• Sonuç bulunamadı

ON OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION

N/A
N/A
Protected

Academic year: 2021

Share "ON OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ISSN 2291-8639

Volume 12, Number 2 (2016), 142-156 http://www.etamaths.com

ON OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION

H ¨USEYIN BUDAK∗ AND MEHMET ZEKI SARIKAYA

Abstract. In this paper, we establish a new generalization of Ostrowski type inequalities for func-tions of two independent variables with bounded variation and apply it for qubature formulae. Some connections with the rectangle, the midpoint and Simpson’s rule are also given.

1. Introduction

Let f : [a, b] → R be a differentiable mapping on (a, b) whoose derivative f0: (a, b) → R is bounded on (a, b) , i.e. kf0k:= sup

t∈(a,b)

|f0(t)| < ∞. Then we have the inequality

(1.1) f (x) − 1 b − a b Z a f (t)dt ≤ " 1 4 + x −a+b2 2 (b − a)2 # (b − a) kf0k,

for all x ∈ [a, b][19]. The constant 14 is the best possible. This inequality is well known in the literature as the Ostrowski inequality.

In [11], Dragomir proved following Ostrowski type inequalities related functions of bounded varia-tion:

Theorem 1. Let f : [a, b] → R be a mapping of bounded variation on [a, b] . Then b Z a f (t)dt − (b − a) f (x) ≤ 1 2(b − a) + x − a + b 2  b _ a (f )

holds for all x ∈ [a, b] . The constant 12 is the best possible.

2. Preliminaries and Lemmas

In 1910, Fr´echet [16] has given the following characterization for the double Riemann-Stieltjes integral. Assume that f (x, y) and α(x, y) are defined over the rectangle Q = [a, b] × [c, d]; let R be the divided into rectangular subdivisions, or cells, by the net of straight lines x = xi, y = yi,

a = x0< x1< ... < xn = b, and c = y0< y1< ... < ym= d;

let ξi, ηj be any numbers satisfying ξi∈ [xi−1, xi] , ηj ∈ [yj−1, yj] , (i = 1, 2, ..., n; j = 1, 2, ..., m); and

for all i, j let

∆11α(xi, yj) = α(xi−1, yj−1) − α(xi−1, yj) − α(xi, yj−1) + α(xi, yj).

Then if the sum

S = n X i=1 m X j=1 f (ξi, ηj) ∆11α(xi, yj)

2010 Mathematics Subject Classification. 26D15, 26B30, 26D10, 41A55.

Key words and phrases. bounded variation; Ostrowski type inequalities; Riemann-Stieltjes integral.

c

2016 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

(2)

tends to a finite limit as the norm of the subdivisions approaches zero, the integral of f with respect to α is said to exist. We call this limit the restricted integral, and designate it by the symbol

(2.1) b Z a d Z c f (x, y)dydxα(x, y).

If in the above formulation S is replaced by the sum S∗= n X i=1 m X j=1 f (ξij, ηij) ∆11α(xi, yj),

where ξij, ηij are numbers satisfying ξij ∈ [xi−1, xi] , ηij ∈ [yj−1, yj] , we call the limit, when it exist,

the unrestricted integral, and designate it by the symbol

(2.2) b Z a d Z c f (x, y)dydxα(x, y).

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the other hand, Clarkson ([8]) has shown that the existence of (2.1) does not imply the existence of (2.2).

In [7], Clarkson and Adams gave the following definitions of bounded variation for functions of two variables:

2.1. Definitions. The function f (x, y) is assumed to be defined in rectangle R(a ≤ x ≤ b, c ≤ y ≤ d). By the term net we shall, unless otherwise specified mean a set of parallels to the axes:

x = xi(i = 0, 1, 2, ..., m), a = x0< x1< ... < xm= b;

y = yj(j = 0, 1, 2, ..., n), c = y0< y1< ... < yn = d.

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ the notation

∆11f (xi, yj) = f (xi+1, yj+1) − f (xi+1, yj) − f (xi, yj+1) + f (xi, yj),

∆f (xi, yj) = f (xi+1, yj+1) − f (xi, yj).

The total variation function, φ(x) [ψ(y)] , is defined as the total variation of f (x, y) [f (x, y)] considered as a function of y [x] alone in interval (c, d) [(a, b)], or as +∞ if f (x, y) [f (x, y)] is of unbounded variation.

Definition 1. (Vitali-Lebesque-Fr´echet-de la Vall´ee Poussin). The function f (x, y) is said tobe of bounded variation if the sum

m−1 , n−1

X

i=0 , j=0

|∆11f (xi, yj)|

is bounded for all nets.

Definition 2. (Fr´echet). The function f (x, y) is said tobe of bounded variation if the sum

m−1 , n−1

X

i=0 , j=0

ij|∆11f (xi, yj)|

is bounded for all nets and all possible choices of i= ±1 and j = ±1.

Definition 3. (Hardy-Krause). The function f (x, y) is said tobe of bounded variation if it satisfies the condition of Definition 1 and if in addition f (x, y) is of bounded variation in y (i.e. φ(x) is finite) for at least one x and f (x, y) is of bounded variation in y (i.e. ψ(y) is finite) for at least one y. Definition 4. (Arzel`a). Let (xi, yi) (i = 0, 1, 2, ..., m) be any set of points satisfiying the conditions

a = x0< x1< ... < xm= b;

(3)

Then f (x, y) is said tobe of bounded variation if the sum

m

X

i=1

|∆f (xi, yi)|

is bounded for all such sets of points.

Therefore, one can define the consept of total variation of a function of two variables, as follows: Let f be of bounded variation on Q = [a, b]×[c, d], and letP (P ) denote the sum Pn

i=1 m

P

j=1

|∆11f (xi, yj)|

corresponding to the partition P of Q. The number _ Q (f ) := d _ c b _ a (f ) := supnX(P ) : P ∈ P (Q)o,

is called the total variation of f on Q. Here P ([a, b]) denotes the family of partitions of [a, b] . In [17], authors proved foolowing Lemmas related double Riemann-Stieltjes integral: Lemma 1. (Integrating by parts) If f ∈ RS(α) on Q, then α ∈ RS(f ) on Q, and we have

d Z c b Z a f (t, s)dtdsα(t, s) + d Z c b Z a α(t, s)dtdsf (t, s) (2.3)

= f (b, d)α(b, d) − f (b, c)α(b, c) − f (a, d)α(a, d) + f (a, c)α(a, c). Lemma 2. Assume that g ∈ RS(α) on Q and α is of bounded variation on Q, then

(2.4) d Z c b Z a g(x, y)dxdyα(x, y) ≤ sup (x,y)∈Q |g(x, y)|_ Q (α) .

In [17], Jawarneh and Noorani obtained following Ostrowski type inequality for functions of two variables with bounded variation:

Theorem 2. Let f : Q →→ R be mapping of bounded variation on Q. Then for all (x, y) ∈ Q, we have inequality (b − a) (d − c) f (x, y) − d Z c b Z a f (t, s)dtds (2.5) ≤  1 2(b − a) + x − a + b 2   1 2(d − c) + y −c + d 2  _ Q (f ) whereW Q

(f ) denotes the total (double) variation of f on Q.

For more information and recent developments on inequalities for mappings of bounded variation, please refer to([1]-[6],[9]-[15],[17],[18],[20]-[24]).

The aim of this paper is to establish a new generzlization of Ostrowski type inequalities for func-tions of two independent variables with bounded variation and apply it for qubature formulae. Some connections with the rectangle, the midpoint and Simpson’s rule are also given.

3. Main Results

First, we give the following notations used in main our Theorem; Let

∆n,m:= {(x0, y0) , (x0, y1) , ..., (x0, ym) , (x1, y0) , ..., (x1, ym) , ..., (xn, y0) , (xn, y1) , ..., (xn, ym)}

is a partition of Q = [a, b] × [c, d] satisfaying a = x0, b = xn, y0= c, ym= d with α0= a, αi∈ [xi−1, xi]

(i = 1, ..., n) , αn+1= b and β0= c, βj ∈ [yj−1, yj] (j = 1, ..., m) , βm+1= d.

(4)

υ(l) := max { lj| j = 0, ..., m − 1} , lj := yj+1− yj.

Theorem 3. If f : Q → R is of bounded variatin on Q, then we have the inequality n X i=0 m X j=0 (αi+1− αi) (βj+1− βj) f (xi, yj) − b Z a d Z c f (t, s)dsdt (3.1) ≤  1 2υ(h) +i∈{0,...,n−1}max αi+1− xi+ xi+1 2  × 1 2υ(l) +j∈{0,...,m−1}max βj+1− yj+ yj+1 2  b _ a d _ c (f ) ≤ υ(h)υ(l) b _ a d _ c (f ) where b W a d W c

(f ) is the total variation of f on Q.

Proof. Let us consider the mappings K and L given by

K(t) =              t − α1, t ∈ [a, x1) t − α2, t ∈ [x1, x2) .. . t − αn−1, t ∈ [xn−2, xn−1) t − αn, t ∈ [xn−1, b] , L(s) =              s − β1, s ∈ [c, y1) s − β2, s ∈ [y1, y2) .. . s − βm−1, s ∈ [ym−2, ym−1) s − βm, s ∈ [ym−1, d] .

Integrating by parts using Lemma 1, we obtain

b Z a d Z c K(t)L(s)dsdtf (t, s) = n−1 X i=0 m−1 X j=0    xi+1 Z xi yj+1 Z yj K(t)L(s)dsdtf (t, s)    (3.2) = n−1 X i=0 m−1 X j=0    xi+1 Z xi yj+1 Z yj (t − αi+1) (s − βj+1) dsdtf (t, s)    = n−1 X i=0 m−1 X j=0

[(xi+1− αi+1) (yj+1− βj+1) f (xi+1, yj+1)

− (xi+1− αi+1) (yj− βj+1) f (xi+1, yj)

− (xi− αi+1) (yj+1− βj+1) f (xi, yj+1) + (xi− αi+1) (yj− βj+1) f (xi, yj) − xi+1 Z xi yj+1 Z yj f (t, s)dsdt   

(5)

= n X i=1 m X j=1 (xi− αi) (yj− βj) f (xi, yj) − n X i=1 m−1 X j=0 (xi− αi) (yj− βj+1) f (xi, yj) − n−1 X i=0 m X j=1 (xi− αi+1) (yj− βj) f (xi, yj) + n−1 X i=0 m−1 X j=0 (xi− αi+1) (yj− βj+1) f (xi, yj) − b Z a d Z c f (t, s)dsdt.

In last equality, we have

n X i=1 m X j=1 (xi− αi) (yj− βj) f (xi, yj) (3.3) = (b − αn) (d − βm) f (b, d) + (b − αn) m−1 X j=1 (yj− βj) f (b, yj) + (d − βm) n−1 X i=1 (xi− αi) f (xi, d) + n−1 X i=1 m−1 X j=1 (xi− αi) (yj− βj) f (xi, yj). Similarly, we have n X i=1 m−1 X j=0 (xi− αi) (yj− βj+1) f (xi, yj) (3.4) = (b − αn) (c − β1) f (b, c) + (b − αn) m−1 X j=1 (yj− βj+1) f (b, yj) + (c − β1) n−1 X i=1 (xi− αi) f (xi, c) + n−1 X i=1 m−1 X j=1 (xi− αi) (yj− βj+1) f (xi, yj), n−1 X i=0 m X j=1 (xi− αi+1) (yj− βj) f (xi, yj) (3.5) = (a − α1) (d − βm) f (a, d) + (a − α1) m−1 X j=1 (yj− βj) f (a, yj) + (d − βm) n−1 X i=1 (xi− αi+1) f (xi, d) + n−1 X i=1 m−1 X j=1 (xi− αi+1) (yj− βj) f (xi, yj) and n−1 X i=0 m−1 X j=0 (xi− αi+1) (yj− βj+1) f (xi, yj) (3.6) = (a − α1) (c − β1) f (a, c) + (a − α1) m−1 X j=1 (yj− βj+1) f (a, yj) + (c − β1) n−1 X i=1 (xi− αi+1) f (xi, c) + n−1 X i=1 m−1 X j=1 (xi− αi+1) (yj− βj+1) f (xi, yj).

(6)

Adding (3.3)-(3.6) in last equality of (3.2), we obtain b Z a d Z c K(t)L(s)dsdtf (t, s) = (b − αn) (d − βm) f (b, d) + (b − αn) (β1− c) f (b, c) + (α1− a) (d − βm) f (a, d) + (α1− a) (β1− c) f (a, c) +(b − αn) m−1 X j=1 (βj+1− βj) f (b, yj) + (α1− a) m−1 X j=1 (βj+1− βj) f (a, yj) + (d − βm) n−1 X i=1 (αi+1− αi) f (xi, d) + (β1− c) n−1 X i=1 (αi+1− αi) f (xi, c) n−1 X i=1 m−1 X j=1 (αi+1− αi) (βj+1− βj) f (xi, yj) − b Z a d Z c f (t, s)dsdt = n X i=0 m X j=0 (αi+1− αi) (βj+1− βj) f (xi, yj) − b Z a d Z c f (t, s)dsdt.

On the other hand, we have

b Z a d Z c K(t)L(s)dsdtf (t, s) = n−1 X i=0 m−1 X j=0    xi+1 Z xi yj+1 Z yj K(t)L(s)dsdtf (t, s)    (3.7) ≤ n−1 X i=0 m−1 X j=0 xi+1 Z xi yj+1 Z yj (t − αi+1) (s − βj+1) dsdtf (t, s) .

Using Lemma 2 in the last part of the (3.7), we have xi+1 Z xi yj+1 Z yj (t − αi+1) (s − βj+1) dsdtf (t, s) (3.8) ≤ sup t∈[xi,xi+1] s∈[yj,yj+1] [|t − αi+1| |s − βj+1|] xi+1 _ xi yj+1 _ yj (f )

= max {αi+1− xi, xi+1− αi+1} max {βj+1− yj, yj+1− βj+1} xi+1 _ xi yj+1 _ yj (f ) =  1 2(xi+1− xi) + αi+1− xi+ xi+1 2  × 1 2(yj+1− yj) + βj+1− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ).

(7)

Putting (3.8) in (3.7), we obtain b Z a d Z c K(t)L(s)dsdtf (t, s) (3.9) ≤ n−1 X i=0 m−1 X j=0  1 2(xi+1− xi) + αi+1− xi+ xi+1 2  × 1 2(yj+1− yj) + βj+1− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ) ≤ max i∈[0,...,n−1]  1 2(xi+1− xi) + αi+1− xi+ xi+1 2  × max j∈[0,...,m−1]  1 2(yj+1− yj) + βj+1− yj+ yj+1 2 n−1 X i=0 m−1 X j=0   xi+1 _ xi yj+1 _ yj (f )   ≤  1 2υ(h) +i∈[0,...,n−1]max αi+1− xi+ xi+1 2  × 1 2υ(l) +j∈[0,...,m−1]max βj+1− yj+ yj+1 2  b _ a d _ c (f )

which completes the proof of first inequality in (3.1). In last inequality in (3.9), we get

(3.10) αi+1− xi+ xi+1 2 ≤1

2hi and i∈[0,...,n−1]max

αi+1− xi+ xi+1 2 ≤1 2υ(h), and similarly, (3.11) max j∈[0,...,m−1] βj+1− yj+ yj+1 2 ≤ 1 2υ(l).

If we add (3.10) and (3.11) in (3.9), the proof of theorem is completed. 

Now, using the result of the Theorem 3, we give some applications as follows: Corollary 1. With the assumptions of Theorem 3. If we choose

α0= a, α1= a + x1 2 , α2= x1+ x2 2 , ..., αn−1= xn−2+ xn−1 2 , αn= xn−1+ b 2 , αn+1= b and β0= c, β1= c + y1 2 , β2= y1+ y2 2 , ..., βn−1= ym−2+ ym−1 2 , βn= ym−1+ d 2 , βm+1= d

(8)

in Theorem 3, then we have the inequality 1 4[(b − xn−1) (d − ym−1) f (b, d) + (b − xn−1) (y1− c) f (b, c) + (x1− a) (d − ym−1) f (a, d) + (x1− a) (y1− c) f (a, c) +(b − xn−1) m−1 X j=1 (yj+1− yj−1) f (b, yj) + (x1− a) m−1 X j=1 (yj+1− yj−1) f (a, yj) + (d − ym−1) n−1 X i=1 (xi+1− xi−1) f (xi, d) + (y1− c) n−1 X i=1 (xi+1− xi−1) f (xi, c) + n−1 X i=1 m−1 X j=1

(xi+1− xi−1) (xi+1− xi−1) f (xi, yj)

 − b Z a d Z c f (t, s)dsdt ≤ 1 4υ(h)υ(l) b _ a d _ c (f ).

Corollary 2. In Corollary 1, if we take xi := a + (b − a)ni (i = 0, 1, ..., n) and yj := c + (d − c)mj

(j = 0, 1, ..., m), then we have the inequality (b − a) (d − c) 4nm  f (b, d) + f (b, c) + f (a, d) + f (a, c) + 2   m−1 X j=1 f  b,(m − j) c + jd m  + m−1 X j=1 f  a,(m − j) c + jd m  + n−1 X i=1 f (n − i) a + ib n , d  + n−1 X i=1 f (n − i) a + ib n , c    +4 n−1 X i=1 m−1 X j=1 f (n − i) a + ib n , (m − j) c + jd m   − b Z a d Z c f (t, s)dsdt ≤ (b − a) (d − c) 4nm b _ a d _ c (f ).

Corollary 3. Under assumption Theorem 3, choosing x0= a, x1= b, α0= a, α1= α, α2= b, y0= c,

y1= d, β0= c, β1= β and β2= d, we obtain the inequality

|(α − a) (β − c) f (a, c) + (α − a) (d − β) f (a, d) (3.12) + (b − α) (β − c) f (b, c) + (b − α) (d − β) f (b, d) − b Z a d Z c f (t, s)dsdt ≤  1 2(b − a) + α −a + b 2   1 2(d − c) + β −c + d 2  b _ a d _ c (f ).

Remark 1. a) If we put α = b and β = d in (3.12), then we have the ”left rectangle inequality” (b − a) (d − c) f (a, c) − b Z a d Z c f (t, s)dsdt ≤ (b − a) (d − c) b _ a d _ c (f ),

(9)

b) If take α = a and β = c in (3.12), then we have the ”right rectangle inequality” (b − a) (d − c) f (b, d) − b Z a d Z c f (t, s)dsdt ≤ (b − a) (d − c) b _ a d _ c (f ),

c) Similarliy, if we put α =a+b2 and β = c+d2 in (3.12), then we get the ”trapezoid inequality”

f (b, d) + f (b, c) + f (a, d) + f (a, c) 4 − 1 (b − a) (d − c) b Z a d Z c f (t, s)dsdt ≤ 1 4 b _ a d _ c (f ).

Corollary 4. Under assumption Theorem 3, taking a ≤ x ≤ b, a ≤ α1 ≤ x ≤ α2 ≤ b, c ≤ y ≤ d,

c ≤ β1≤ y ≤ β2≤ d we obtain the inequality

|(α1− a) (β1− c) f (a, c) + (α1− a) (β2− β1) f (a, y) (3.13) + (α1− a) (d − β2) f (a, d) + (α2− α1) (β1− c) f (x, c) + (α2− α1) (β2− β1) f (x, y) + (α2− α1) (d − β2) f (x, d) + (b − α2) (β1− c) f (b, c) + (b − α2) (β2− β1) f (b, y) + (b − α2) (d − β2) f (b, d) − b Z a d Z c f (t, s)dsdt ≤ 1 4  1 2(b − a) + x − a + b 2 + α1− a + x 2 + α2− x + b 2 + α1− a + x 2 − α2− x + b 2  × 1 2(d − c) + y −c + d 2 + β1− c + y 2 + β2− y + d 2 + β1− c + y 2 − β2− y + d 2  b _ a d _ c (f ) ≤  1 2(b − a) + x −a + b 2   1 2(d − c) + y −c + d 2  b _ a d _ c (f ) ≤ (b − a) (d − c) b _ a d _ c (f ).

Remark 2. If we put α1= a, α2= b and β1= c, β2= d in (3.13), then the inequality (3.13) reduces

(10)

Remark 3. If we choose α1 = 5a+b6 , α2 = a+5b6 , x ∈ 5a+b6 ,a+5b6 , β1 = 5c+d6 , β2 = c+5d6 and

y ∈5c+d6 ,c+5d6  in (3.13), then we have the ”Simpson’s rule inequality” (b − a) (d − c) f (b, d) + f (b, c) + f (a, d) + f (a, c) 36 +f a, c+d 2  + f a+b 2 , c + f b, c+d 2  + f a+b 2 , d  9 +4 9f  a + b 2 , c + d 2  − b Z a d Z c f (t, s)dsdt ≤ (b − a) (d − c) 9 b _ a d _ c (f )

which is proved by Jawarneh and Noorani in [17].

4. Some Composite Qubature Formula

Let us consider the arbitrary division In : a = x0< x1< ... < xn= b, and Jm: c = y0< y1< ... <

ym= d, hi:= xi+1− xi, and lj:= yj+1− yj,

υ(h) := max { hi| i = 0, ..., n − 1} ,

υ(l) := max { lj| j = 0, ..., m − 1} .

Then, the following theorem holds.

Theorem 4. Let f : Q → R is of bounded variatin on Q and ξi ∈ [xi, xi+1] (i = 0, ..., n − 1) , ηj ∈

[yj, yj+1] (j = 0, ..., m − 1) . Then we have the qubature formula:

b Z a d Z c f (t, s)dsdt (4.1) = n−1 X i=0 m−1 X j=0 (ξi− xi) (ηj− yj) f (xi, yj) + n−1 X i=0 m−1 X j=0 (ξi− xi) (yj+1− ηj) f (xi, yj+1) + n−1 X i=0 m−1 X j=0 (xi+1− ξi) (ηj− yj) f (xi+1, yj) + n−1 X i=0 m−1 X j=0 (xi+1− ξi) (yj+1− ηj) f (xi+1, yj+1) + R(ξ, η, In, Jm, f ).

(11)

The remainder R(ξ, η, In, Jm, f ) satisfies |R(ξ, η, In, Jm, f )| (4.2) ≤  1 2υ(h) +i∈{0,..,n−1}max  ξi− xi+ xi+1 2  × 1 2υ(l) +j∈{0,..,m−1}max  ηj− yj+ yj+1 2  b _ a d _ c (f ) ≤ υ(h)υ(l) b _ a d _ c (f )

for all ξi∈ [xi, xi+1] (i = 0, ..., n − 1) and ηj ∈ [yj, yj+1] (j = 0, ..., m − 1) .

Proof. Aplying Corollary 3 on the bidimentional interval [xi, xi+1] × [yj, yj+1] , we get

|(ξi− xi) (ηj− yj) f (xi, yj) (4.3) + (ξi− xi) (yj+1− ηj) f (xi, yj+1) + (xi+1− ξi) (ηj− yj) f (xi+1, yj) + (xi+1− ξi) (yj+1− ηj) f (xi+1, yj+1) − xi+1 Z xi yj+1 Z yj f (t, s)dsdt ≤  1 2hi+ ξi− xi+ xi+1 2   1 2lj+ ηj− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ). Summing the inequality (4.3) over i from 0 to n − 1 and j from 0 to m − 1, we get (4.4) |R(ξ, η, In, Jm, f )| ≤ n−1 X i=0 m−1 X j=0  1 2hi+ ξi− xi+ xi+1 2   1 2lj+ ηj− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ) ≤ max i∈{0,..,n−1}  1 2hi+ ξi− xi+ xi+1 2  × max j∈{0,..,m−1}  1 2lj+ ηj− yj+ yj+1 2 n−1 X i=0 m−1 X j=0 xi+1 _ xi yj+1 _ yj (f ) ≤  1 2υ(h) +i∈{0,..,n−1}max  ξi− xi+ xi+1 2  × 1 2υ(l) +j∈{0,..,m−1}max  ηj− yj+ yj+1 2  b _ a d _ c (f ) which copletes the proof of first inequality in (4.2).

In last inequality (4.5) ξi− xi+ xi+1 2 ≤1

2hi and i∈[0,...,n−1]max

ξi− xi+ xi+1 2 ≤ 1 2υ(h), and similarly, (4.6) max j∈[0,...,m−1] ηj− yj+ yj+1 2 ≤ 1 2υ(l).

(12)

If we add (4.5) and (4.6) in (4.4), we obtain the required result.  Corollary 5. Let f, In and Jm be as above.

1) If we choose ξi= xi+1 and ηj= yj+1 in (4.1), then we have the ”left rectangle rule” b Z a d Z c f (t, s)dsdt = n−1 X i=0 m−1 X j=0 f (xi, yj)hilj+ RL(In, Jm, f ).

2) If we choose ξi= xi and ηj= yj in (4.1), then we have the ”right rectangle rule” b Z a d Z c f (t, s)dsdt = n−1 X i=0 m−1 X j=0 f (xi+1, yj+1)hilj+ RR(In, Jm, f ). 3) Finally, if we choose ξi= xi+xi+1 2 and ηj = xi+xi+1

2 in (4.1), then we have the ”trapezoid rule” b Z a d Z c f (t, s)dsdt = 1 4 n−1 X i=0 m−1 X j=0 [f (xi, yj) + f (xi, yj+1) + f (xi+1, yj) + f (xi+1, yj+1)] hilj+ RT(In, Jm, f ).

Theorem 5. Let f, In and Jmbe as above and xi≤ α (1) i ≤ ξi≤ α (2) i ≤ xi+1, yj ≤ β (1) j ≤ ηj ≤ β (2) j ≤

yj+1. Then we have the qubature formula b Z a d Z c f (t, s)dsdt (4.7) = n−1 X i=0 m−1 X j=0  α(1)i − xi   β(1)j − yj  f (xi, yj) + n−1 X i=0 m−1 X j=0  α(1)i − xi   β(2)j − βj(1)f (xi, ηj) + n−1 X i=0 m−1 X j=0  α(1)i − xi   yj+1− β (2) j  f (xi, yj+1) + n−1 X i=0 m−1 X j=0  α(2)i − α(1)i  βj(1)− yj  f (ξi, yj) + n−1 X i=0 m−1 X j=0  α(2)i − α(1)i  βj(2)− βj(1)f (ξi, ηj) + n−1 X i=0 m−1 X j=0  α(2)i − α(1)i  yj+1− β (2) j  f (ξi, yj+1) + n−1 X i=0 m−1 X j=0  xi+1− α (2) i   βj(1)− yj  f (xi+1, yj) + n−1 X i=0 m−1 X j=0  xi+1− α (2) i   βj(2)− βj(1)f (xi+1, ηj) + n−1 X i=0 m−1 X j=0  xi+1− α (2) i   yj+1− β (2) j  f (xi+1, yj+1) +R(ξ, η, α(1)i , α(2)i , βj(1), βj(2)In, Jm, f ).

(13)

The remainder R(ξ, η, α(1)i , α(2)i , βj(1), βj(2), In, Jm, f ) satisfies R(ξ, η, α (1) i , α (2) i , β (1) j , β (2) j , In, Jm, f ) (4.8) ≤  1 2υ(h) +i∈{0,..,n−1}max  ξi− xi+ xi+1 2  × 1 2υ(l) +j∈{0,..,m−1}max  ηj− yj+ yj+1 2  b _ a d _ c (f ) ≤ υ(h)υ(l) b _ a d _ c (f ).

Proof. Aplying Corollary 4 on the bidimentional interval [xi, xi+1] × [yj, yj+1] , we have

(4.9)  α(1)i − xi   βj(1)− yj  f (xi, yj) +  α(1)i − xi   βj(2)− βj(1)f (xi, ηj) +α(1)i − xi   yj+1− β (2) j  f (xi, yj+1) +  α(2)i − αi(1) βj(1)− yj  f (ξi, yj) +α(2)i − α(1)i  βj(2)− βj(1)f (ξi, ηj) +  α(2)i − α(1)i  yj+1− β (2) j  f (ξi, yj+1) +xi+1− α (2) i   βj(1)− yj  f (xi+1, yj) +  xi+1− α (2) i   βj(2)− βj(1)f (xi+1, ηj) +xi+1− α (2) i   yj+1− β (2) j  f (xi+1, yj+1) − b Z a d Z c f (t, s)dsdt. ≤  1 2hi+ ξi− xi+ xi+1 2   1 2lj+ ηj− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ).

Summing the inequality (4.9) over i from 0 to n − 1 and j from 0 to m − 1, then we get R(ξ, η, α (1) i , α (2) i , β (1) j , β (2) j , In, Jm, f ) ≤ n−1 X i=0 m−1 X j=0  1 2hi+ ξi− xi+ xi+1 2   1 2lj+ ηj− yj+ yj+1 2 xi+1 _ xi yj+1 _ yj (f ) ≤ max i∈{0,..,n−1}  1 2hi+ ξi− xi+ xi+1 2  × max j∈{0,..,m−1}  1 2lj+ ηj− yj+ yj+1 2 n−1 X i=0 m−1 X j=0 xi+1 _ xi yj+1 _ yj (f ) ≤  1 2υ(h) +i∈{0,..,n−1}max  ξi− xi+ xi+1 2  × 1 2υ(l) +j∈{0,..,m−1}max  ηj− yj+ yj+1 2  b _ a d _ c (f ) ≤ υ(h)υ(l) b _ a d _ c (f ).

(14)

This completes the proof of Theorem.  Corollary 6. Under assumption of Theorem 5 with α(1)i = xi, α

(2) i = xi+1, ξi = xi+xi+1 2 , β (1) j = yj βj(2)= yj+1 and ηj = yj+yj+1

2 then we have the ”midpoint rule” b Z a d Z c f (t, s)dsdt = n−1 X i=0 m−1 X j=0 f xi+ xi+1 2 , yj+ yj+1 2  hilj+ RM(In, Jm, f )

where the remainder satisfies

|RM(In, Jm, f )| ≤ 1 4υ(h)υ(l) b _ a d _ c (f ). References

[1] M. W. Alomari, A generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation, RGMIA Research Report Collection, 14 (2011), Art. ID 87.

[2] M. W. Alomari and M.A. Latif, Weighted companion for the Ostrowski and the generalized trapezoid inequalities for mappings of bounded variation, RGMIA Research Report Collection, 14 (2011), Art. ID 92.

[3] M. W. Alomari, Approximating the Riemann-Stieltjes integral by a three-point quadrature rule and applications, Konuralp Journal of Mathematics, 2(2014), 22–34.

[4] M. W. Alomari and S. S. Dragomir, Some Grus type inequalities for the Riemann-Stieltjes integral with lipshitzian integrators, Konuralp Journal of Mathematics, 2 (2014), 36–44

[5] P. Cerone, W.S. Cheung, and S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Computers and Mathematics with Applications 54 (2007), 183–191.

[6] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk J Math, 24 (2000), 147-163.

[7] J.A. Clarkson and C. R. Adams , On definitions of bounded variation for functions of two variables, Bull. Amer. Math. Soc. 35 (1933), 824-854.

[8] J.A. Clarkson, On double Riemann-Stieltjes integrals, Bull. Amer. Math. Soc. 39 (1933), 929-936.

[9] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull.Austral. Math. Soc., 60(1) (1999), 495-508.

[10] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragu-jevac J. Math. 22(2000), 13-19.

[11] S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (2001), no. 1, 59–66.

[12] S. S. Dragomir, A companion of Ostrowski’s inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl. 5 (2014) No. 1, 89-97

[13] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded vari-ation, Arch. Math. (Basel) 91 (2008), no. 5, 450–460.

[14] S.S. Dragomir and E. Momoniat, A Three Point quadrature rule for functions of bounded variation and applications, Mathematical and Computer Modelling 57 (2013), 612622.

[15] S. S. Dragomir, Some perturbed Ostrowski type inequalities for functions of bounded variation,Asian-European Journal of Mathematics, 8 (2015), No. 04, doi: 10.1142/S1793557115500692.

[16] Fr´echet, M., Extension au cas des int´egrals multiples d’une d´efinition de l’int´egrale due ´a Stieltjes, Nouvelles Annales de Math ematiques 10 (1910), 241-256.

[17] Y. Jawarneh and M.S.M Noorani, Inequalities of Ostrowski and Simpson type for mappings of two variables with bounded variation and applications, TJMM, 3 (2011), No. 2, 81-94.

[18] W. Liu and Y. Sun, A refinement of the companion of Ostrowski inequality for functions of bounded variation and applications, arXiv:1207.3861v1 [math.FA], 2012.

[19] A. M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.

[20] K-L Tseng, G-S Yang, and S. S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their applications, Mathematical and Computer Modelling, 40 (2004), 77-84.

[21] K-L Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwan. J. Math. 12 (9) (2008), 2427–2441.

[22] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Applied Mathematics and Computation 217 (2010), 2348–2355.

[23] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Weighted Ostrowski integral inequality for mappings of bounded variation, Taiwanese J. of Math., 15 (2011), No. 2, 573-585.

[24] K-L Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Applied Math-ematics and Computation, 218 (2012), 5841–5847.

(15)

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce-Turkey

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

 Düzce ili Çiftlik Köyü’nde kalp ve damar hastalıkları için risk faktörleri olan sağlıksız beslenme, yetersiz fizik aktivite, tütün ve alkol kullanımı sıklığı ve

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa

In this work, a metal-ferroelectric-semiconductor (MFS) type capacitor was fabricated and admittance measurements were held in a wide frequency range of 1 kHz-5 MHz at room

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,