 proton-intruder configuration. The 9/2+ state is produced by the anti-aligned coupling of the 1i13/2 proton with the first- excited 2+stateinthe178Ptcore.Severalsuchanti-alignedstates are known in odd-mass Au isotopes, see [13–15] and references therein,althoughallofthemareassociatedwiththe1h9/2,orthe 2 f7/2 intruderconfiguration.The15.1 keVtransitionwithpresum- ablyelectric-quadrupole(E2)character,connectingthe13/2+with the9/2+statewasnotobservedduetostronginternalconversion.

(3)

Fig. 1. Partiallevelschemesofthe177,179Auisotopesdeducedinthepresentwork.Notethattransitionsbetween3/2+and1/2+states,andbetween7/2and9/2states werenotobservedduetothestronginternalconversionandlowdetectionefficiency.Rotationalbandsassociatedwiththe1i13/2proton-intruderconfigurationareknown uptospin57/2h in¯ 177Au,and53/2¯h in179Au.So-farunobservedpositive-paritystatesthatareexpectedaccordingtoknownsystematicsofodd-massAuisotopes,associated with3s1/22d3/2proton-holeconfiguration(groundstate),areindicatedwithdashedlines.Theblueinsertgivespossibledecaysof9/2,7/2and5/2statesofthe1h9/2 and2 f7/2proton-intruderconfigurationsin179Au.Thesetransitionsarenotknown.Howeverthereisindirectevidenceforthemfromthepresentdataandfromtheαdecay of183Tl [6].

States associated with the 3s1/22d3/2 proton-hole configu- ration were studied in heavier odd-mass Au isotopes and well- developedsystematicswere established [14–16]. Thefirst excited stateabovethe1/2+groundstateisthe3/2+state,whichwasob- servedin179Auat27.1 keV [6].Accordingtoknownsystematics,a spin-parityof the next excited state is 5/2+.This state, whichis expectedatapproximately270 keV in 179Au, couldbe fed by the E2de-excitationofthe9/2+stateofthe1i13/2configuration.Such a decay branch would not proceed through the 326 ns isomeric stateandthereforecannotbeobservedinthespectrumpresented inFig.2a.Toidentifythisdecaypath,prompt

γ

raysprecedingall recoilimplantations, i.e., without requiringthe isomeric decayto bedetected,wereanalyzed.Tosuppresscontaminationsfromiso- topesproduced viadifferentevaporationchannelsofthereaction, thedataweresortedintoatriple-

γ

coincidencecube.Thisresults in significantly reduced statistics, compared with double coinci- dences, but the influence of contaminations in a double gate is negligibleandthus cleanerspectracanbe projected.Fig.2cgives a projection of the cube with gates on the 262.1, and 353.8 keV transitions.A signature of the directdecay path into theground state wouldbe observationof two parallel transitions that differ

by27.1 keV,andofthe E2de-excitationofthe9/2+ state.Parallel transitionswouldbedecaysofthe5/2+ tothe1/2+groundstate, andtothe3/2+27.1 keVfirst-excitedstate.Nosuchtransitionsap- pearinthespectrumdepictedinFig.2c.

The isotope 177Auhas two

α

-decaying states withwell sepa- ratedenergiesofemitted

α

particles(Eα = 6.12 MeVandt1/2= 1.18 s forthegroundstateandEα = 6.16 MeVandt1/2= 1.46 sfortheiso- meric state [4]).In contrastto the 179Au data, influence of ran- domlycorrelatedeventswasfoundtobenegligibleandtherecoil- decaytaggingtechnique couldbeapplied.Theprompt

γ

-raydata weresortedintotwoseparate

γ

-

γ

matrices, taggedwiththetwo different

α

decays.

The isomerthat emits6.12 MeV

α

particles isassigned asthe 11/2 state of the 1h11/2 proton-hole configuration. Thisassign- mentissupportedbytherecentobservationofapatternoftransi- tionsfeedingthisstate [17] andcomparisonwithwellestablished systematics [13–15].Theexcitationenergyof189(16) keVwasde- termined bythe

α

-

γ

decayspectroscopyof 181Tl [18]. Notethat the1h11/2proton-holeconfigurationisnotinvolvedinthedecayof intruderconfigurations in179Au,becauseknown systematics [14]

suggeststhattheintruderband-headislocatedbelowthe1h11/2.

(4)

Fig. 2. Spectraofγ raysof179Au a) taggedwithdecayofthe326 nsisomerand inpromptcoincidencewiththe353.8 keVtransition, b) taggedwithdecayofthe 326 nsisomerandinpromptcoincidencewiththe370.5 keVtransition,and c) in promptcoincidencewiththeboth353.8and262.7 keV(withouttagging).Transi- tionsoftheyrast1i13/2bandaredenotedwithanasterisk.

Fig. 3a gives the spectrum of

γ

rays tagged with the 11/2 isomeric state

α

decay and in coincidence with the 257.5 keV transitionofthe knownyrast band, whichis associatedwiththe 1i13/2 proton-intruder coinfiguration,see previous in-beam

γ

-ray study [4].Inadditiontotheyrastbandtransitionsthe241.2,289.9, and319.7 keVtransitionsareobserved.The241.2 keVtransitionis the knownmagnetic-dipole (M1) de-excitation ofthe 9/2 band headofthe1h9/2 intruderconfigurationtothe11/2ofthe1h11/2 proton-holeconfiguration [18].

Fig.3bgivesaspectrumof

γ

rays taggedwiththe11/2 iso- mericstate

α

decayandincoincidencewiththe319.7 keVtransi- tion,whichshowsonlythe241.2 keV transitiontogether withthe yrast band members. Therefore,the initial state ofthe 319.7 keV transitionisinterpretedasthe9/2+memberofthe1i13/2 proton- intruderconfiguration,onthebasisofthesameargumentsaswere used forthe 370.5 keV transitionin 179Au, seethe above discus- sion.

In the data evaluation for 177Au [5], the 290.3 keV transition was reported.Itwas interpretedasthe firstin-band transitionof the1h9/2 band. Theobserved coincidence betweenthe290.3 keV and transitions of the 1i13/2 band, which was reported already in the original publication [4], was explained by an unobserved E1feeding fromthe13/2+ state oftheyrastband. Presently,the 289.9 keV transitionis interpreted asa feedingof the7/2 band headoftheso-farunknown 2 f7/2 band fromthe9/2+ state. This interpretation isbased on theanalogy withthe decaypatternof the 9/2+ state in 179Au, see the level scheme in Fig. 1. How- ever, E1decays of the 13/2+, analogousto 144.7, and145.3 keV transitionsin 179Au,can exist.There isa weakpeak at261.2 keV observedincoincidencewiththe257.5 keVtransition, seeFig.3a.

Therotationalband associatedwiththe2 f7/2 configurationisnot known, but according to known systematics of 1h9/2 and 2 f7/2 bands [3,19,20], 11/2 and 13/2 members are expected to be nearlydegenerate.Therefore,the261.2 keV

γ

rayisinterpretedas the11/2to7/2transitionofthe2 f7/2band.The289.9 keVpeak isprobablyanunresolveddoublet.Inthiscaseitisnotpossibleto applythe“running”gatetechnique,sincetherearenocharacteris-

Fig. 3. Spectraofγ raystaggedwiththeisomericstateαdecayof177Auandin promptcoincidencewith a) the257.5 keV,and b) the319.7 keVtransitions.Transi- tionsoftheyrast1i13/2bandaredenotedwithanasterisk.

ticcoincidencesforbothtransitions.However,thisdoesnotaffect theunderstandingofthenuclearstructureof177Au.The E1tran- sitions feedingthe11/2 andthe 13/2 state werenot observed because oftheir low energyandthus low detection efficiencyof theJUROGAM-IIarray.

Transition probabilities for possible decays of 13/2+ states of the yrast bands were investigated for both isotopes. In the present work, fast collective E2 transitions feeding 9/2+ band heads areproposed asdominantde-excitationpaths,seethe dis- cussion above.In the179Auisotope, branchingratios of31.6%for the144.7 keV,22.6% forthe145.3 keV,and45.8%forun-observed the 15.1 keV transition, were determined. The branching ratiofor the un-observed transition was deduced as the sum of intensi- ties of the 370.5, and 349.9 keV

γ

rays in the 353.8 keV coin- cidence gate, see Fig. 2a. The reduced transition probability of 100 – 300 W.u. is assumed for the 13/2+ to 9/2+ transition. This assumption is based on the known reduced transition probabil- ity of 200(120) W.u. [21] of the 9/2 to 5/2 de-excitation in 185Au. Using the above branching ratios, this yields the reduced transitionprobabilitiesof(1 – 5)×105W.u.forbothE1transitions de-exciting the 13/2+ state in 179Au.The information on the E1 transition strengths is scanty in odd-massAu isotopes. In 189Au, the 7/2 state ofthe 1h11/2 proton-holeconfiguration feeds two 5/2+ states of the mixed3s1/22d3/2 proton-holeconfiguration via E1 transitions. These de-excitations have reduced transition probabilities of 3.0+157 ×105W.u. and 2.1+115 ×105W.u., respec- tively [22].Strengthsof E1transitionsconnectingtwo stateswith proton-intrudercharacterarenotknowninodd-massAuisotopes.

In175,179Au,isomeric E1transitionswiththeintruder-to-holena- turewereobserved,howevertheirreducedtransitionprobabilities weremeasuredtobe106– 108W.u. [6,23].Therefore,theabove values, estimated for transitions in 179Au, corroborate the inter- pretationwiththeintrudercharacterofbothofitsinitialandfinal states.Adoptingthesevaluesofreducedtransitionprobabilitiesfor the 177Auisotope suggeststhat 5 – 10% ofde-excitation of13/2+ state should proceed via unobserved E1 transitions, feeding the 11/2 and13/2 states of intruder bands.This is in agreement with the observation of the weak 261.2 keV transition in coinci- dencewiththe257.5 keVtransition,seeFig.3a.

Fig. 4agives thespectrum of

γ

raystagged withtheground- state

α

decayandinpromptcoincidencewiththe257.5 keVtran- sitionwhich,asalreadynoted,isamemberofthe1i13/2 band.In addition to the yrast band members,264.5, 290.2, and 452.6 keV transitions are observed. Fig. 4b,c give spectra of

γ

rays tagged withtheground-state

α

decayandinpromptcoincidencewiththe

(5)

Fig. 4. Spectraofγ raystaggedwiththe groundstateαdecayof177Auand in promptcoincidencewith a) the257.5 keV, b) the452.6 keV,and c) the290.2 keV transitions.Transitionsoftheyrast1i13/2bandaredenotedwithanasterisk.

452.6,and290.2 keV transitions.The 264.5, and290.2 keV transi- tionsare notincoincidencebutbothare incoincidencewiththe 452.6 keVtransition.Thereforetheyareinterpretedasmembersof theground-stateband, seelevelschemeinFig.1.Theenergydif- ference of parallel 264.5, and290.2 keV transitions identifies the firstexcitedstateofthe177Auisotopeat25.7 keV.

Theunambiguous1/2+ground-statespin-parityassignment [7]

provides another supporting argument for an unobserved transi- tioninthede-excitationpathofthe13/2+stateoftheyrastband.

This path contains only two transitions in a cascade, since the 290.2,and264.5 keV transitionsareparallel,seethelevelscheme inFig. 1.The 13/2+ state cannot de-exciteintothe 1/2+ ground stateviaonlytwotransitions,sinceitwouldrequirealargemulti- polarity,andthusaslowtransitionrate,foratleastoneofthem.

Thisisclearly notthecasewiththepresentdata,sinceall transi- tionswere observedatthetarget position,andinpromptcoinci- dences.

The177Auisotope isa unique casewherethe proton-intruder 1i13/2 yrastcascadesplitsatthebottom,feedingboth theground andthe isomeric state (via the 1h9/2 intruderstate). This is not thecasewiththe179Auisotope,seethediscussionaboveandthe levelscheme inFig.1. Thede-excitation probabilitiesof thebot- tom ofthe 1i13/2 intruder band were determined to be 69(13)%

forthefeedingthegroundstate,and31(6)%forthefeedingthe

α

- decayingisomericstate,usingthe“inverse”taggingtechnique.The gatewassetonthe160.2 keVtransitiondetectedatthetargetpo- sition,andthespectrumofcorresponding

α

-particleenergies was plotted.Theintensitiesof6.12and6.16 MeV peaksinthe

α

spec- trum(notshownhere)gavecorrespondingde-excitationprobabil- ities (after correction for known

α

-decaybranching ratios,taken from [18]).Weak de-exctitation paths through 13/2 and11/2 stateswereneglected.Assumingthesamereducedtransitionprob- abilities for E1 de-excitations as those estimated in 179Au, the B(E2) = 1 – 20 W.u.isexpectedforthe9/2+to5/2+transition.This iscomparablewiththereducedtransitionprobabilityof14(7) W.u.

for the 5/2+ to 1/2+ E2 transition in 193Au [24], which is the nearestodd-mass Auisotope,wherethe strengthofthe E2tran- sitionconnectingpositive-parity,proton-holestatesisknown.The

sametransition inthestable 197Au isotopehasa reducedtransi- tionprobabilityof14.4(17) W.u. [25].Thissuggestsanunhindered characterforthe9/2+to 5/2+ transitionin177Au.Measurements oflifetimesofexcitedstatesofboth177,179Auisotopes,thatwould yieldabsolutevaluesofreducedtransitionprobabilities,arethere- forehighlydemandtoelucidatethedetails.

The different de-excitation pattern observed in 177Au is ex- plainedbyaconfigurationmixing.Accordingtothesystematicsof thepositive-paritybandsinodd-massAuisotopes,the9/2+ state ofthegroundstatebandcanbeexpectedatasimilarenergyasin 187,189Au,i.e.,between700and760 keV [13–15]. Therefore,there aretwo 9/2+ statesexpectedtobe locatedclosetoeachother in 177Au.Oneistheanti-alignedstateofthe1i13/2 configuration,see thediscussionaboveandoneisthe9/2+ memberoftheground- stateband.Becausetheseconfigurationsareprobablylocatedclose toeachother,astrongmixingisexpected.Itisanintrudercompo- nentinthewavefunctionofbothstatesthatopensadecaypathof the13/2+memberofthe1i13/2configurationtowardstheground state. Estimated unhindered nature ofthe E2 transition, see dis- cussionabove,corroboratessuchinterpretation.Suchasituationis notknownnotoccurinanyotherodd-massAuisotope,andthere- fore decays into proton-hole stateswere not observed. In 179Au, the effect is weaker, since both 9/2+ states are more separated inthe energy.However, thenon-observationof the9/2+ to 5/2+ decay in179Au can be explained by the parabolic patternof the excitationenergyofintruderconfigurations [6].Theenergyofthe 9/2+ to5/2+ transitionin 179Aucan be expectedto be approxi- mately 215 keV. Since the E2transition strength dependson the

γ

-ray energy inthe fifth power, branching ratio of onlyapprox- imately 2% forthe feeding of the ground-state configurationcan beexpected.Suchaweaktransitioncannotbeobservedinpresent experimentduetolimitedstatistics.

The extensive systematics forintruder structures in odd-mass Au isotopes were established by means of in-beam

γ

-ray spec- troscopy [3,19,20,26–29], and β-decay spectroscopy [13,14]. The statesassociatedwiththe1i13/2 band wereobservedtode-excite exclusively to states of the same configuration or into the 1h9/2 configuration via parity-changing E1 transitions. De-excitations intopositive-parity statesassociatedwiththeproton-holeconfig- urations are strongly hindered due to the intruder-state-to-hole- statecharacter ofsuch transitions,ormightbesuppressedby the energy factor, as it is in 179Au. Another examples of such hin- drance is the observation of retarded M1 hole-state-to-intruder- state transitions withreduced transitionprobabilities of approxi- mately5×105W.u.in185,187,189Au [14],orthe E3isomerismin odd-Tlisotopes,see [18],andreferencestherein.

Thepresentworkprovidesakeyadvanceinunderstandingspin order associated with intruder bands. Thus, the 1i13/2 band ex- hibitstheappearanceofaspin-(j−2)state belowthespin-jstate, similar to the 1h9/2 and 2 f7/2 bands. Establishing this is criti- cal for theorganization of thedecays ofhigh-spin states.In this massregion,high-spinin-beamstudiesplay amajorrole because it is very difficult to populate low-spin states: the standard ap- proach via β decay is limited by competing

α

-decay channels.

At the next level of study, the present work paves the road to addingthehighlevel ofdetailexpectedin 181,183Aubycompari- sonwith185,187Au.Wenoteinparticularthatthestrongly-coupled bandobservedin177Au,reportedearlier [17],indicatesthat there are structural changes occurring in the Au isotopes which point to multipleshape coexistence,even lying beyondsuch structures establishedin 187Au.Recentmeasurement [30] oflifetimesofex- citedstatesoftherotationalbandassociatedwiththeintruder0+ configurationin178Hgcorroboratessuchinterpretation.

(6)

lenttechnicalsupport.This workhas beensupported by theEU- FP7-IAproject ENSAR(No.262010),theAcademy ofFinland(CoE in Nuclear and Accelerator Based Physics, grant to T.G., Contract No. 131665), the European Research Council through the project SHESTRUCT (Grant Agreement No. 203481), the UK Science and Technology Facilities Council, the Slovak Research and Develop- ment Agency under Contract No. APVV-15-0225, andthe Slovak GrantAgencyVEGA(ContractNo.2/0129/17).

References

[1]K.-H.Schmidt,R.Simon,J.-G.Keller,F.Hessberger,G.Münzenberg,B.Quint, H.-G.Clerc,W.Schwab,U.Gollerthan,C.-C.Sahm,Phys.Lett.B168 (1)(1986) 39.

[2]E.S.Paul, P.J.Woods,T. Davinson,R.D.Page, P.J.Sellin,C.W.Beausang,R.M.

Clark, R.A. Cunningham, S.A. Forbes, D.B. Fossan, A. Gizon, J. Gizon, K.

Hauschild,I.M.Hibbert,A.N.James,D.R.LaFosse,I.Lazarus,H.Schnare,J.Simp- son,R.Wadsworth,M.P.Waring,Phys.Rev.C51(1995)78.

[3]W.F. Mueller,W.Reviol,M.P.Carpenter, R.V.F.Janssens, F.G. Kondev,K.Abu Saleem,I.Ahmad,H.Amro,C.R.Bingham,J.Caggiano,C.N. Davids,D.Hart- ley,A.Heinz,B.Herskind,D.Jenkins,T.L.Khoo,T.Lauritsen,W.C.Ma,J.Ressler, L.L.Riedinger,D.G.Sarantites,D.Seweryniak,S.Siem,A.A.Sonzogni,J.Uusitalo, P.G.Varmette,I.Wiedenhöver,R.Wadsworth,Phys.Rev.C69(2004)064315.

[4]F.G.Kondev,M.P.Carpenter,R.V.F.Janssens,K.AbuSaleem,I.Ahmad,H.Amro, J.A.Cizewski,M.Danchev,C.Davids,D.Hartley,A.Heinz,T.L.Khoo,T.Lauritsen, C.J.Lister,W.C.Ma,G.L.Poli,J.Ressler,W.Reviol,L.L.Riedinger,D.Seweryniak, M.B.Smith,I.Wiedenhöver,Phys.Lett.B512 (3)(2001)268.

[5]F.G.Kondev,Nucl.DataSheets98(2003)801.

[6]M.Venhart,A.N.Andreyev,J.L.Wood,S.Antalic,L.Bianco,P.T.Greenlees,U.

Jakobsson,P.Jones,R.Julin,S.Juutinen,S.Ketelhut,M.Leino,M.Nyman,R.D.

Page,P.Peura,P.Rahkila,J.Sarén,C.Scholey,J.Sorri,J.Thomson,J.Uusitalo, Phys.Lett.B695(2011)82.

[7]J.G.Cubiss,A.E.Barzakh,A.N.Andreyev,M.AlMonthery,N.Althubiti,B.An- del,S.Antalic,D.Atanasov,K.Blaum,T.E.Cocolios,T.DayGoodacre,R.P.de Groote,A.deRoubin,G.J.Farooq-Smith,D.V.Fedorov,V.N.Fedosseev,R.Ferrer, D.A.Fink,L.P.Gaffney,L.Ghys,A.Gredley,R.D.Harding,F.Herfurth,M.Huyse, N. Imai,D.T.Joss, U.Köster,S.Kreim,V.Liberati,D.Lunney,K.M.Lynch,V.

Manea,B.A.Marsh,Y.M.Palenzuela,P.L.Molkanov,P.Mosat,D.Neidherr,G.G.

O’Neill,R.D.Page,T.J.Procter,E.Rapisarda,M.Rosenbusch,S.Rothe,K.Sandhu, L.Schweikhard,M.D.Seliverstov,S.Sels,P.Spagnoletti,V.L.Truesdale,C.V.Bev- eren,P.V.Duppen,M.Veinhard,M.Venhart,M.Veselský,F.Wearing,A.Welker, F.Wienholtz,R.N.Wolf,S.G.Zemlyanoy,K.Zuber,Phys.Lett.B786(2018)355.

[8]M.Leino,J.Äystö,T.Enqvist,P.Heikkinen,A.Jokinen,M.Nurmia,A.Ostrowski, W.Trzaska,J.Uusitalo,K.Eskola,P.Armbruster,V.Ninov,Nucl.Instrum.Meth- odsPhys.Res.,Sect.B,BeamInteract.Mater.Atoms99 (1)(1995)653.

[9]R.D.Page,A.N.Andreyev,D.E.Appelbe,P.A.Butler,S.J.Freeman,P.T.Greenlees, R.-D. Herzberg,D.G.Jenkins, G.D.Jones,P.Jones,D.T.Joss,R. Julin, H.Ket- tunen,M.Leino,P.Rahkila,P.H.Regan,J.Simpson,J.Uusitalo,S.M.Vincent,R.

Wadsworth,Nucl.Instrum.MethodsPhys.Res.,Sect.B,BeamInteract.Mater.

Atoms204(2003)634.

[10]P.Rahkila,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.

Assoc.Equip.595 (3)(2008)637.

Kliman,J.Klimo,L.Krupa,J.Lušnák,L.Makhathini,V.Matoušek,Š.Motyˇcák, R.D.Page,A.Patel,K.Petrík,A.V.Podshibyakin,P.M.Prajapati,A.M.Rodin,A.

Špaˇcek,R.Urban,C.Unsworth,M.Veselský, J.Phys. G,Nucl.Part.Phys. 44 (2017)074003.

[17]M.Venhart,F.A.Ali,W.Ryssens,J.L.Wood,D.T.Joss,A.N.Andreyev,K.Auranen, B.Bally,M.Balogh,M.Bender,R.J.Carroll,J.L.Easton,P.T.Greenlees,T.Grahn, P.-H.Heenen,A.Herzá ˇn,U.Jakobsson,R.Julin,S.Juutinen,D.K´lˇc,J.Konki,E.

Lawrie,M.Leino,V.Matoušek,C.G.McPeake,D.O’Donnell,R.D.Page,J.Pakari- nen,J.Partanen,P.Peura,P.Rahkila,P.Ruotsalainen,M.Sandzelius,J.Sarén,B.

Say˘gi,M.Sedlák,C.Scholey,J.Sorri,S.Stolze,A.Thornthwaite,J.Uusitalo,M.

Veselský,Phys.Rev.C95(2017)061302(R).

[18]A.N.Andreyev,S.Antalic,D.Ackermann,T.E.Cocolios,V.F.Comas,J.Elseviers, S.Franchoo, S.Heinz,J.A.Heredia,F.P.Heßberger,S. Hofmann,M.Huyse, J.

Khuyagbaatar,I.Kojouharov,B.Kindler,B.Lommel,R.Mann,R.D.Page,S.Rinta- Antila,P.J.Sapple,Š.Šáro,P.VanDuppen,M.Venhart,H.V.Watkins,Phys.Rev.

C80(2009)024302.

[19]A.J.Larabee,M.P.Carpenter,L.L.Riedinger,L.H.Courtney,J.C.Waddington,V.P.

Janzen,W.Nazarewicz,J.Y.Zhang,R.Bengtsson,G.A.Lèander,Phys.Lett.B169 (1986)21.

[20]W.F.Mueller,H.Q.Jin,J.M.Lewis,W.Reviol,L.L.Riedinger,M.P.Carpenter,C.

Baktash,J.D.Garrett,N.R.Johnson,I.Y.Lee,F.K.McGowan,C.H.Yu,S.Cwiok, Phys.Rev.C59(1999)2009.

[21]V.Berg,Z.Hu,J.Oms,C.Ekström,Nucl.Phys.A410(1983)445.

[22]A.H.V.Berg,R.Foucher,Nucl.Phys.A244(1975)462.

[23]H.Watkins,D.T.Joss,T.Grahn,R.D.Page,R.J.Carroll,A.Dewald,P.T.Greenlees, M.Hackstein,R.D.Herzberg,U.Jakobsson,P.M.Jones,R.Julin,S.Juutinen,S.

Ketelhut,T.Kröll,R.Krücken,M.Labiche,M.Leino,N.Lumley,P.Maierbeck,M.

Nyman,P.Nieminen,D.O’Donnell,J.Ollier,J.Pakarinen,P.Peura,T.Pissulla,P.

Rahkila,J.P.Revill,W.Rother,P.Ruotsalainen,S.V.Rigby,J.Sarén,P.J.Sapple,M.

Scheck,C.Scholey,J.Simpson,J.Sorri,J.Uusitalo,M.Venhart,Phys.Rev.C84 (2011)051302.

[24]B.Fogelberg,A.Bäcklin,V.Berg,S.G.Malmskog,Nucl.Phys.A153(1970)301.

[25]H.H.Bolotin,D.L.Kennedy,B.J.Linard,A.E.Stuchbery,S.H.Sie,I.Katayama,H.

Sakai,Nucl.Phys.A321(1979)231.

[26]J.K.Johansson,D.G.Popescu, D.D.Rajnauth,J.C.Waddington, M.P.Carpenter, L.H.Courtney,V.P.Janzen,A.J.Larabee,Z.M.Liu,L.L.Riedinger,Phys.Rev.C40 (1989)132.

[27]P.Joshi, A.Kumar, I.M. Govil, R.P. Singh,G. Mukherjee, S. Muralithar, R.K.

Bhowmik,U.Garg,Phys.Rev.C69(2004)044304.

[28]L.T.Song,X.H.Zhou,Y.H.Zhang,G.deAngelis,N.Marginean,A.Gadea,D.R.

Napoli,M.Axiotis,C.Rusu,T.Martinez,Y.X.Guo,X.G.Lei,Y.Zheng,M.L.Liu, Phys.Rev.C71(2005)017302.

[29]F.Soramel,P.Bednarczyk,M.Sferrazza,D.Bazzacco,D.DeAcuña,G.deAngelis, M.DePoli,E.Farnea,N.H.Medina,R.Menegazzo,L.Müller,D.R.Napoli,C.M.

Petrache,C.RossiAlvarez,F.Scarlassara,G.F.Segato,C.Signorini,J.Stycze ´n,G.

Vedovato,Eur.Phys.J.A4(1999)17.

[30]C.Müller-Gatermann,A.Dewald,C.Fransen,K.Auranen,H.Badran,M.Beck- ers,A.Blazhev,T.Braunroth,D.M.Cullen,G.Fruet,A.Goldkuhle,T.Grahn,P.T.

Greenlees,A.Herzá ˇn,U.Jakobsson,D.Jenkins,J.Jolie,R.Julin,S.Juutinen,J.

Konki,M.Leino,J.Litzinger,K.Nomura,J.Pakarinen,P.Peura,M.G.Procter,P.

Rahkila,P.Ruotsalainen,M.Sandzelius,J.Sarén,C.Scholey,J.Sorri,S.Stolze, M.J.Taylor,J.Uusitalo,K.O.Zell,Phys.Rev.C99(2019)054325.

Referanslar

Benzer Belgeler

where  is the vector belonging to dependent variable,  is the design matrix of independent variables,  is the parameter vector, is the vector belonging to error terms, so

Research results showed that relationship between the seed distributions in row measured by hand and obtained from image processing were significant at a level of P <

Abstract: In this research, The characteristics with structural components as situation of population numbers of animal working power, production systems, source of roughage

Kadro Türü 11 X S.S.. Kadro türleri için uygulanan t testi sonuçları tablo 18’de verilmektedir. Tabloda 0,05 anlamlılık düzeyinde iyimserlik boyutu, dayanıklılık boyutu,

The results of condition survey of Murat Pasha mosque supported the fact that there are key principles for visual observation of historic monumental buildings in order to

In Conclusion, this study provided that the seafoods collected from both Black sea and Marmara Sea significantly included heavy metals, including lead, mecury, cadmium, and

Teaching Psychology Ethics in Turkey: The Evaluation of a Practical Study in Terms of Ethical Behavior, Moral Values and Adoption of Ethical Rules.. Journal of Clini- cal

ȀJHU¦L NL 0HOÀPL\\H ĦDUîöð äDöGXUOÀNLQPXWDĚDYYðIDP»WHĞHUULŁDĦDUîöðDQGDQHIÐDOG»U=îUÀĽÀKL UHQ ĞHUîŁDWL HOOHULQGHQ öRPD\XS EÀĦðQð ĦDUîöOD ELOH ULŁÀ\HW