• Sonuç bulunamadı

One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers

N/A
N/A
Protected

Academic year: 2021

Share "One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Carbohydrate

Polymers

j ourna l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

One-step

synthesis

of

size-tunable

Ag

nanoparticles

incorporated

in

electrospun

PVA/cyclodextrin

nanofibers

Asli

Celebioglu

a

,

Zeynep

Aytac

a

,

Ozgun

C.O.

Umu

a

,

Aykutlu

Dana

a

,

Turgay

Tekinay

a,b,c

,

Tamer

Uyar

a,∗

aUNAM-InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey bLifeSciencesApplicationandResearchCenter,GaziUniversity,Ankara06830,Turkey

cGaziUniversity,PolatlıScienceandLiteratureFaculty,Ankara06900,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received10May2013

Receivedinrevisedform18July2013 Accepted27August2013

Available online 7 September 2013 Keywords:

Electrospinning Nanofibers

Silvernanoparticles(Ag-NP) Polyvinylalcohol(PVA) Cyclodextrin

a

b

s

t

r

a

c

t

One-stepsynthesisofsize-tunablesilvernanoparticles(Ag-NP)incorporatedintoelectrospunnanofibers wasachieved.Initially,insitureductionofsilversalt(AgNO3)toAg-NPwascarriedoutinaqueous solutionofpolyvinylalcohol(PVA).Here,PVAwasusedasreducingagentandstabilizingpolymer aswellaselectrospinningpolymericmatrixforthefabricationofPVA/Ag-NPnanofibers.Afterwards, hydroxypropyl-beta-cyclodextrin(HP␤CD)wasusedasanadditionalreducingandstabilizingagentin ordertocontrolsizeanduniformdispersionofAg-NP.ThesizeofAg-NPwas∼8nmandsomeAg-NP aggregateswereobservedforPVA/Ag-NPnanofibers,conversely,thesizeofAg-NPdecreasedfrom∼8nm downto∼2nmwithinthefibermatrixwithoutaggregationwereattainedforPVA/HP␤CDnanofibers. ThePVA/Ag-NPandPVA/HP␤CD/Ag-NPnanofibersexhibitedsurfaceenhancedRamanscattering(SERS) effect.Moreover,antibacterialpropertiesofPVA/Ag-NPandPVA/HP␤CD/Ag-NPnanofibrousmatswere testedagainstGram-negative(Escherichiacoli)andGram-positive(Staphylococcusaureus)bacteria.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Electrospinning has become an attractive and a practical technique for the production of nanofibers and nanofibrous non-woven mats because of its versatilityand a cost-effective setup(Ramakrishna,2005;Wendorff,Agarwal,&Greiner,2012). Electrospun nanofibrous mats have very high specific surface area,nanoscaleporousstructuresanduniquechemical,physical, mechanical and surface properties (Greiner & Wendorff, 2007; Ramakrishna, 2005; Ramakrishna et al., 2006; Wendorff et al., 2012).Electrospinninghasanexceptionaladvantageover conven-tionalfiberproductiontechniquessincenanofiberscanbereadily producedfromavarietyofpolymers,polymerblends,sol-gels, sus-pensions,emulsionsandcompositestructures.Ithasbeenshown that electrospunnanofibers and theirnanofibrous matscan be particularlyusefulinfiltration,tissueengineering,drugdelivery, energy,sensors,electronicsandenvironmentapplicationsdueto theirdistinctivepropertiesandspecificfunctionalities(Greiner& Wendorff,2007;Guiping,Dawei,Yang,Xiaodan,&Jun,2012;Li& Xia,2004;Ramakrishna,2005;Ramakrishnaetal.,2006;Wendorff etal.,2012).

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365. E-mailaddresses:tamer@unam.bilkent.edu.tr,uyar@unam.bilkent.edu.tr, tameruyar@gmail.com(T.Uyar).

Electrospun nanofibers have design flexibility for particular functionalization which can be performed during the electro-spinning process or by applying post-treatment methods. For instance, functional composite nanofibers can be produced by incorporation of metal nanoparticles (NP), such as silver or gold,intoelectrospunpolymeric nanofibers(Hang, Tae,&Park, 2010; Xiao, Xu, Ma,& Fang, 2012; Zhuet al., 2012).However, thesizeandhomogeneousdistributionofmetalNPthroughthe nanofibermatrix shouldbetaken intoconsideration toachieve highefficiencyandeffectiveperformancefromthesenanofibrous composite materials. For example, silver nanoparticles (Ag-NP) haveattractedconsiderableattentionduetotheiruniqueoptical, electronic, catalytic and antibacterial properties (Arvizo et al., 2012;Fouda,El-Aassar,&Al-Deyab,2013;Rycengaetal.,2011). SeveralstudiesaimedatincorporationofAg-NPwithinelectrospun nanofiberswhichcanenableproductionoffunctionalnanofibrous compositesbycombiningtheuniquepropertiesofnanofiberswith thatofAg-NP(Mahanta&Valiyaveettil,2012;Nametal.,2010;Shi etal.,2011;Xiaoetal.,2012).Yet,thesizecontrolanduniform dis-tributionofAg-NPwithoutaggregationinthepolymericnanofiber matrixischallenging,therefore,anumberofdifferentapproaches werefollowedforobtainingelectrospunpolymer/Ag-NP compos-itenanofibers(Jinetal.,2007;Lietal.,2006;Patel,Li,Wang,Zhang, &Wei2007;Xiaoetal.,2012;Xuetal.,2006).However,inthese approachessilversaltprecursorwasdirectlyaddedtothepolymer solution and the synthesis of Ag-NP was carried out through 0144-8617/$–seefrontmatter © 2013 Elsevier Ltd. All rights reserved.

(2)

Fig.1.(a)SchematicviewandchemicalstructureofHP␤CDmolecule.(b)SchematicrepresentationandthephotographsofPVA/AgNO3,PVA/Ag-NP,PVA/HP␤CD-25%/AgNO3

andPVA/HP␤CD-25%/Ag-NPsolutions.(c)SchematicrepresentationoftheelectrospinningandthephotographofPVA/HP␤CD-25%/Ag-NPnanofibrousmatwiththe repre-sentativeSEMandTEMimages.

thermal(Jinetal.,2007;Pateletal.,2007),chemical(Xiaoetal., 2012;Xuetal.,2006)andphotoreductive(Lietal.,2006) post-treatmentoftheelectrospunnanofibers.Sotheseabovementioned methodsareoftencomplex,time-consuming,andmostlyrequire reducing andstabilizing chemicalswhich aresometimeshighly toxic.

Therefore,simpleandenvironmentallyfriendlyapproachesare essentialforthepractical applicationsofelectrospunnanofibers incorporatingAg-NP. For example,one-step synthesis of Ag-NP incorporatedinpolyethyleneoxidenanofibers(Saquing,Manasco, & Khan, 2009) or polyvinyl alcohol nanofibers (Mahanta & Valiyaveettil,2012)wasachievedwherethepolymersolutionwas usedasbothareducingandprotectingagentforAg-NPandan elec-trospinningtemplate.Inotherstudies,polymer/Ag-NPcomposite nanofiberswereproducedinone-stepbyusingtheelectrospinning solventasareducingagentandtheelectrospinningpolymermatrix asa stabilizing/protectiveagent(Shietal.,2011; Wang,Bai,Li, Zhang,&Zhang,2012).

Theuseoftoxicreducingandstabilizingagentsforthesynthesis ofAg-NP werereplacedwithso-called “green”substances such as natural biomolecules including cellulose, chitosan, polyphe-nols,ascorbicacidandcyclodextrins(Cai,Kimura,&Kuga,2009; Laudenslager,Schiffman,&Schauer,2008;Ng,Yang,&Fan,2008; Ravi, Christena, SaiSubramanian, & Anthony 2013; Wu et al., 2011).As well,“green” practices started to taketheir place in theelectrospinning process bythe useof natural and nonhaz-ardouspolymers(Mahanta&Valiyaveettil,2012).Veryrecently, polymer/cyclodextrin/AgNO3 mixtures were electrospun into polymer/Ag-NPcompositenanofiberswherethecyclodextrinwas usedasastabilizingandreducingagentfortheformationofAg-NP inthepolymermatrix(Chae,Kim,Yang,&Rhee,2011;Wang,Bai, Li,&Zhang,2012).However,polymerusedinthesestudieswas dissolvedindimethylformamide(DMF)which isanundesirable solventtype from thepoint of biomedical applications.On the otherhand,cyclodextrins (CD)arenatural and non-toxic cyclic oligosaccharides which areproduced byenzymatic degradation ofstarch.CDhavea truncatedcone-shapedmolecularstructure whichenablesthemtoformhost-guestinclusioncomplexeswith a variety of compoundsvia non-covalent interactions (Fig.1a). Therefore,CDareusedinanumberofindustrialareassuchas phar-maceuticals,food,chromatography,cosmeticsandtextiles(Chung, Guo, Priestley, & Kwak, 2011; Harada, Kobayashi, Takashima, Hashidzume,& Yamaguchi, 2010; Hedges, 1998; Szejtli, 1998). In addition to that, being a non-toxic and naturally occurring material, CD are also very promising candidates for use as

reducing and stabilizing agent for the formation of metal NP (Alvarez,Liu,Román, &Kaifer,2000; Huang,Meng, &Qi,2009; Kochkar,Aouine,Ghorbel,&Berhault,2011;Liuetal.,2012;Ng etal.,2008).

Inthisstudy,wereportaone-stepsynthesisofAg-NP incorpo-ratedintoelectrospuncompositenanofibers.Initially,weuseda biocompatiblepolymer,polyvinylalcohol(PVA),asreducingagent toconvertsilversalt(AgNO3)intoAg-NPandthenweobtained PVA/Ag-NPcompositenanofibersviaelectrospinning.Inaddition tothat,wealsousedhydroxypropyl-beta-cyclodextrin(HP␤CD) as both reducing and stabilizing agent to control the size and uniformdispersionofAg-NPwithintheelectrospunnanofibers. ThePVA/HP␤CDsolutionhavingdifferentamountofHP␤CDwere preparedtoinvestigatetheeffectofHP␤CDamountonthesize of Ag-NP and their dispersion within the nanofiber matrix. It wasobservedthatthesizeofAg-NPdecreasessignificantlyand homogeneous distribution of Ag-NP without aggregation were achievedintheelectrospunPVA/HP␤CDnanofibers.Thedetailed morphological and structural characterizations of the samples wereperformed byscanning electronmicroscope(SEM), trans-missionelectronmicroscope(TEM),X-raydiffractometer(XRD), UV-Vis-NIRspectroscopy,X-rayphotoelectronspectroscopy(XPS) and Raman spectroscopy. Surface enhanced Raman scattering (SERS) properties of these electrospun nanofibers incorporat-ing Ag-NP have been investigated. The antibacterial property of Ag-NP is well-known and widely studied (Guzman, Dille, & Godet, 2012; Morones et al., 2005; Rai, Yadav,& Gade, 2009). Hence, we have also performedantibacterial tests for PVA/Ag-NP andPVA/HP␤CD/Ag-NPcomposite nanofibrousmatsagainst Gram-negative(Escherichiacoli)andGram-positive(Staphylococcus aureus)bacteria.

2. Experimental 2.1. Materials

The hydroxypropyl-beta-cyclodextrin (HP␤CD, substitution: 0.6–0.9)waspurchasedfromWackerChemieAG(Germany) com-mercially. The polyvinyl alcohol (PVA, Scientific Polymer, 88% hydrolyzed, Mw 125,000),silvernitrate(AgNO3,Sigma Aldrich, ≥99.5%)andsodiumhydroxide(NaOH,Fluka,≥98%,smallbeads) werepurchased. Thedeionized waterwasused fromthe Milli-poreMilli-QUltrapureWaterSystem.Allthematerialswereused withoutanypurification.

(3)

Fig.2. TherepresentativeSEMimagesofelectrospun(a)PVA,(b)PVA/HP␤CD-25%,(c)PVA/Ag-NP,(d)PVA/HP␤CD-7.5%/Ag-NP,(e)PVA/HP␤CD-15%/Ag-NPand(f) PVA/HP␤CD-25%/Ag-NPnanofibers.

2.2. Electrospinning

First,the aqueousPVA solutionwasprepared byusing 7.5% (w/v,withrespecttosolvent)concentration.Ontheotherhand, HP␤CDwasaddedtotheaqueousPVAsolution(7.5%,w/v)atthree differentconcentrations(7.5%,15%and25%,w/v,withrespectto solvent).Afterobtainingaclearandhomogeneousaqueous solu-tionsofPVAandPVA/HP␤CD,AgNO3wasaddedtoeachofthese solutionsandtheconcentrationofAgNO3wasadjustedaccordingly tohave1%(w/w,withrespecttototalPVAorPVA/HP␤CD con-centration)elementalAgintheelectrospunnanofibers.Afterthe AgNO3wasdissolvedcompletely,pHofthesystemswereadjusted to∼8.5byadding1MNaOHtothesolutions.ThepHofPVA solu-tionwithoutHP␤CDwasalsoadjustedtothesamepHlevelto keep themedium similar toeach other.As thesolutions were stirredovernight,thedarkbrownsolutionswereobtained indi-catingtheformationofAg-NPintheelectrospinningsolutions.For comparison,PVA(7.5%,w/v)andPVA(7.5%,w/v)/HP␤CD(25%,w/v) solutionswithoutcontainingAgNO3werealsopreparedfor elec-trospinning.Eachpreparedsolutionwasloadedinto3mLsyringes (metallicneedlewith0.6innerdiameter)andpositioned horizon-tallyonthesyringepump(Model:SP101IZ,WPI).Theelectrodeof thehighvoltagepowersupply(MatsusadaPrecision,AUSeries)was clampedtothemetalneedletipofthesyringeandthecylindrical aluminumcollectorwasgrounded.Theelectrospinningofthe solu-tionswasperformedatthefollowingparameters:appliedvoltage: 15kV,tip-to-collectordistance:15cmandthesolutionflowrate: 0.5mL/h.Electrospuncompositenanofibersweredepositedona groundedstationarycylindricalmetalcollectorcoveredbyapiece ofaluminumfoil.Theelectrospinningapparatuswasenclosedina Plexiglasboxandtheelectrospinningwascarriedoutat25◦Cand 25%relativehumidity.

2.3. Measurementsandcharacterization

A rheometer (AntonPaar Physica CR 301) equipped with a cone/plateaccessory(spindletypeCP40-2)wasusedtomeasure therheologicalbehaviorof theelectrospinning solutions inthe range of 0.1–100s−1 shear rate. The conductivity of the solu-tionswasmeasured witha Multiparameter InoLab® Multi 720 (WTW)atroomtemperature.Themorphologicalcharacterizations

of nanofibers were carried out by using the scanning electron microscope(SEM)(Quanta200FEG,FEI).Samplesweresputtered with5nmAu/Pd(PECS-682)andtheaveragefiberdiameter(AFD) wascalculated fromthe SEMimagesby analyzing atleast 100 fibers.Transmissionelectronmicroscope(TEM)(FEI-TecnaiG2F30) wasusedforthedetectionofAg-NPin thenanofiberstructure. ForTEMimaging, HC200gridswereattachedonthealuminum foilandthenanofibersamplesweredirectlyelectrospunontothe grids.TheaverageparticlesizesofAg-NPweredeterminedfrom GATANdigital micrographprogram. X-raydiffractometer(XRD) (X’Pert powder diffractometer, PANalytical) wasused to deter-minetheX-raydiffractionpatternofthenanofibersampleswith CuK␣radiationintherangeof2=25–80◦.TheUV-Vis-NIR spec-trophotometer(VarianCary5000,USA)wasusedinthewavelength rangeof400–800nmtoobservecharacteristicabsorptionofAg-NP. TheUV–visspectrawereobtainedbydissolvingthenanofibersin water.Thebackgroundwascorrectedwiththeaqueoussolution ofpurePVAandPVA/HP␤CDnanofiberswithoutAg-NP.TheX-ray photoelectronspectraofthenanofiberswererecordedbyusing X-rayphotoelectronspectrometer(XPS)(ThermoScientific).XPSwas usedbymeansofafloodgunchargeneutralizersystemequipped witha monochromated AlK␣ X-raysource(h



=1486.6eV). In ordertoobtaineddetailedinformation,thehighresolution spec-tra were recorded for the spectral regions relating to silver at passenergyof50eV.Ramanmeasurementsareperformedusing aWITECAlpha300Ssystem.Adiode-pumpedsolid-state532nm wavelengthlaser is usedfor excitation in theRaman measure-ments.Laserpowerhasbeencalibratedusingasiliconphotodiode atsampleplane.

2.4. Antibacterialtest

Theantibacterialactivitiesofthenanofiberswereperformed againstEscherichiacoliRSHM888(RSHM,NationalTypeCulture CollectionLaboratory,Ankara,Turkey)asaGram-negativebacteria andStaphylococcusaureusRSHM96090/07035(ATCC25923)asa Gram-positivebacteria.Thenanofibrousmatswerecutintocircular discshavingdiameterof0.8cm.Thediskagardiffusionmethodwas conducted.150␮Loftheovernightgrowncultures(∼101cfu/mLof E.coliand∼109cfu/mLofS.aureus)werespreadedonLuria-Bertani (LB)agar.Thenanofibrousmatswereplacedontopoftheagar

(4)

Table1

ThepropertyoftheelectrospinningsolutionsandtheaveragefiberdiameterandtheaverageparticlesizeofAg-NPpresentintheelectrospunnanofibers.

Sample Conductivity (␮S/cm) Viscosity (Pas) Averagefiber diameter(nm) Averageparticle sizeofAg-NP(nm) PVA 525 0.50 290±75 – PVA/HP␤CD-25% 830 0.60 500±140 – PVA/Ag-NP 1415 0.35 235±40 8.0±0.5 PVA/HP␤CD-7.5%/Ag-NP 1630 0.60 360±70 2.7±0.5 PVA/HP␤CD-15%/Ag-NP 1625 0.63 400±70 2.6±0.5 PVA/HP␤CD-25%/Ag-NP 1635 0.70 485±100 1.8±0.4

plate.ThePetridisheswereincubatedat37◦Cfor24h.Thetests wererepeatedthreetimesforeachofbacteria.Thezoneswhere thebacterialgrowthwasnotobservedwererecordedasinhibition zonesanddiametersweremeasured.

3. Resultsanddiscussion

3.1. Electrospinningandmorphologicalcharacterizationsof PVA/Ag-NPandPVA/HPˇCD/Ag-NPcompositenanofibers

Here, in situ reduction of silver nitrate (AgNO3) into silver

nanoparticle (Ag-NP) was achieved in polyvinyl alcohol (PVA) aqueoussolutionwherePVAwasactedasbothreducingagentand stabilizingagentaswellaselectrospinningpolymermatrixforthe fabricationofPVA/Ag-NPcompositenanofibers.PVAcanreduce theAg+ionsintoAg-NPduetothehydroxylgroupsonthepolymer

backbone(Mahanta&Valiyaveettil,2012)andalsostabilizethe Ag-NPbykeepingthemfromaggregation.Yet,inordertocontrol

thesizeandensureuniformdispersionofAg-NPinPVAsolution, we also used hydroxypropyl-beta-cyclodextrin (HP␤CD) as a supplementaryreducingandstabilizingagent.Thecarbohydrates (glucose, starch, etc.) have high potential for the reduction of AgNO3totheAg-NP;howevertobemoreefficientintheambient conditions,NaOHcouldbeaddedtothesystemtoenhanceand acceleratethereductionofAg1+toAg0byreleasingtheelectrons fromglucosemolecules(Shervani,&Yamamoto,2011),otherwise, theseagentsrepresentlimitedreducing effect.So,wehave pre-paredthealkalineconditionsbyusingNaOH(pH∼8.5)tobenefit fromthereducingpotentialofHP␤CDmoleculesthathavevery similarchemicalstructurewithothertypesofcarbohydrates.The concentrationof PVA inaqueoussolutionwasadjusted as7.5% (w/v, withrespecttosolvent) in orderto obtainbead-freeand uniformnanofibersbyelectrospinning.ForPVA/HP␤CDblend solu-tions,theconcentrationofPVAwaskeptat7.5%(w/v)andthree differentconcentrationsofHP␤CDwasused;7.5%,15%and25% (w/v).Previously,wehaveshownthatHP␤CDcanbeelectrospun

Fig.3.TherepresentativeTEMimagesofelectrospun(a)PVA/Ag-NP,(b)PVA/HP␤CD-7.5%/Ag-NP,(c)PVA/HP␤CD-15%/Ag-NPand(d)PVA/HP␤CD-25%/Ag-NPnanofibers. TheHR-TEMimageofasingleAg-NPindicatingthed-spacingbetweenAg{111}planesasinsetfigure.

(5)

geneousaqueoussolutionsofPVAandPVA/HP␤CDandthedark brownsolutionswereobtainedafterovernightmixingindicating theAg-NPformationintheelectrospinningsolutions(Fig.1b).In each electrospinning solution,the concentrationof AgNO3 was adjustedaccordinglytohave1%(w/w,withrespecttototalPVAor PVA/HP␤CDconcentration)Ag-NPintheelectrospunnanofibers.

TheelectrospinningofPVA/HP␤CD/Ag-NPnanofiberswas illus-tratedinFig.1c.TheelectrospunPVA/HP␤CD/Ag-NPcomposite nanofibrousmatshavethecharacteristiccolorofAg-NPandthese materialsareflexiblewhichcanbeeasilyhandledasafree-standing mat(Fig.1c).TherepresentativeSEMimagesofPVA,PVA/HP␤CD, PVA/Ag-NPandPVA/HP␤CD/Ag-NPnanofiberswereshownatFig.2 andtheiraveragefiberdiameters(AFD)weregiveninTable1.Inall cases,bead-freeanduniformnanofiberswereobtainedelucidating thattheconcentrationandviscosityoftheelectrospinning solu-tionswereattheoptimallevel.However,theAFDofthenanofibers weredifferentfromeachotherbecauseofthedifferencesinthe viscosityand conductivity values of the solutions (Table 1). In electrospinning,typicallyhighsolutionviscosityorlowsolution conductivityyieldthickerfibersbecauseofthelessstretchingof theelectrospinningjet(Ramakrishna,2005;Wendorffetal.,2012). Onthecontrary,electrospinningofsolutionshavinglowerviscosity orhighersolutionconductivityresultedinthinnerfibersbecauseof themorestretchingoftheelectrospinningjet(Ramakrishna,2005; Wendorffetal.,2012).TheelectrospunPVAnanofibershaveAFD of290±75nmandwhenHP␤CDwasaddedtothePVAsolution atthehighestHP␤CDconcentration(25%,w/v),PVA/HP␤CD-25% nanofibershavingAFDof500±140nmwereobtained.Although thesolutionconductivityincreasedabit,highsolutionviscosity ofPVA/HP␤CD-25%yieldedthickerfibers.Inthecase of electro-spunPVA/Ag-NP nanofibers,the AFD decreased to 235±40nm whencomparedtoPVAnanofibersandthiswasowingtothe pres-enceofAg-NPwhichcontributedtohighersolutionconductivity (Saquingetal.,2009)andtheviscosityofthesolutionwasalso low-eredwhichresultedinmorestretchingoftheelectrospinningjet. ThePVA/HP␤CD/Ag-NPsolutionshavehigherviscosityand con-ductivityvalues, in addition,the higheramount ofHP␤CD,the highertheviscosityofthesolutionswereobtainedandthesolution conductivityofthePVA/HP␤CD/Ag-NPsystems wereveryclose toeachother.Therefore,thickerfiberswereexpectedtobe pro-ducedastheamountofHP␤CDincreasedfrom7.5%(w/v)through 25%(w/v).Asexpected,weobservedthattheAFDofPVA/HP ␤CD-7.5%/Ag-NP,PVA/HP␤CD-15%/Ag-NPandPVA/HP␤CD-25%/Ag-NP nanofibershasAFDof360±70nm,400±70nmand485±100nm, respectively.

The representative TEM images of PVA/Ag-NP and PVA/HP␤CD/Ag-NP nanofibers were shown in Fig. 3 and the averageparticlesize(APS)ofAg-NPpresent inthefibermatrix wasgiven inTable1.Ag-NPwereseenasblack sphericalspots in TEM images of the fiber samples. For PVA/Ag-NP nanofiber sample,theAPSoftheAg-NPwas8.0±0.5nmbutsomeAg-NP aggregationswerealsoobservedforthissample(Fig.3a).Onthe otherhand,itwasapparentthatAg-NPhavehomogenous distri-butionthroughthefibermatrixfor PVA/HP␤CD/Ag-NPsamples (Fig.3b–d).Additionally,thesizeofAg-NPdecreasessignificantly in the PVA/HP␤CD/Ag-NP nanofiber samples as the amount of HP␤CDincreasesinthefibermatrix.TheAPSoftheAg-NPwas 8.0±0.5nmforHP␤CDfreePVA/Ag-NP nanofiberswhereasthe size of the Ag-NP decreased to 2.7±0.5nm, 2.6±0.5nm and 1.8±0.4nmforPVA/HP␤CD-7.5%/Ag-NP,PVA/HP␤CD-15%/Ag-NP andPVA/HP␤CD-25%/Ag-NPnanofibersamples,respectively.

Owingtohydroxylgroups,PVApolymerhastheabilitytoreduce AgsaltsintoAg-NP13,however,withtheadditionofHP␤CDinthe

Fig.4. (a)XRDspectraofPVA,PVA/HP␤CD-25%,PVA/Ag-NP, PVA/HP␤CD-7.5%/Ag-NP, PVA/HP␤CD-15%/Ag-NP andPVA/HP␤CD-25%/Ag-NPnanofibrous mats.(b) UV–vis spectratakenfrom thedissolved PVA/Ag-NP,PVA/HP␤CD-7.5%/Ag-NP, PVA/HP␤CD-15%/Ag-NP and PVA/HP␤CD-25%/Ag-NP nanofibers in water. (c) The high resolution XPS of electrospun PVA/Ag-NP, PVA/HP␤CD-7.5%/Ag-NP, PVA/HP␤CD-15%/Ag-NPandPVA/HP␤CD-25%/Ag-NPnanofibers.

PVAsolutionsignificantdecreasewasobservedforthesizeof Ag-NPduetothehighlyefficientstabilizingandreducingpropertiesof CDmolecules(Kochkaretal.,2011;Ngetal.,2008).Furthermore, Ag-NPdidnotaggregateorcoagulatelocallyduetothestabilizing effectofHP␤CDthatleadstouniformdistributionofAg-NPwithin thefibermatrix.Moreimportantly,thesizeAg-NPcanbecontrolled byvaryingtheamountofHP␤CD,that is,highertheamountof HP␤CD,smallerthesizeofAg-NP.

(6)

Fig.5.(a)RamanspectraofPVAandPVA/HP␤CD-25%nanofiberswhenilluminatedwith532nm,10mWpower,20×objective.(b)TimedependentRamanspectraofpristine PVAnanofibers.(c)TimedependentRamanspectraofPVA/HP␤CD-25%nanofibers.WhenAg-NParepresentin(d)PVA/Ag-NPand(e)PVA/HP␤CD-7.5%/Ag-NPnanofibers, timedependentRamanspectrashowfluctuationsevenatlowpowers(532nm,0.5mW,20×objective),typicalindicationofhighsurfaceenhancementRamanscattering (SERS).Duetohighabsorptioncoefficientandhighthermalinsulationoffreestandingfibers,absorptioncausesthermaldamagetosampleathighpowers(e.g.10mW).

3.2. StructuralcharacterizationofPVA/Ag-NPand PVA/HPˇCD/Ag-NPcompositenanofibers

Thecharacteristicsof Ag-NPwereinvestigated byusing HR-TEMandXRDmeasurements.TherepresentativeHR-TEM,given inFig.3aasaninsetfigure,showsthelatticefringesofAg-NPin PVA/Ag-NPcompositenanofibersandthed-spacingwasmeasured tobe0.235nmfromthelatticefringesthatcorrespondedtothe latticespacingofthe(111)planesofthefccAg(Zengetal.,2012). TheXRDpatternsoftheelectrospunnanofibrousmatsweregiven inFig.4a.ThePVA/Ag-NPsamplehasdiffractionpeaksat2=38.4◦, 44.4◦,64.6◦ and77.6◦ whichbelongto(111),(200),(220),and (311)crystalplanesofAg,respectively(Lietal.,2007;Wei,Han, Walker,Fuller,&Grzybowski,2012).ForPVA/HP␤CD/Ag-NP sam-plessamecharacteristicpeaksofelementalAgwereobserved,but, therewerealsoadditionalpeaksat2=28.0◦,32.4◦,46.4◦,55.0◦ and57.9◦whichcorrespondtoexistingofoxidizedAg(Chenetal., 2006;Singh,Mehta,Joshi,Kruis,&Shivaprasad,2007;Weietal., 2012).Thisispossiblyoriginatedfromtheoxidationofunsaturated outersurfaceofAg-NPbythehydroxylgroupsofHP␤CDmolecules (Porramezan &Eisazadeh,2011).ForPVA/HP␤CD-25%/Ag-NP,it wasalsoobservedthatthediffractionpeakintensityforAgwas decreasedsignificantly andAg2Opeaksbecameprominent sug-gestingthat Ag-NPhashigheroxizedcontentsincethis sample containsthehighestamountofHP␤CD.

TheUV–visabsorptionmeasurementsof thePVA/Ag-NPand PVA/HP␤CD/Ag-NP were obtained from the aqueous solution by dissolving the nanofibrous mats in water (Fig. 4b). For all samples,the spectra showan absorption bandat the range of 400–450nmwavelengthsduetothecharacteristicsurface plas-monic resonance (SPR) band for Ag-NP (Ng et al., 2008; Wu et al., 2011). For PVA/Ag-NP nanofibers the particle size was 8.0±0.5nmandthemaximumabsorptionvalueexistsat421nm. On the other hand, the SPR peak for PVA/HP␤CD-7.5%/Ag-NP (APS=2.7±0.5nm)wasobservedat439nm.AstheHP␤CDcontent increased,blue-shiftofabsorptionpeaksto435nmand 428nm forPVA/HP␤CD-15%/Ag-NP(APS=2.6±0.5nm)andPVA/HP ␤CD-25%/Ag-NP(APS=1.8±0.4nm)wereobserved,respectivelydueto thedecreasingsizeofAg-NPinthefibermatrix.Eventhoughthe Ag-NPparticlesizeisdistinctivelysmallerforthePVAnanofibers containingHP␤CDcomparedtoHP␤CDfreePVAnanofibers,the

absorption peak of the spectrum firstly shows red-shift to the higherwavelengthandbroadeningforPVA/HP␤CD/Ag-NPsystems. ThiscanbeexplainedbytheexistenceAg2OontheAg-NPthatwas alsoprovedbytheXRDmeasurements.ForthePVA/HP ␤CD/Ag-NP samples, the Ag2O layer on the Ag-NP surface results an absorption shoulder at 450–500nm range and it also causes broadeningatthecharacteristicabsorptionbandofAg-NP(Chen et al., 2006).Fig. 4c shows theXPS spectra of PVA/Ag-NP and PVA/HP␤CD/Ag-NP nanofibers. Thedoublet peaks at 368.2 and 374.2eVareassignedtothebindingenergies3d5/2and3d3/2ofAg 3dcorelevel,respectively(Suh,Moon,Lee,&Jang,2006).Thereare merelydifferencesbetweenthebindingenergyofAg0andAg1+, sotheionictypeexistencecannotbeeasilynoticedfromAg3d corelevelwhichwassupportedbyXRDmeasurements(Lietal., 2007).

3.3. SurfaceenhancedRamanscattering(SERS)propertiesof PVA/Ag-NPandPVA/HPˇCD/Ag-NPcompositenanofibers

SurfaceenhancedRamanscattering(SERS)propertiesofAg-NP surface-decoratedelectrospunpolymericnanofibershasbeen pre-viouslydemonstrated,resultinginflexibleSERSactivesubstrates (Zhangetal.,2012).WeinvestigatedthepresenceofSERSeffects in Ag-NP loadedPVA and PVA/HP␤CD nanofibers as shown in Fig.5.WithoutAg-NP,thePVAand PVA/HP␤CDnanofiber sam-plesexhibitedRamanspectra(Fig.5a),thatarestableintime,even underhighexcitationpowersof10mW(Fig.5bandc).However, PVA/Ag-NP(Fig.5d)andPVA/HP␤CD/Ag-NP(Fig.5e)nanofibers exhibitedfluctuatingRamanspectraevenatlowpowers(<1mW) due tothepresence ofAg-NP, typicalindicationof strongSERS effect.TimedependentRamanspectraofPVA/HP␤CD-7.5%/Ag-NP samplewasgivenasexampleinFig.5e,but,PVA/HP ␤CD-15%/Ag-NPandPVA/HP␤CD-25%/Ag-NPsampleshavealsoshownsimilar characteristics(datanotshown).It hasbeenalsoobservedthat (datanotshown),highexcitationpowersresultedinthermal dam-agetoPVA/Ag-NPandPVA/HP␤CD/Ag-NPnanofibrousmatsdue topoorthermalconductionofnanofibersandhighabsorptionof Ag-NP.FluctuationsoftheSERSsignalfromAg-NPincorporated nanofiberssuggestthatathermallyactivatedmechanismislikely tobethesourceofobservedblinkingbehavior.Inshort,PVA/Ag-NP

(7)

Fig.6. Thephotographsofantibacterialtestingofnanofibrousmatswhichwereperformedagainst(a)E.coliand(b)S.aureus.

andPVA/HP␤CD/Ag-NPsamplesexhibitedSERSeffectwhichcanbe usefulforsensingapplication(Zhangetal.,2012).

3.4. AntibacterialpropertiesofPVA/Ag-NPand PVA/HPˇCD/Ag-NPcompositenanofibers

Here,we investigated theantibacterialeffects of PVA/Ag-NP andPVA/HP␤CD/Ag-NPnanofibrousmatsagainstGram-negative (E.coli)and Gram-positive (S.aureus)bacteria.Theelectrospun PVAandPVA/HP␤CDwithoutAg-NPwerealsotestedfor compar-ison.Fortheantibacterialtest,threesamplestakenfromdifferent locations of the same nanofibrous mat were placed on E. coli andS. aureusspreaded agarplates and visualizedafter incuba-tionfor24h. Theplateswerecheckedforthepresenceandsize ofthe inhibition zones(Fig.6 and Table 2).We observed that,

PVAand PVA/HP␤CDnanofibersdidnotshowanyantibacterial activity.On theotherhand,PVA/Ag-NP nanofibershave shown antibacterialpropertydue tothepresence ofAg-NP.Ag-NP has antibacterialproperty,which is sizedependent(Morones etal., 2005).So,inthecaseofPVA/HP␤CD/Ag-NPnanofibers,asthesizeof Ag-NPdecreaseddependingontheHP␤CDamount,theinhibition zonebecamelargerindicatingenhancedantibacterialactivity com-paredtoPVA/Ag-NPnanofibers(Fig.6).AmongPVA/HP␤CD/Ag-NP samples,thePVA/HP␤CD-25%/Ag-NPhasshownbetter antibacte-rialactivitysincetheAg-NPhasthesmallestsizeinthissample (Table 1).This may be due to the fact that the release of the Ag-NPbecomeseasierastheparticlesizedecreases,sothat Ag-NP can more effectively reach the bacteria regionand contact withthebacteria.In addition,owingtothesmallerdimensions, highersurfacetovolumeratioswereobtainedwhichalsoenhances

Table2

Theinhibitionzoneresultstakenafter24hforPVA,PVA/HP␤CD-25%,PVA/Ag-NP,PVA/HP␤CD-7.5%/Ag-NP,PVA/HP␤CD-15%/Ag-NPandPVA/HP␤CD-25%/Ag-NPnanofibers againstE.coliandS.aureus.

Samples E.coli S.aureus

0h(cm) 24h(cm) 0h(cm) 24h(cm) PVA 0.8 0.8 0.8 0.8 PVA/HP␤CD-25% 0.8 0.8 0.8 0.8 PVA/Ag-NP 0.8 1.32±0.00 0.8 1.41±0.15 PVA/HP␤CD-7.5%/Ag-NP 0.8 1.55±0.07 0.8 1.62±0.16 PVA/HP␤CD-15%/Ag-NP 0.8 1.60±0.03 0.8 1.73±0.21 PVA/HP␤CD-25%/Ag-NP 0.8 1.72±0.16 0.8 1.85±0.07

(8)

the antibacterial activity of Ag-NP (Martinez-Castanon, Nino-Martinez,Martinez-Gutierrez,Martinez-Mendoza,&Ruiz,2008; Mollahosseini, Rahimpour, Jahamshahi, Peyravi, & Khavarpour, 2012).Similarly,Moronesetal.reportedthatbactericidal proper-tiesoftheAg-NParesizedependentandsmallerAg-NPweremuch moreeffectiveagainstGram-negativebacteriasinceAg-NPhaving adiameterof∼1–10nmpreferentiallypresentadirectinteraction withthebacteria(Moronesetal.,2005).Moreover,weobserved thattheincreaseintheinhibitionzonewasmoredistinctivefor S.aureuscomparedtoE.coliastheAg-NPsizegetsmallerandthis couldbeattributedtothecellularwallcontentdifferencesbetween Gram-positiveandGram-negativebacteriaasdiscussedbyThiel etal.(2007).

4. Conclusion

Here,wehaveachievedone-stepsynthesisofAg-NPby reduc-tionof AgNO3 byusing PVA and PVA/HP␤CD aqueoussolution as reducing and stabilizing medium as well as the electro-spinningmatrix.For thePVA/Ag-NPsystem,Ag-NPwithanAPS of8.0±0.5nmwasobtainedandasmallnumberofAg-NP aggre-gationwasobservedwithinthePVAfibermatrix.ThesizeofAg-NP decreasedsignificantlywiththeadditionofHP␤CDtothePVA solu-tionandhomogeneousdistributionofAg-NPwithoutaggregation wasachievedforthePVA/HP␤CD/Ag-NPnanofibers.Byincreasing theamountofHP␤CDin thePVAsolution,thesize-tunable Ag-NPsynthesiswassuccessfulowingtotheefficientreducingand stabilizingpropertiesofHP␤CD.ThesizeoftheAg-NPin PVA/Ag-NP nanofibers was decreased to 2.7±0.5nm, 2.6±0.5nm and 1.8±0.4nmforPVA/HP␤CD-7.5%/Ag-NP,PVA/HP␤CD-15%/Ag-NP and PVA/HP␤CD-25%/Ag-NP nanofibers, respectively. We have observed that, multifunctional PVA/Ag-NP and PVA/HP ␤CD/Ag-NP nanofibersexhibited SERSeffect which mightbe applicable insensingapplications,inaddition,thesenanofibrousmatshave shown antibacterialeffect againstE.coli andS. aureusbacteria. WhencomparedtoPVA/Ag-NP,PVA/HP␤CD/Ag-NPsampleshave shownbetterantibacterialefficiencyduetosmallersizeofAg-NP. Inaddition,thePVA/HP␤CD-25%/Ag-NPhavingthesmallerAg-NP hasshownbetterantibacterialefficiencyamongPVA/HP ␤CD/Ag-NPsamples.Inbrief,ourapproachisa“green”andfacilemethod forthefabricationofAg-NPincorporatedfunctionalnanofibrous matshavingSERSeffectandantibacterialproperties.HP␤CDisa bio-compatibleandnon-toxicoligosaccharideandtheadditional useofhazardousreducing/stabilizingagentfortheformationof Ag-NPcanbeeliminatedbyusingHP␤CD.Furthermore,polymer matrixsuchasPVAisalsoknownforitsbiocompatiblenatureand suitableforbiomedicalapplications.Therefore,theseelectrospun PVA/HP␤CD/Ag-NPnanofibrousmatscanbequiteapplicableasa woundhealingmaterial,insensingorotherbiomedicaluses. Acknowledgements

StatePlanningOrganization(DPT)ofTurkeyisacknowledged forthesupportofUNAM-InstituteofMaterialsScience& Nano-technology. Dr T. Uyar acknowledges EU FP7-Marie Curie-IRG forfundingNANOWEB(PIRG06-GA-2009-256428).A.Celebioglu acknowledgesTUBITAK-BIDEBforNationalPhDScholarship. References

Alvarez,J.,Liu,J.,Román,E.,&Kaifer,A.E.(2000).Water-solubleplatinumand palladiumnanoparticlesmodifiedwiththiolated␤-cyclodextrin.Chemical Com-munication,13,1151–1152.

Arvizo,R.R.,Bhattacharyya,S.,Kudgus,R.A.,Giri,K.,Bhattacharya,R.,&Mukherjee, P.(2012).Intrinsictherapeuticapplicationsofnoblemetalnanoparticles:Past, presentandfuture.ChemicalSocietyReviews,41(7),2943–2970.

Cai,J.,Kimura,S.,Wada,M.,&Kuga,S.(2009).Nanoporouscelluloseasmetal nanoparticlessupport.Biomacromolecules,10(1),87–94.

Celebioglu,A.,&Uyar,T.(2012).Electrospinningofnanofibersfromnon-polymeric systems:Polymer-freenanofibersfromcyclodextrinderivatives.Nanoscale,4(2), 621–631.

Chae,H.H.,Kim,B.-H.,Yang,K.S.,&Rhee,J.I.(2011).Synthesisand antibacte-rialperformanceofsize-tunablesilvernanoparticleswithelectrospunnanofiber composites.SyntheticMetals,161(19),2124–2128.

Chen,M.,Wang,L.-Y.,Han,J.-T.,Zhang,J.-Y.,Li,Z.-Y.,&Qian,D.-J.(2006).Preparation andstudyofpolyacryamide-stabilizedsilvernanoparticlesthroughaone-pot process.JournalofPhysicalChemistryB,110(23),11224–11231.

Chung,J.W.,Guo,Y.,Priestley,R.D.,&Kwak,S.-Y.(2011).Colloidalgoldnanoparticle formationderivedfromself-assembledsupramolecularstructureof cyclodex-trin/Ausaltcomplex.Nanoscale,3(4),1766–1772.

Fouda,M.M.G.,El-Aassar,M.R.,&Al-Deyab,S.S.(2013).Antimicrobial activ-ityofcarboxymethylchitosan/polyethyleneoxidenanofibersembeddedsilver nanoparticles.CarbohydratePolymers,92(2),1012–1017.

Greiner,A.,&Wendorff,J.H.(2007).Electrospinning:Afascinatingmethodforthe preparationofultrathinfibers.AngewandteChemieInternationalEdition,46(30), 5670–5703.

Guiping,M.,Dawei,F.,Yang,L.,Xiaodan,Z.,&Jun,N.(2012).Electrospunsodium algi-nate/poly(ethyleneoxide)core–shellnanofibersscaffoldspotentialfortissue engineeringapplications.CarbohydratePolymers,87(1),737–743.

Guzman,M.,Dille,J.,&Godet,S.(2012).Synthesisandantibacterialactivityofsilver nanoparticlesagainstgram-positiveandgram-negativebacteria.Nanomedicine: Nanotechnology,BiologyandMedicine,8(1),37–45.

Hang, A. T., Tae, B., & Park, J. S. (2010). Non-woven mats of poly(vinyl alcohol)/chitosanblendscontainingsilvernanoparticles:Fabricationand char-acterization.CarbohydratePolymers,82(2),472–479.

Harada,A.,Kobayashi,R.,Takashima,Y.,Hashidzume,A.,&Yamaguchi,H.(2010). Macroscopicself-assemblythroughmolecularrecognition.NatureChemistry, 3(1),34–37.

Hedges,A.R.(1998).Industrialapplicationsofcyclodextrins.ChemicalReviews, 98(5),2035–2044.

Huang,T.,Meng,F.,&Qi,L.(2009).Facilesynthesisandone-dimensionalassembly ofcyclodextrin-cappedgoldnanoparticlesandtheirapplicationsincatalysis andsurface-enhancedRamanscattering.JournalofPhysicalChemistryC,113(31), 13636–13642.

Jin,M.,Zhang,X.,Nishimoto,S.,Liu,Z.,Tryk,D.A.,Murakami,T.,etal.(2007). Large-scalefabricationofAgnanoparticlesinPVPnanofibresandnet-likesilver nanofibrefilmsbyelectrospinning.Nanotechnology,18(7),075605.

Kochkar,H.,Aouine,M.,Ghorbel,A.,&Berhault,G.(2011).Shape-controlled synthe-sisofsilverandpalladiumnanoparticlesusing␤-cyclodextrin.JournalofPhysical ChemistryC,115(23),11364–11373.

Laudenslager,M.J.,Schiffman,J.D.,&Schauer,C.L.(2008).Carboxymethylchitosan asamatrixmaterialforplatinum,gold,andsilvernanoparticles. Biomacro-molecules,9(10),2682–2685.

Li,D.,&Xia,Y.(2004).Electrospinningofnanofibers:Reinventingthewheel? AdvancedMaterials,16(14),1151–1170.

Li,S.,Shen,Y.,Xie,A.,Yu,X.,Qiu,L.,Zhang,L.,etal.(2007).Greensynthesisof silvernanoparticlesusingCapsicumannuumL.extract.GreenChemistry,9(8), 852–858.

Li,Z.,Huang,H.,Shang,T.,Yang,F.,Zheng,W.,Wang,C.,etal.(2006).Facilesynthesis ofsingle-crystalandcontrollablesizedsilvernanoparticlesonthesurfacesof polyacrylonitrilenanofibres.Nanotechnology,17(3),917–920.

Liu,W.,Herrmann,A.K.,Geiger,D.,Borchardt,L.,Simon,F.,Kaskel,S.,etal.(2012). Highperformanceelectrocatalysisonpalladiumaerogels.AngewandteChemie InternationalEdition,51(23),5743–5747.

Mahanta,N.,&Valiyaveettil,S.(2012).Insitupreparationofsilvernanoparticleson biocompatiblemethacrylatedpoly(vinylalcohol)andcellulosebasedpolymeric nanofibers.RSCAdvances,2(30),11389–11396.

Martinez-Castanon, G., Nino-Martinez, N., Martinez-Gutierrez, F., Martinez-Mendoza,J.,&Ruiz,F.(2008).Synthesisandantibacterialactivityofsilver nanoparticles with different sizes. Journalof Nanoparticle Research, 10(8), 1343–1348.

Mollahosseini,A.,Rahimpour,A.,Jahamshahi,M.,Peyravi,M.,&Khavarpour,M. (2012).Theeffectofsilvernanoparticlesizeonperformanceandantibacteriality ofpolysulfoneultrafiltrationmembrane.Desalination,306,41–50.

Morones,J.R.,Elechiguerra,J.L.,Camacho,A.,Holt,K.,Kouri,J.B.,Ramírez,J.T.,etal. (2005).Thebactericidaleffectofsilvernanoparticles.Nanotechnology,16(10), 2346.

Nam,S.H.,Shim,H.-S.,Kim,Y.-S.,Dar,M.A.,Kim,J.G.,&Kim,W.B.(2010).Agor Aunanoparticle-embeddedone-dimensionalcompositeTiO2nanofibers

pre-paredviaelectrospinningforuseinlithium-ionbatteries.ACSAppliedMaterials &Interfaces,2(7),2046–2052.

Ng,C.H.B.,Yang,J.,&Fan,W.Y.(2008).Synthesisandself-assemblyof one-dimensionalsub-10nmAgnanoparticleswithcyclodextrin.JournalofPhysical ChemistryC,112(11),4141–4145.

Patel,A.C.,Li,S.,Wang,C.,Zhang,W.,&Wei,Y.(2007).Electrospinningofporous silicananofiberscontainingsilvernanoparticlesforcatalyticapplications. Chem-istryofMaterials,19(6),1231–1238.

Porramezan,M.,&Eisazadeh,H.(2011).Fabricationandcharacterizationof polyani-line nanocomposite modifiedwith Ag2O nanoparticles. CompositesPart B:

Engineering,42(7),1980–1986.

Rai,M.,Yadav,A.,&Gade,A.(2009).Silvernanoparticlesasanewgenerationof antimicrobials.BiotechnologyAdvances,27(1),76–83.

(9)

Ravi,S.S.,Christena,L.R.,SaiSubramanian,N.,&Anthony,S.P.(2013).Green synthe-sizedsilvernanoparticlesforselectivecolorimetricsensingofHg2+inaqueous

solutionatwidepHrange.Analyst,138(15),4370–4377.

Rycenga,M.,Cobley,C.M.,Zeng,J.,Li,W.,Moran,C.H.,Zhang,Q.,etal.(2011). Controllingthesynthesisandassemblyofsilvernanostructuresforplasmonic applications.ChemicalReviews,111(6),3669.

Saquing, C. D., Manasco, J. L., & Khan, S. A. (2009). Electrospun nanoparticle–nanofiber composites via a one-step synthesis. Small, 5(8), 944–951.

Shervani,Z.,&Yamamoto,Y.(2011).Carbohydrate-directedsynthesisofsilverand goldnanoparticles:Effectofthestructureofcarbohydratesandreducingagents onthesizeandmorphologyofthecomposites.CarbohydrateResearch,346(5), 651–658.

Shi,Q.,Vitchuli,N.,Nowak,J.,Noar,J.,Caldwell,J.M.,Breidt,F.,etal.(2011).One-step synthesisofsilvernanoparticle-fillednylon6nanofibersandtheirantibacterial properties.JournalofMaterialsChemistry,21(28),10330–10335.

Singh,V.N.,Mehta,B.R.,Joshi,R.K.,Kruis,F.E.,&Shivaprasad,S.M.(2007).Enhanced gassensingpropertiesofIn2O3:Agcompositenanoparticlelayers;Electronic

interaction,sizeandsurfaceinducedeffects.SensorsandActuatorsB:Chemical, 125(2),482–488.

Suh,M.P.,Moon,H.R.,Lee,E.Y.,&Jang,S.Y.(2006).Aredox-activetwo-dimensional coordinationpolymer:Preparationofsilverandgoldnanoparticlesandcrystal dynamicsonguestremoval.JournaloftheAmericanChemicalSociety,128(14), 4710–4718.

Szejtli,J.(1998).Introductionandgeneraloverviewofcyclodextrinchemistry. Chem-icalReviews,98(5),1743.

Thiel,J.,Pakstis,L.,Buzby,S.,Raffi,M.,Ni,C.,Pochan,D.e.J.,etal.(2007).Antibacterial propertiesofsilver-dopedtitania.Small,3(5),799–803.

one-dimensional ␤-CD/PVP composite nanofibers prepared via electro-spinningforuseinantibacterialmaterial.ColloidandPolymerScience,290(7), 667–672.

Wei,Y.,Han,S.,Walker,D.A.,Fuller,P.E.,&Grzybowski,B.A.(2012).Nanoparticle core/shellarchitectureswithinMOFcrystalssynthesizedbyreactiondiffusion. AngewandteChemieInternationalEdition,51(30),7435–7439.

Wendorff, J. H., Agarwal, S., & Greiner, A. (2012). Electrospinning: Materials, processing,andapplications.Wiley-VCH.

Wu,H., He, L.,Gao, M., Gao, S., Liao, X., & Shi,B. (2011). One-stepin situ assemblyofsize-controlledsilvernanoparticlesonpolyphenol-graftedcollagen fiberwithenhancedantibacterialproperties.NewJournalofChemistry,35(12), 2902–2909.

Xiao,S.,Xu,W.,Ma,H.,&Fang,X.(2012).Size-tunableAgnanoparticles immobi-lizedinelectrospunnanofibers:Synthesis,characterization,andapplicationfor catalyticreductionof4-nitrophenol.RSCAdvances,2(1),319–327.

Xu,X.,Yang,Q.,Wang,Y.,Yu,H.,Chen,X.,&Jing,X.(2006).Biodegradableelectrospun poly(l-lactide)fiberscontainingantibacterialsilvernanoparticles.European PolymerJournal,42(9),2081–2087.

Zeng,J.,Zhu,C.,Tao,J.,Jin,M.,Zhang,H.,Li,Z.Y.,etal.(2012).Controllingthe nuclea-tionandgrowthofsilveronpalladiumnanocubesbymanipulatingthereaction kinetics.AngewandteChemieInternationalEdition,51(10),2354–2358. Zhang,L.,Gong,X.,Bao,Y.,Zhao,Y.,Xi,M.,Jiang,C.,etal.(2012).Electrospun

nanofi-brousmembranessurface-decoratedwithsilvernanoparticlesasflexibleand active/sensitivesubstratesforsurface-enhancedRamanscattering.Langmuir, 28(40),14433–14440.

Zhu,H.,Du,M.,Zou,M.,Xu,C.,Li,N.,&Fu,Y.(2012).Facileandgreensynthesisof well-dispersedAunanoparticlesinPANnanofibersbyteapolyphenols.Journal ofMaterialsChemistry,22(18),9301–9307.

Şekil

Fig. 1. (a) Schematic view and chemical structure of HP␤CD molecule. (b) Schematic representation and the photographs of PVA/AgNO 3 , PVA/Ag-NP, PVA/HP␤CD-25%/AgNO 3
Fig. 2. The representative SEM images of electrospun (a) PVA, (b) PVA/HP␤CD-25%, (c) PVA/Ag-NP, (d) PVA/HP␤CD-7.5%/Ag-NP, (e) PVA/HP␤CD-15%/Ag-NP and (f) PVA/HP␤CD-25%/Ag-NP nanofibers.
Fig. 3. The representative TEM images of electrospun (a) PVA/Ag-NP, (b) PVA/HP␤CD-7.5%/Ag-NP, (c) PVA/HP␤CD-15%/Ag-NP and (d) PVA/HP␤CD-25%/Ag-NP nanofibers.
Fig. 4. (a) XRD spectra of PVA, PVA/HP␤CD-25%, PVA/Ag-NP, PVA/HP␤CD-7.5%/Ag- PVA/HP␤CD-7.5%/Ag-NP, PVA/HP␤CD-15%/Ag-NP and PVA/HP␤CD-25%/Ag-NP nanofibrous mats
+2

Referanslar

Benzer Belgeler

Reviewing the implicit reaction function estimation under di€ erent speci® cations, it appears that the Central Bank of the Republic of Turkey (CBRT) responds to the lagged in¯

The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the

1965 Sonrası Uygulanan Nüfus Politikası: (Antenatalist, nüfus artışının azaltılması (nüfus artış hızını sınırlayıcı) politika).. Ülkemizde nüfus politikalarında

In the following, we will derive and analyze a standard form for spacetimes admitting a shear-free reference frame, and apply the results in the construction of cosmological

In particular, this theorem yields the fact that the entire function (0.1) of genus 0 has purely negative zeros if and only if the sequence oa k q _ k=!. is

The dermoscopic findings that support this diagnosis were brownish yellow diffuse coloration of the background, round to oval red dots, globules and patches and twisted red

After building the trend scale tool for using educational platforms After completing the teaching of the scientific material and applying the scale before and after, the data

Қазақстандағы экологиялық туризмнің әлсіз дамуының себептеріне келесілерді жатқызуға болады: ✓ экологиялық