• Sonuç bulunamadı

Quantitative global estimates for generalized double Szasz-Mirakjan operators

N/A
N/A
Protected

Academic year: 2021

Share "Quantitative global estimates for generalized double Szasz-Mirakjan operators"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 2013, Article ID 613258,8pages http://dx.doi.org/10.1155/2013/613258

Research Article

Quantitative Global Estimates for Generalized Double

Szasz-Mirakjan Operators

Mehmet Ali Özarslan and Hüseyin Aktu

Llu

Eastern Mediterranean University, Gazimagusa, Cyprus, Mersin 10, Turkey

Correspondence should be addressed to Mehmet Ali ¨Ozarslan; mehmetali.ozarslan@emu.edu.tr Received 15 December 2012; Accepted 8 May 2013

Academic Editor: Jingxin Zhang

Copyright © 2013 M. Ali ¨Ozarslan and H. Aktu˘glu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce the generalized double Sz´asz-Mirakjan operators in this paper. We obtain several quantitative estimates for these operators. These estimates help us to determine some function classesS (including some Lipschitz-type spaces) which provide uniform convergence on the whole domain[0, ∞) × [0, ∞).

1. Introduction

The well-known Sz´asz-Mirakjan operators are defined on the spaceA1as follows: 𝑆𝑛(𝑓; 𝑥) = 𝑒−𝑛𝑥∑∞ 𝑘=0 𝑓 (𝑘 𝑛) (𝑛𝑥)𝑘 𝑘! , (1)

whereA1is the set of all real functions on[0, ∞) such that the right-hand side in (1) make sense for all𝑛 > 0 and 𝑥 ∈ [0, ∞). By modifying the Sz´asz-Mirakjan operators as

𝐷𝑛(𝑓; 𝑥) = 𝑒−𝑛𝑢𝑛(𝑥) ∞ ∑ 𝑘=0 𝑓 (𝑘 𝑛) (𝑛𝑢𝑛(𝑥))𝑘 𝑘! , (2)

where{𝑢𝑛(𝑥)} is a sequence of real-valued, continuous func-tions defined on[0, ∞) with 0 ≤ 𝑢𝑛(𝑥) < ∞, it has been shown in [1] that if one let

𝑢∗𝑛(𝑥) := −1 + √4𝑛2𝑛2𝑥2+ 1, 𝑛 ∈ N, (3) then the operators defined by

𝐷∗𝑛(𝑓; 𝑥) := 𝑆𝑛(𝑓; 𝑢𝑛∗(𝑥)) (4) preserve the test function 𝑒2(𝑥) = 𝑥2 and provide a better error estimation than the operators 𝑆𝑛(𝑓; 𝑥) for all

𝑓 ∈ 𝐶𝐵([0, ∞)) and for each 𝑥 ∈ [0, ∞). Note that 𝐶𝐵([0, ∞)) denotes the space of all bounded and continuous functions on[0, ∞). On the other hand, by letting

V𝑛(𝑥) := 𝑥 −2𝑛1; 𝑛 ∈ N, (5) it has been shown in [2] that the operators defined by

𝑉𝑛∗(𝑓; 𝑥) := 𝑆𝑛(𝑓; V𝑛(𝑥)) (6) do not preserve the test functions𝑒1(𝑥) = 𝑥 and 𝑒2(𝑥) = 𝑥2 but provide the best error estimation among all the Sz´asz-Mirakjan operators for all 𝑓 ∈ 𝐶𝐵([0, ∞)) and for each 𝑥 ∈ [1/2, ∞). For the other linear positive operator families which preserve𝑒2(𝑥) = 𝑥2, we refer [3–9]. On the other hand, in [10,11] the authors considered some operators preserving 𝑒1(𝑥) = 𝑥.

(2)

introduced and investigated different variants of the general double Sz´asz-Mirakjan operators:

𝐷𝑛(𝑓; 𝑥, 𝑦) : 𝑆𝑛(𝑓; 𝑢𝑛(𝑥) , V𝑛(𝑦)) = 𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) × ∑∞ 𝑘,𝑙=0 𝑓 (𝑘 𝑛, 𝑙 𝑛) × (𝑛𝑢𝑛(𝑥))𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! , 𝑓 ∈ A2. (8) In [13], they considered the case of operators

𝑢𝑛(1)(𝑥) := −1 + √4𝑛2𝑛2𝑥2+ 1, V(1) 𝑛 (𝑦) := −1 + √4𝑛2𝑦2+ 1 2𝑛 , 𝑛 ∈ N, (9)

which preserve the test function𝑒2,0(𝑥, 𝑦) + 𝑒0,2(𝑥, 𝑦) := 𝑥2+ 𝑦2and provide a better error estimation than the operators 𝑆𝑛(𝑓; 𝑥, 𝑦) for all 𝑓 ∈ 𝐶𝐵([0, ∞) × [0, ∞)) and for each 𝑥, 𝑦 ∈ [0, ∞). On the other hand, in [14], they considered the case

𝑢(2)𝑛 (𝑥, 𝛼) := − (𝑛𝛼 + 1) + √4𝑛2(𝑥2+ 𝛼𝑥) + (𝑛𝛼 + 1) 2 2𝑛 , V(2)𝑛 (𝑦, 𝛽) := − (𝑛𝛽 + 1) + √4𝑛2(𝑦2+ 𝛽𝑦) + (𝑛𝛽 + 1) 2 2𝑛 , 𝑛 ∈ N, 𝛼, 𝛽 ∈ R. (10) Note that for this case, the operators 𝐷𝑛(𝑓; 𝑥, 𝑦) do not preserve any test function (i.e.,𝑒0,0(𝑥, 𝑦) = 1, 𝑒1,0(𝑥, 𝑦) = 𝑥, 𝑒0,1(𝑥, 𝑦) = 𝑦, and 𝑒2,0(𝑥, 𝑦)+𝑒0,2(𝑥, 𝑦) = 𝑥2+𝑦2) but provide a better error estimation than the operators𝑆𝑛(𝑓; 𝑥, 𝑦) for all 𝑓 ∈ 𝐶𝐵([0, ∞) × [0, ∞)) and 𝑥, 𝑦 ∈ [0, 1].

Finally, we should note that, following the similar argu-ments as used in [2], the best error estimation among all the general double Sz´asz-Mirakjan operators can be obtained from the case:

𝑢(3)𝑛 (𝑥) := 𝑥 −2𝑛1 , V(3)𝑛 (𝑦) := 𝑦 − 1

2𝑛, 𝑛 ∈ N, (11) for all𝑓 ∈ 𝐶𝐵([0, ∞) × [0, ∞)) and 𝑥, 𝑦 ∈ [1/2, ∞).

For the operators 𝐷𝑛(𝑓; 𝑥, 𝑦) the following Lemma is straightforward.

Lemma 1. Let x = (𝑥, 𝑦), t = (𝑡, 𝑠), 𝑒𝑖,𝑗(x) = 𝑥𝑖𝑦𝑗, 𝑖, 𝑗 =

0, 1, 2, and 𝜓2

x(t) = ‖t − x‖2. Then, for each𝑥, 𝑦 ≥0 and 𝑛 >

1, one has (a)𝐷𝑛(𝑒0,0; 𝑥, 𝑦) = 1, (b)𝐷𝑛(𝑒1,0; 𝑥, 𝑦) = 𝑢𝑛(𝑥), 𝐷𝑛(𝑒0,1; 𝑥, 𝑦) = V𝑛(𝑦), (c)𝐷𝑛(𝑒2,0+𝑒0,2; 𝑥, 𝑦) = 𝑢𝑛2(𝑥)+V2𝑛(𝑦)+((𝑢𝑛(𝑥)+V𝑛(𝑦))/𝑛), (d)𝐷𝑛(𝜓2x(t); 𝑥, 𝑦) = (𝑢𝑛(𝑥) − 𝑥)2 + (V𝑛(𝑦) − 𝑦)2 + ((𝑢𝑛(𝑥) + V𝑛(𝑦))/𝑛).

2. Global Results

In this section we first introduce the following Lipschitz-type space:

Lip∗𝑀(𝛼) := {𝑓 ∈ 𝐶 ([0, ∞) × [0, ∞)) :

󵄨󵄨󵄨󵄨𝑓(t) − 𝑓(x)󵄨󵄨󵄨󵄨 ≤ 𝑀 ‖t − x‖(‖t‖ + 𝑥 + 𝑦)𝛼 𝛼/2;

𝑡, 𝑠; 𝑥, 𝑦 ∈ (0, ∞) } , (12)

wheret = (𝑡, 𝑠), x = (𝑥, 𝑦), 𝑀 is any positive constant, and 0 < 𝛼 ≤ 1.

We should note that this space is the bivariate extension of Lipschitz-type space considered earlier by Szasz [15]. For the space Lip∗𝑀(𝛼) with 0 < 𝛼 ≤ 1, we have the following approximation result.

Theorem 2. For any 𝑓 ∈ 𝐿𝑖𝑝𝑀(𝛼), 𝛼 ∈ (0, 1] and for each

𝑥, 𝑦 ∈ (0, ∞), 𝑛 ∈ N, one has 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀 (𝑥 + 𝑦)𝛼/2[(𝑢𝑛(𝑥) − 𝑥) 2+ (V 𝑛(𝑦) − 𝑦)2 +𝑢𝑛(𝑥) + V𝑛(𝑦) 𝑛 ] 𝛼/2 . (13)

Proof. Take𝛼 = 1. Then, for 𝑓 ∈ Lip∗𝑀(1) and for each 𝑥, 𝑦 ∈

(3)

Using the Cauchy-Schwarz inequality, we obtain 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀 (𝑥 + 𝑦)1/2√𝐷𝑛(𝜓 2 x(t) ; 𝑥, 𝑦) = 𝑀 (𝑥 + 𝑦)1/2 × √(𝑢𝑛(𝑥) − 𝑥)2+ (V𝑛(𝑦) − 𝑦)2+𝑢𝑛(𝑥) + V𝑛(𝑦) 𝑛 . (15) Secondly let0 < 𝛼 < 1. Then, for 𝑓 ∈ Lip∗𝑀(𝛼) and for each 𝑥, 𝑦 ∈ (0, ∞), we have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐷𝑛(󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑠) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨;𝑥,𝑦) ≤ 𝑀𝐷𝑛( ‖t − x‖𝛼 (‖t‖ + 𝑥 + 𝑦)𝛼/2; 𝑥, 𝑦) ≤ 𝑀 (𝑥 + 𝑦)𝛼/2𝐷𝑛(‖t − x‖ 𝛼; 𝑥, 𝑦) . (16) Applying the H¨older inequality with𝑝 = 2/𝛼 and 𝑞 = 2/(2 − 𝛼), we have, for any 𝑓 ∈ Lip∗𝑀(𝛼),

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀 (𝑥 + 𝑦)𝛼/2[𝐷𝑛(𝜓 2 x(t) ; 𝑥, 𝑦)] 𝛼/2 = 𝑀 (𝑥 + 𝑦)𝛼/2 × [ (𝑢𝑛(𝑥) − 𝑥)2+ (V𝑛(𝑦) − 𝑦)2 +𝑢𝑛(𝑥) + V𝑛 𝑛(𝑦)]𝛼/2, (17) Hence, the result.

The following lemma will be used in the rest of the paper.

Lemma 3. One has, for each 𝑥, 𝑦 > 0,

𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦) ≤ 1 √𝑥√(𝑢𝑛(𝑥) − 𝑥) 2+𝑢𝑛(𝑥) 𝑛 + 1 √𝑦√(V𝑛(𝑦) − 𝑦) 2+V𝑛(𝑦) 𝑛 . (18)

Proof. Using the fact that √𝑎 + 𝑏 ≤ √𝑎 + √𝑏 (𝑎, 𝑏 ≥ 0), we

get 𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦) = 𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) ∞ ∑ 𝑘,𝑙=0 √(√ 𝑘𝑛− √𝑥) 2 + (√𝑛𝑙 − √𝑦) 2 ×(𝑛𝑢𝑛(𝑥)) 𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! ≤ 𝑒−𝑛𝑢𝑛(𝑥) ∞ ∑ 𝑘=0 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨√ 𝑘𝑛− √𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑛𝑢𝑛(𝑥))𝑘 𝑘! + 𝑒−𝑛V𝑛(𝑦) ∞ ∑ 𝑙=0 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨√ 𝑙𝑛− √𝑦 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨 (𝑛V𝑛(𝑦))𝑙 𝑙! = 𝑒−𝑛𝑢𝑛(𝑥) ∞ ∑ 𝑘=0 |𝑘/𝑛 − 𝑥| √𝑘/𝑛 + √𝑥 (𝑛𝑢𝑛(𝑥))𝑘 𝑘! + 𝑒−𝑛V𝑛(𝑦) ∞ ∑ 𝑙=0 󵄨󵄨󵄨󵄨𝑙/𝑛 − 𝑦󵄨󵄨󵄨󵄨 √𝑙/𝑛 + √𝑦 (𝑛V𝑛(𝑦))𝑙 𝑙! ≤𝑒−𝑛𝑢𝑛(𝑥) √𝑥 ∞ ∑ 𝑘=0 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑘𝑛− 𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑛𝑢𝑛(𝑥))𝑘 𝑘! +𝑒−𝑛V𝑛(𝑦) √𝑦 ∞ ∑ 𝑙=0 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑛𝑙 − 𝑦󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑛V𝑛(𝑦))𝑙 𝑙! . (19) Finally, applying the Cauchy-Schwarz inequality, we write

𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦) ≤ 1 √𝑥√𝑒−𝑛𝑢𝑛(𝑥) ∞ ∑ 𝑘=0 (𝑘 𝑛− 𝑥) 2(𝑛𝑢 𝑛(𝑥))𝑘 𝑘! + 1 √𝑦√𝑒−𝑛V𝑛(𝑦) ∞ ∑ 𝑙=0 (𝑛𝑙 − 𝑦)2(𝑛V𝑛(𝑦)) 𝑙 𝑙! = 1 √𝑥√(𝑢𝑛(𝑥) − 𝑥) 2+𝑢𝑛(𝑥) 𝑛 + 1 √𝑦√(V𝑛(𝑦) − 𝑦) 2+V𝑛(𝑦) 𝑛 . (20)

(4)

Recall that, for all𝑓 ∈ 𝐶𝐵([0, ∞) × [0, ∞)), the modulus of𝑓 denoted by 𝜔 (𝑓; 𝛿) is defined as 𝜔 (𝑓; 𝛿) := sup { 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑠) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 : √(𝑡 − 𝑥)2+ (𝑠 − 𝑦)2< 𝛿, (𝑡, 𝑠) , (𝑥, 𝑦) ∈ [0, ∞) × [0, ∞) } . (21)

Theorem 4. Let 𝑓∗(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2). Then one has, for each

𝑥, 𝑦 > 0, 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗; 𝛿𝑛(𝑥, 𝑦)) , (22) where 𝛿𝑛(𝑥, 𝑦) := 1 √𝑥√(𝑢𝑛(𝑥) − 𝑥)2+𝑢𝑛𝑛(𝑥) + 1 √𝑦√(V𝑛(𝑦) − 𝑦) 2+V𝑛(𝑦) 𝑛 . (23)

Proof. We directly have

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐷𝑛(󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑠) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨;𝑥,𝑦) = 𝐷𝑛(󵄨󵄨󵄨󵄨󵄨𝑓∗(√𝑡, √𝑠) − 𝑓∗(√𝑥, √𝑦)󵄨󵄨󵄨󵄨󵄨 ; 𝑥, 𝑦) ≤ 𝐷𝑛(𝜔 (𝑓∗; √(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2) ; 𝑥, 𝑦) = 𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) × ∑∞ 𝑘,𝑙=0 𝜔 (𝑓∗; √(√𝑘 𝑛− √𝑥) 2 + (√𝑙 𝑛− √𝑦) 2 ; 𝑥, 𝑦) ×(𝑛𝑢𝑛(𝑥))𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! . (24) Therefore, 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 = 𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) ∞ ∑ 𝑘,𝑙=0 (𝑛𝑢𝑛(𝑥))𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! × 𝜔 (𝑓∗; √(√𝑘/𝑛 − √𝑥) 2 + (√𝑙/𝑛 − √𝑦)2 𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦) × 𝐷𝑛( ((√𝑡 − √𝑥)2 +(√𝑠 − √𝑦)2)1/2; 𝑥, 𝑦) ; 𝑥, 𝑦) . (25) Because of the fact that

𝜔 (𝑓; 𝜆𝛿) ≤ (1 + 𝜆) 𝜔 (𝑓; 𝛿) , (26) we have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝜔 (𝑓∗; 𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦)) × 𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) × ∑∞ 𝑘,𝑙=0 [ [ [ [ [ 1 + √(√𝑘/𝑛 − √𝑥) 2 + (√𝑙/𝑛 − √𝑦)2 𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦) ] ] ] ] ] ×(𝑛𝑢𝑛(𝑥)) 𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! , (27) and hence 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗; 𝐷 𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦)) . (28) Finally, usingLemma 3, the proof is completed.

Theorem 5. Let 𝑓(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2). Let

𝑓∗∈ 𝐿𝑖𝑝𝑀(𝛼) := {𝑓∗∈ 𝐶𝐵([0, ∞) × [0, ∞)) :

󵄨󵄨󵄨󵄨𝑓∗(t) − 𝑓

(x)󵄨󵄨󵄨󵄨 ≤ 𝑀‖t − x‖𝛼; 𝑡, 𝑠; 𝑥, 𝑦 ∈ (0, ∞)} ,

(29)

wheret = (𝑡, 𝑠), x = (𝑥, 𝑦), 𝑀 is any positive constant, and

0 < 𝛼 ≤ 1. Then

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀𝛿𝛼𝑛(𝑥, 𝑦) , (30)

(5)

Proof. We directly have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐷𝑛(󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑠) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨;𝑥,𝑦) = 𝐷𝑛(󵄨󵄨󵄨󵄨󵄨𝑓∗(√𝑡, √𝑠) − 𝑓∗(√𝑥, √𝑦)󵄨󵄨󵄨󵄨󵄨 ; 𝑥, 𝑦) ≤ 𝑀𝐷𝑛(((√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2)𝛼/2; 𝑥, 𝑦) = 𝑀𝑒−𝑛(𝑢𝑛(𝑥)+V𝑛(𝑦)) × ∑∞ 𝑘,𝑙=0 ((√𝑘 𝑛− √𝑥) 2 + (√𝑙 𝑛− √𝑦) 2 ) 𝛼/2 ×(𝑛𝑢𝑛(𝑥)) 𝑘 𝑘! (𝑛V𝑛(𝑦))𝑙 𝑙! . (31)

Applying the H¨older inequality with𝑝 = 1/𝛼 and 𝑞 = 1/(1 − 𝛼), we have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀[𝐷𝑛(√(√𝑡 − √𝑥)2+ (√𝑠 − √𝑦)2; 𝑥, 𝑦)] 𝛼 . (32) UsingLemma 3, we get the result.

3. Concluding Remarks

In this section we show that taking𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦 or𝑢𝑛(𝑥) = 𝑢(𝑖)𝑛 (𝑥) and V𝑛(𝑦) = V(𝑖)𝑛 (𝑦), 𝑖 = 1, 3, in Theorems

2,4, and5gives global results. Also we present the results obtained by Theorems2,4, and5for𝑢𝑛(𝑥) = 𝑢(2)𝑛 (𝑥) and V𝑛(𝑦) = V(2)

𝑛 (𝑦).

Corollary 6. For any 𝑓 ∈ 𝐿𝑖𝑝

𝑀(𝛼), 𝛼 ∈ (0, 1] and for all

𝑥, 𝑦 ∈ (0, ∞), 𝑛 ∈ N, one has

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑛𝑀𝛼/2, (33)

uniformly as𝑛 → ∞, for the following pairs of 𝑢𝑛(𝑥) and

V𝑛(𝑥):

(i)𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦,

(ii)𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛,

(iii)𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛.

Proof. (i) Taking𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦 in (13), we directly

have

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑛𝑀𝛼/2. (34)

(ii) Taking𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛 in (13) gives 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 = 𝑀 (𝑥 + 𝑦)𝛼/2[ 1 𝑛(𝑥 + 𝑦 − 𝑥√4𝑛2𝑥2+ 1 − 𝑦√4𝑛2𝑦2+ 1 + 2𝑛𝑥2+ 2𝑛𝑦2)]𝛼/2 ≤ 𝑀 (𝑥 + 𝑦)𝛼/2[ 1 𝑛(𝑥 + 𝑦 − 𝑥√4𝑛2𝑥2 − 𝑦√4𝑛2𝑦2+ 2𝑛𝑥2+ 2𝑛𝑦2)]𝛼/2 = 𝑀 𝑛𝛼/2. (35) (iii) Taking𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛 in (13), we have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 = 𝑀 (𝑥 + 𝑦)𝛼/2[(− 1 2𝑛) 2 + (− 1 2𝑛) 2 +𝑥 + 𝑦 − 1/𝑛 𝑛 ] 𝛼/2 ≤ 𝑀 (𝑥 + 𝑦)𝛼/2[ 1 2𝑛2(2𝑛𝑥 + 2𝑛𝑦 − 1)] 𝛼/2 = 𝑀 (𝑥 + 𝑦)𝛼/2[ 1 𝑛(𝑥 + 𝑦)] 𝛼/2 = 𝑀 𝑛𝛼/2. (36)

Corollary 7. Let 𝑓(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2). Then one has

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗;√𝑛2 ) , (37)

uniformly as𝑛 → ∞, for the following pairs of 𝑢𝑛(𝑥) and

V𝑛(𝑥):

(i)𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦,

(ii)𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛,

(iii)𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛.

Proof. (i) Taking𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦 in (23), we directly

have

(6)

(ii) Taking𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛 in (23) gives 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗; 𝛿𝑛(𝑥, 𝑦)) , (39) where 𝛿𝑛(𝑥, 𝑦) := 1 √𝑥√𝑦(√𝑦√ 1 𝑛(𝑥 − 𝑥√4𝑛2𝑥2+ 1 + 2𝑛𝑥2) + √𝑥√1 𝑛(𝑦 − 𝑦√4𝑛2𝑦2+ 1 + 2𝑛𝑦2)) ≤ 1 √𝑥√𝑦(√𝑦√ 1 𝑛𝑥 + √𝑥√ 1 𝑛𝑦) = 2 √𝑛. (40) (iii) Taking𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛 in (23), we have 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗; 𝛿𝑛(𝑥, 𝑦)) , (41) where 𝛿𝑛(𝑥, 𝑦) := √𝑥1 √( 12𝑛) 2 +𝑥𝑛2𝑛12 + 1 √𝑦√( 12𝑛) 2 +𝑦𝑛2𝑛12 = 1 2√𝑥√𝑦(√𝑥√ 1 𝑛2(4𝑛𝑦 − 1) + √𝑦√𝑛12(4𝑛𝑥 − 1)) ≤ 1 √𝑥√𝑦(√𝑥√ 1 𝑛𝑦 + √𝑦√ 1 𝑛𝑥) = 2 √𝑛. (42)

Corollary 8. Let 𝑓(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2), and let

𝑓∗ ∈ 𝐿𝑖𝑝𝑀(𝛼) := {𝑓∗∈ 𝐶𝐵([0, ∞) × [0, ∞)) : 󵄨󵄨󵄨󵄨𝑓∗(t) − 𝑓

(x)󵄨󵄨󵄨󵄨 ≤ 𝑀‖t − x‖𝛼; 𝑡, 𝑠; 𝑥, 𝑦 ∈ (0, ∞) } ,

(43)

wheret = (𝑡, 𝑠), x = (𝑥, 𝑦), 𝑀 is any positive constant, and

0 < 𝛼 ≤ 1. Then

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀(4𝑛) 𝛼/2

, (44)

uniformly as𝑛 → ∞, for the following pairs of 𝑢𝑛(𝑥) and

V𝑛(𝑦) :

(i)𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦,

(ii)𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛,

(iii)𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛.

Proof. (i) Taking𝑢𝑛(𝑥) = 𝑥 and V𝑛(𝑦) = 𝑦 in (23), we directly

have

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀(4𝑛) 𝛼/2

. (45)

(ii) Taking𝑢𝑛(𝑥) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and V𝑛(𝑦) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛 in (23) gives 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀𝛿𝛼/2𝑛 (𝑥, 𝑦) , (46) where 𝛿𝑛(𝑥, 𝑦) := 𝛿𝑛(𝑥, 𝑦) := 1 √𝑥√𝑦 × (√𝑦√𝑛1(𝑥 − 𝑥√4𝑛2𝑥2+ 1 + 2𝑛𝑥2) + √𝑥√1 𝑛(𝑦 − 𝑦√4𝑛2𝑦2+ 1 + 2𝑛𝑦2)) ≤ 1 √𝑥√𝑦(√𝑦√ 1 𝑛𝑥 + √𝑥√ 1 𝑛𝑦) = 2 √𝑛. (47) (iii) Taking𝑢𝑛(𝑥) = 𝑥 − 1/2𝑛 and V𝑛(𝑦) = 𝑦 − 1/2𝑛 in (23), we have

(7)

where 𝛿𝑛(𝑥, 𝑦) := 1 √𝑥√( 12𝑛) 2 +𝑥 𝑛− 1 2𝑛2 + 1 √𝑦√( 12𝑛) 2 +𝑦𝑛2𝑛12 = 1 2√𝑥√𝑦(√𝑥√ 1 𝑛2(4𝑛𝑦 − 1) + √𝑦√𝑛12 (4𝑛𝑥 − 1)) ≤ 1 √𝑥√𝑦(√𝑥√ 1 𝑛𝑦 + √𝑦√ 1 𝑛𝑥) = 2 √𝑛. (49)

Remark 9. Corollaries 7 and 8 conclude that 𝑓 is a real

continuous and bounded function on[0, ∞) × [0, ∞) and if𝑓∗(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2) is uniformly continuous on [0, ∞) × [0, ∞), then 𝐷𝑛(𝑓) converges uniformly to 𝑓 as 𝑛 → ∞.

Note that the one variable version ofCorollary 7was given in [16]. Corollary 10. Take 𝑢𝑛(𝑥) = 𝑢(2)𝑛 (𝑥, 𝛾) = − (𝑛𝛾 + 1) + √4𝑛2(𝑥2+ 𝛾𝑥) + (𝑛𝛾 + 1) 2 2𝑛 , V𝑛(𝑦) = V(2)𝑛 (𝑦, 𝛽) = − (𝑛𝛽 + 1) + √4𝑛2(𝑦2+ 𝛽𝑦) + (𝑛𝛽 + 1) 2 2𝑛 , (50) where𝛼, 𝛽 ∈ R. Then

(i) for any𝑓 ∈ 𝐿𝑖𝑝∗𝑀(𝛼), 𝛼 ∈ (0, 1] and for each 𝑥, 𝑦 ∈ (0, ∞), 𝑛 ∈ N, one has 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀 [2𝑛 (𝑥 + 𝑦)]𝛼/2[𝛿 (𝑥, 𝛾) + 𝛿 (𝑦, 𝛽)] 𝛼/2, (51) where 𝛿 (𝑥, 𝛾) = [ (2𝑥 + 𝛾) × (𝑛𝛾 − √𝑛2(2𝑥 + 𝛾)2+ 2𝑛𝛾 + 1 + 2𝑛𝑥 + 1)] , (52)

(ii) let𝑓∗(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2). Then one has for each 𝑥, 𝑦 > 0 󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑓∗; 𝛿 (𝑥, 𝛾) + 𝛿 (𝑦, 𝛽)) , (53) where 𝛿 (𝑥, 𝛾) = 1 √2𝑥 × (𝑛1(2𝑥 + 𝛾) (𝑛𝛾 − √𝑛2(2𝑥 + 𝛾)2+ 2𝑛𝛾 + 1 +2𝑛𝑥 + 1))1/2, (54) (iii) let𝑓∗(𝑥, 𝑦) = 𝑓(𝑥2, 𝑦2), and let

𝑓∗∈ Lip 𝑀(𝛼) := {𝑓∗∈ 𝐶𝐵([0, ∞) × [0, ∞)) : 󵄨󵄨󵄨󵄨𝑓∗(t) − 𝑓(x)󵄨󵄨󵄨󵄨 ≤ 𝑀‖t − x‖𝛼; 𝑡, 𝑠; 𝑥, 𝑦 ∈ (0, ∞) } , (55)

wheret = (𝑡, 𝑠), x = (𝑥, 𝑦), 𝑀 is any positive constant,

and0 < 𝛼 ≤ 1. Then

󵄨󵄨󵄨󵄨𝐷𝑛(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀[𝛿(𝑥, 𝛾) + 𝛿(𝑦, 𝛽)]𝛼/2, (56)

where𝛿(𝑥, 𝛾) is the same given inCorollary 10(𝑖𝑖).

It should be mentioned that, for 𝛼 = 0 and 𝛽 = 0, 𝑢𝑛(2)(𝑥, 0) = (−1 + √4𝑛2𝑥2+ 1)/2𝑛 and

V(2)𝑛 (𝑦, 0) = (−1 + √4𝑛2𝑦2+ 1)/2𝑛. Therefore,

Corollary 10(i), Corollary 10(ii), and Corollary 10(iii)

reduce toCorollary 6(ii),Corollary 7(ii), andCorollary 8(ii),

respectively.

References

[1] O. Duman and M. A. ¨Ozarslan, “Sz´asz-Mirakjan type operators providing a better error estimation,” Applied Mathematics

Let-ters, vol. 20, no. 12, pp. 1184–1188, 2007.

[2] M. A. ¨Ozarslan and O. Duman, “A new approach in obtaining a better estimation in approximation by positive linear opera-tors,” Communications de la Facult´e des Sciences de l’Universit´e

d’Ankara A1, vol. 58, no. 1, pp. 17–22, 2009.

[3] O. Agratini, “Linear operators that preserve some test func-tions,” International Journal of Mathematics and Mathematical

Sciences, vol. 2006, Article ID 94136, 11 pages, 2006.

[4] O. Duman, M. A. ¨Ozarslan, and H. Aktu˘glu, “Better error estimation for Sz´asz-Mirakjan-beta operators,” Journal of

Com-putational Analysis and Applications, vol. 10, no. 1, pp. 53–59,

2008.

[5] H. Gonska, P. Pit¸ul, and I. Ras¸a, “General King-type operators,”

(8)

[6] J. P. King, “Positive linear operators which preserve x2,” Acta

Mathematica Hungarica, vol. 99, no. 3, pp. 203–208, 2003.

[7] N. I. Mahmudov, “Korovkin-type theorems and applications,”

Central European Journal of Mathematics, vol. 7, no. 2, pp. 348–

356, 2009.

[8] M. A. ¨Ozarslan and O. Duman, “Local approximation results for Sz´asz-Mirakjan type operators,” Archiv der Mathematik, vol. 90, no. 2, pp. 144–149, 2008.

[9] L. Rempulska and K. Tomczak, “Approximation by certain linear operators preserving𝑥2,” Turkish Journal of Mathematics, vol. 33, no. 3, pp. 273–281, 2009.

[10] O. Duman, M. A. ¨Ozarslan, and B. D. Vecchia, “Modified Sz´asz-Mirakjan-Kantorovich operators preserving linear functions,”

Turkish Journal of Mathematics, vol. 33, no. 2, pp. 151–158, 2009.

[11] M. ¨Orkc¨u and O. Do˘gru, “q-Sz´asz-Mirakyan-Kantorovich type operators preserving some test functions,” Applied Mathematics

Letters, vol. 24, no. 9, pp. 1588–1593, 2011.

[12] J. Favard, “Sur les multiplicateurs d’interpolation,” Journal de

Math´ematiques Pures et Appliqu´ees. Neuvi`eme S´erie, vol. 23, pp.

219–247, 1944.

[13] F. Dirik and K. Demirci, “Modified double Sz´asz-Mirakjan operators preserving𝑥2+ 𝑦2,” Mathematical Communications, vol. 15, no. 1, pp. 177–188, 2010.

[14] F. Dirik, Demirci, and K. Szasz, “Mirakjan type operators of two variables providing a beter estimation on [0; 1] x [0; 1],”

Matematicki Vesnik, vol. 63, no. 1, pp. 59–66, 2011.

[15] O. Szasz, “Generalization of S. Bernstein’s polynomials to the infinite interval,” Journal of Research of the National Bureau of

Standards, vol. 45, pp. 239–245, 1950.

[16] J. de la Cal and J. C´arcamo, “On uniform approximation by some classical Bernstein-type operators,” Journal of Mathematical

(9)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Mathematical Problems in Engineering

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations International Journal of

Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic Analysis

Referanslar

Benzer Belgeler

In this term Dannelle taught only four graduate students in a seminar on history teaching methods in the Graduate School of Education where she used the ICP description for the

Sen (2003) has proposed a joint null hypothesis of unit root and no break in both mean and slope of trend function. Test is sequentially computed over range of

(2014) BRICTS Ülkeleri (1980-2011) ARDL Sınır Testi, Granger Nedensellik Analizi Brezilya, Rusya ve Türkiye için doğal gaz tüketimi ile ekonomik büyüme arasında

Bu araştırmanın kapsamı doğrultusunda performansa dayalı durum belirleme, performans görevleri; performans görevlerinin bölümleri, geliştirme aşamaları,

Kullanılan yağ türü ve obezite arasındaki ilişki incelendiğinde; ayçiçek yağı kullanan grupta en fazla obez bireyler bulunmakta ve fark istatistiksel anlamlı idi,

Benzer şekilde bu ünite sonrası uygulanan hatırlama testi sonuçlarına bakıldığında işbirlikli öğrenme yönteminin uygulandığı deney grubu ile geleneksel yöntemin

and Yükler A.I., “Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets”, Materials

Çocuklar Ve Ergenler İçin Sosyal Destek Değerlendirme Ölçeği Türkçe Formunun Uyarlama Çalışması: Faktör Yapısı, Geçerlik Ve Güvenilirliği, Çocuk Ve Gençlik Ruh