• Sonuç bulunamadı

Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers

N/A
N/A
Protected

Academic year: 2021

Share "Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Molecular

Catalysis

A:

Chemical

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

Visible

light

photocatalytic

reduction

of

Cr(VI)

by

surface

modified

CNT/titanium

dioxide

composites

nanofibers

Alaa

Mohamed

a,c,∗

,

T.A.

Osman

b

,

M.S.

Toprak

a

,

M.

Muhammed

a

,

Eda

Yilmaz

d

,

A.

Uheida

a,∗

aDepartmentofMaterialsandNanoPhysics,KTH−RoyalInstituteofTechnology,SE16440,Stockholm,Sweden bMechanicalDesignandProductionEngineeringDepartment,CairoUniversity,12613Giza,Egypt

cProductionEngineeringandPrintingTechnologyDepartment,AkhbarElYomAcademy,12655Giza,Egypt dNationalNanotechnologyResearchCenter,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received26June2016

Receivedinrevisedform22July2016 Accepted11August2016

Availableonline12August2016

Keywords: Photocatalyticreduction Chromium(VI) Compositenanofibers Visiblelight

a

b

s

t

r

a

c

t

InthisworkwereportahighlyefficientphotocatalyticreductionofCr(VI)basedonPAN-CNT/TiO2-NH2

compositenanofibersfabricatedbyusingelectrospinningtechniquefollowedbychemicalcrosslinking ofsurfacemodifiedTiO2NPsfunctionalizedwithaminogroup.Thestructureandmorphologyofthe

fab-ricatedcompositenanofiberswerecharacterizedbyFTIR,SEM,TEM,TGA,andXPS.Theresultsindicate thatthecompositenanofiberspossessexcellentphotoreductionperformanceforCr(VI)undervisible light(125W)after30min,whichismuchfasterthanpreviousreports.Theeffectsofvarious experi-mentalparameterssuchascatalystdose,irradiationtime,initialconcentrationofCr(VI),andpHonthe photoreductionefficiencyofCr(VI)wereinvestigated.ThehighestphotoreductionefficiencyofCr(VI) wasobtainedatlowacidityandlowamountofTiO2/CNTphotocatalyst.Thekineticexperimentaldata

wasattainedandfittedwellwithapseudo-first-ordermodel.TheUV–visspectrophotometerandXPS analysesprovedthatchromateCr(VI)wasreducedtoCr(III).Inaddition,itcanbeconcludedthatthe additionofthephenolenhancesthephotocatalyticreductionofCr(VI).Furthermore,thephotoreduction mechanismhasalsobeendiscussed.Finally,thefabricatedcompositenanofiberswerefoundtobestable afteratleastfiveregenerationcycles.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Chromium plays an essential role in plant and animal metabolism,andiswidelyusedinmanyindustrialprocessessuch aselectroplating,textiledyeing,paint,leathertanneries,and pig-mentindustriesascriticalindustrymaterials[1].Crexistsmainly inhexavalentCr(VI)andtrivalentCr(III)formsinthenatural envi-ronment[2].ThehexavalentchromiumCr(VI)ishighlytoxicand carcinogenictohumans,animals,and plants.The WorldHealth Organization(WHO)recommendsthemaximumallowablelimit forthedischargeofCr(VI)intoinland surfacewateris 0.1ppm, andintothedrinkingwateris0.05ppm.Therefore,thepreferred treatmentisa reduction ofCr(VI)totheless harmfulCr(III), in ordertoavoidthedeleteriousimpactoftheCr(VI)onthehuman health. Toxicity of Cr(III) is relatively low and it is one of the essentialmicronutrientforhumanhealth[3].Inreality,industrial

∗ Correspondingauthor.

E-mailaddresses:alakha@kth.se(A.Mohamed),salam@kth.se(A.Uheida).

wastewaterconsistsofamixtureoforganicandinorganic pollu-tants.Therefore,phenoliccompoundsareusedasamodelpollutant becausetheyarewidelyusedinthepreparationofresins, herbi-cides,andfungicideswhicharehighlytoxictomostaquaticlife [4,5].Therefore,thereisanurgentneedtoremovephenolfromthe wastewater.

Hence, the reduction of Cr(VI) into Cr(III) received great attentionintheenvironmentalremediationprocesses.Different techniqueshavebeenreportedforthetreatmentofCr(VI)pollution includingchemical reduction,ion exchange,sorption, photocat-alytic, and bacterial reduction [6–10]. However, most of these methodsrequireeitherhighenergyorlargequantitiesof chem-icalsand arenotwidelyused[8,9].Recently, thephotocatalytic processeshavereceivedconsiderableattentionbecausebeing eco-nomicallyviable,facile,andeffectivemethodforarapidefficient destructionofenvironmentalpollutants[11,12].Many semicon-ductorcatalysts,suchasTiO2,ZnO,ZnS,ZrO2,CdSandWO3,have beenstudiedtoinvestigatethephotocatalyticreductionofCr(VI)to Cr(III)[13–19].Amongvarioussemiconductorcatalysts,TiO2was consideredasoneofthemostpromisingcandidatesduetoits

opti-http://dx.doi.org/10.1016/j.molcata.2016.08.010

(2)

solutionafterreactionisessential,becauseitisdifficulttoseparate andrecoverafterprocessingwithwastewater,causingsecondary pollutionand thisprocess istime consumingand costly,which limitsitsapplicationforwaterpurification.Therefore,researchers are focusing on the development of polymer based compos-itematerials,mainlybyincorporationordepositionofmetalor semiconductor and metal semiconductor NPs in/on polymeric nanofibersduetotheirenhancedpropertiesandpotential appli-cationincatalysisandenvironmentalremediation[23–25].Inthis regard,electrospinningtechniqueisaneconomicandeffectiveway ofsynthesizingpolymer nanofibers[26,27],which displaylarge specificsurfacearea,finefabricstructure,highaspectratio, flex-iblesurfacefunctionality,tunablesurfacemorphologiesandbetter adsorptionaswellasfiltrationproperties[28,29].Polyacrylonitrile (PAN)isthemostwidelyusedpolymerformanufacturinghigh per-formancefibersduetoitsexcellentcharacteristicsandcommercial availability,aswellasitsnon-toxicnature[30].Accordingtoour knowledge,fewstudiesworkingonthereductionofCr(VI)under visiblelightirradiationusingnanocompositesmaterials[31–35]. Thesestudieshavealot ofproblemlikelongerirradiationtime (2–4h)andhighpowerintensity(>125W)toobtainthemaximum reduction.

Inthis work,wedevelop anewsystembased oncomposite nanofibersconsistingofPAN, andCNTfabricatedusingan elec-trospinningtechniquefollowedbyfurthercrosslinkingofsurface amino-modifiedTiO2NPstothesePAN/CNTnanofibrousmatrices inordertoincreasetheadsorptionofheavymetalsduetothelarge numberofbindingactivesitesincorporatedonthesurfaceofTiO2 NPs.Ourpreviousworkverifiesthesuccessofthissystemunder UVandvisiblelightirradiationcomparedtoearlierreports[36,37]. Theobjectivesofthisstudyweretofabricatecompositenanofibers containingPAN polymer, MWCNT, and surface amino-modified TiO2NPsandtodevelopanefficientandeconomicphotocatalytic compositenanofibersforthephotoreductionofCr(VI)inaqueous solutionsunder visible light irradiation.The effectof operating parametersincludesinitialsolutionpH,theamountof photocat-alyst,andCr(VI)concentrationonthephotocatalyticreductionof Cr(VI)wereinvestigated.Furthermore,thesynergistic photocat-alyticmechanismhasalsobeendiscussed.

2. Experimental

2.1. Materials

Polyacrylonitrile, PAN (MW=150,000);

N,N-dimethylformamide (DMF), sodium hydroxide (NaOH) and hydrochloricacid(HCI),titaniumdioxidepowder(TiO2 Degussa P-25),and3-aminopropyltriethoxysilane(APTES),werepurchased from Sigma Aldrich. Multi-walled carbon nanotubes, MWCNTs (purity 95wt%; diameter: 10–40nm; length: 20␮m; specific surface area 460m2/g) were synthesized and the procedure is describedelsewhere[38].Potassiumdichromate(K2Cr2O7), and caffeic acid(3,4-dihydroxycinnamic acid, 99%)were purchased

theexcesssolvent.Inaddition,thesurfacefunctionalizationofTiO2 nanoparticleswiththeaminogroupwascarriedoutaccordingtoa well-establishedproceduredescribedinRef.[39].Thecrosslinking ofthePAN/CNTcompositenanofiberstoTiO2-NH2NPswascarried outasdescribedelsewhere[36].

Themorphology of thecomposite nanofiberswas examined usingScanningElectronMicroscopy(SEM,GeminiZeiss-Ultra55) and Transmission Electron Microscopy (TEM, JEM-2100F, Joel). Fouriertransforminfraredspectroscopy(FTIR,NicoletiS10)was usedtoindicatethespectraofPANandPAN-CNT/TiO2-NH2 com-positenanofibersbeforeand afterCr(VI)reduction.Thethermal stabilitiesofthecomposite nanofibersamplesweredetermined byusingthermogravimetricanalysis(TGA),TGAQ500,TA instru-ment.Thiswasdonebyheatingthesamplefromroomtemperature until 800◦C witha heating rateof 20◦Cmin−1 undersynthetic air. The concentrationof Cr(VI) in the solutionwas measured usingUV–vis/NIRspectrophotometer(modelLAMBDA750,Perkin Elmer).SurfacechemicalcompositionsofPAN-CNT/TiO2-NH2 com-positenanofiberswereanalyzedusingThermoScientificK-Alpha x-ray photoelectron spectrometer with monochromated Al K␣ radiation.Samplesurfacewasneutralizedagainstchargingwith flood gunemissionduring themeasurementsand allthe spec-trawerecorrectedaccordingtotheC1speakagainstadditional chargingeffects.

2.3. Photocatalyticreductionexperiments

Photocatalyticexperimentswereconductedinacolumn(2cm diameter, 30cm height) in which composite nanofibers matof 5cm×5cmwasplacedinthemiddleofthecolumn.A30mLaliquot ofCr(VI)withinitialCr(VI)concentrationof20mg/Lwasused.The columnwasshakingatroomtemperaturefor30minandcovered fromanysourceoflighttoassurethattheadsorptionequilibrium ofCr(VI)wasreached. Thesolutionwaspumpedata flowrate of7mL/min.Thelight intensityobtainedfromtheXenonlamp (125W,420nm)wasdeterminedtobe100mW/cm2.During illu-mination,3mLofthesuspensionwastakenfromthecolumnat scheduledintervals.TheCrconcentrationpriortoandafter photo-catalyticreductionwasmeasuredthreetimesusingaUV–vis/NIR spectrophotometer.

3. Resultsanddiscussions

3.1. Catalystcharacteristics

TheSEMandTEMimagesofphotocatalyticmaterialcomposed ofPAN-CNT/TiO2-NH2areshowninFig.1.TiO2NPsaredistributed onthesurfaceofnanofibers,whichconfirmsthatTiO2NPsattached tothesurfaceofnanofibersduetothecrosslinkingprocedure.The compositenanofibersappearsmoothanduniformwithanaverage diameterof126±4nm.

In orderto confirmthesurface functionalizationof the fab-ricated composite nanofibers, FTIR spectra of PAN nanofibers, and PAN-CNT/TiO2-NH2 composite nanofibers before and after

(3)

Fig.1. (a)SEMand(b)TEMmicrographofPAN-CNT/TiO2-NH2compositenanofibers.

3500

30

00

25

00

20

00

1500

1000

500

Cr=O Cr-O

(c)

(b)

%

Tr

an

sm

itt

an

c

e

Wavenumber (cm

-1

)

(a)

C=N C-H NH2 O-H C=O N-H C-C N-O C-H C-H

Fig.2.FTIRspectraof(a)PAN(b)PAN-CNT/TiO2-NH2and(c)PAN-CNT/TiO2-NH2

loadedwithCr(VI).

thephotoreductionof Cr(VI)wereobtainedas shownin Fig.2. Thespectrumfor PAN nanofibersexhibited characteristicpeaks ofnitrile(2342cm−1),carbonyl(1700cm−1)andC Hstretching (3159cm−1)[40].FromFig.2b,thepeakcorrespondingtonitrile is markedly decreased due to theconversionof nitrile to ami-doxime,afterthe crosslinkingof (PAN-CNT)to(TiO2-NH2).The absorptionintherange3100–3700cm−1 isassignedtoN Hand O Hvibrations.ThebendingvibrationsoftheaminegroupNHor NH2 observedat1680cm−1confirmtheconversionofthenitrile grouptoamidoxime[41].Thebandobservedat3159,1520,and 1152cm−1assignedtothealiphaticC Hbendingvibrationofthe CH2ofpolymericchain,whilethebandobservedat900cm−1 is assignedtoN O.AfterthephotoreductionofCr(VI)atpH2,Fig.2c two new peaksat 620 and 570cm−1 appear in the FTIR spec-trumof compositenanofibers,which areattributedtotheCr–O andCr=ObondsfromtheCr(VI)species.Inaddition,thebandat 1200–1470cm−1correspondingtoN HandO Hbendingis con-siderablyincreasedduetothepresenceofCr(VI)suggestingthatthe amineandoximegroupofamidoximeareinvolvedinthebinding ofchromiumduringCr(VI)uptake[42].

Fig. 3 shows TGA thermograms of PAN nanofibers, PAN-CNTcompositesnanofibers, andPAN-CNT/TiO2-NH2 composites nanofibersinthetemperaturerangefromroomtemperatureto 800◦C.ThethermogramofPANnanofibersshowsthree decom-positionsteps.Inthefirststageupto290◦C,therewasnoweight

0 100 200 300 400 500 600 700 800 0 20 40 60 80 100

Wei

g

h

t (

%

)

Temperature (

o

C)

40.6 %

9.6 %

(a)

(b)

(c)

Fig.3. TGAthermogramsof(a)PANnanofibers,(b)PAN-CNTnanofibers,and(c)

PAN-CNT/TiO2-NH2compositesnanofibers.

loss.About,∼45%ofweightlosswasobservedinthesecondstage from290◦Cto300◦C,indicatingthatasignificantchemical reac-tiontookplace,andvolatilegassesevolved.Inthelaststageupto 720◦C,completedecompositionwasobserved.Furthermore,the weightofthePAN-CNTcompositenanofibersdecreasedrapidlyin thetemperaturerangeof338–650◦C,duetothecombustionand decompositionofcompositenanofiberstakingplaceatthis tem-peraturerange.Afterthetemperaturewasincreasedto650◦C,the CNTremainedandnomoreweightlossoccurred,whichmeantthat nanofiberswereremovedcompletely.ForthePAN-CNT/TiO2-NH2 compositenanofibers,theweightdecreasedrapidlyinthe temper-aturerange338–705◦C,afterthattheTiO2remainedandnomore weightlossoccurred,whichmeantthatnanofiberswereremoved completely.Moreover,theTiO2contentinthecompositescouldbe easilycalculatedfromtheweightremainderafterthesampleswere heatedover705◦C.SincethesamplePANnearlycompletely disap-pearedover720◦C,theCNT/TiO2andCNTcontentsincompositions weredeterminedtobe40.6wt%and9.6wt%forthesample PAN-CNT/TiO2-NH2andPAN-CNTcompositenanofibers,respectively. 3.2. PhotocatalyticperformanceofPAN-CNT/TiO2-NH2

compositesnanofibers 3.2.1. Effectofcatalystcontent

Theamountofcatalystisanimportantparameterin optimiz-ingtheoperationalconditions.Inthisstudy,theeffectofcatalyst loadingonthephotoreduction ofCr(VI) wasinvestigatedusing

(4)

0 10 20 30 40 50 60 0.0

Irradiation Time (min)

250 300 350 400 450

Wavelength (nm)

Fig.4.EffectofcatalystdosageonphotoreductionefficiencyofCr(VI)(Cr(VI)=20ppm,andpH2).

acatalystdosage(TiO2/CNT)rangingfrom10to35mgtoavoid anineffectiveexcessamountofthephotocatalystandtheresults obtainedareshownin Fig.4.Theresultsindicatethatthe pho-toreductionefficiencyofCr(VI)graduallyincreasesasthecatalyst dosageincreasesfrom10to35mg.Thismaybeattributedinterms ofavailabilityoftheactivesitesonthephotocatalystsurfaceand thepenetrationofvisiblelightthroughthewater,leadingtoan increaseinthephotoreductionofCr(VI)[43,44].

3.2.2. Effectofirradiationtime

In this study, the photoreduction activity of Cr(VI) using PAN-CNT/TiO2-NH2andPAN/TiO2-NH2compositenanofiberswas investigatedunderthevisible lightasa functionof thecontact time.ThephotoreductionexperimentsofCr(VI)wereconducted atinitialCr(VI)concentrationof20mg/L,pH2andtheamountof photocatalystis20mg.TheresultsobtainedareshowninFig.5.It canbeseenthatabout60%ofphotoreductionwasachievedinless than15minirradiationtimeusingPAN-CNT/TiO2-NH2composites nanofibers,andacompletereductionwasobservedafter30min. Thismaybeduetotheavailabilityofmoreactivebindingsiteson thesurfaceofTiO2NPsthatcrosslinkedtothecompositenanofibers inordertoincrease theadsorptionof Cr(VI),thereforeenhance thephotoreduction efficiency. Furthermore,the PAN-CNT/TiO2 -NH2compositenanofibersleadtohighloadingofCr(VI)inashort time,duetoincreasedactivesurfacesiteswhichwillfacilitatehigh exposureoflightandthenhighphotoreductionefficiency. Accord-ingtopreviousstudiesundervisiblelightathighpowerof500W [31–35],ittakesabout2–4htogetacompletephotoreduction.On theotherhandforthePAN/TiO2-NH2compositenanofibersabout 50%ofphotoreductionwasachievedinlessthan20min irradia-tiontime andnochangesinthephotoreductionefficiencywere observedafter30minirradiationtime.Theseresultsindicatedthat thephotocatalyticreductionefficiencyincreasedwiththe incorpo-rationofCNTsandTiO2.Thistrendresultedfromthehighsurface areaofCNTs/TiO2photocatalytic.Inaddition,CNTscaneffectively generateagreaternumberofelectronsandholes,andaccelerate theprocess of thephotocatalytic reactionto enhancethe pho-tocatalyticactivity.The photoreduction efficiencyof Cr(VI)was determinedfromtheresultsobtainedfromUV–visspectroscopy. Theresultsobtainedareshown inFig.5b inwhich thepeak at 350nmcorrespondingtoCr(VI)wasshiftedto302nm, correspond-ingtoCr(III).Thekineticexperimentsdataofthephotocatalytic reductionofCr(VI)areshowninFig.5cwassuccessfullyfittedwell usingcommonlyappliedpseudo-first-orderequation[45],which canbeexpressedasfollows:

ln



C 0 C



=kat (1)

WhereC0istheinitialconcentrationofCr(VI)andCisthe concen-trationofCr(VI)ataspecifictime,andkaistherateconstantof pseudo-firstordermodel(min−1).

3.2.3. EffectofpHonthephotoreductionofCr(VI)

pH of the solution plays a major role in the photocatalytic processasitisknowntoinfluencethesurfacechargeofthe semi-conductor thereby affectingthe adsorption, interfacial electron transfer,and the photoreductionprocess [46]. Theeffect ofpH onthephotocatalyticreduction efficiencyofCr(VI)ispresented inFig.6.Asobserved,thephotoreductionefficiencyofCr(VI)was highlydependentonthe pHwithmaximum photoreductionat pH=2. TheamountofCr(VI)decreased intheaqueoussolution withincreasingpH.AsseenfromFig.6that100%photoreduction efficiencyofCr(VI)wasobtainedatpH2.Then,the photoreduc-tionofCr(VI)decreasedsharplyto72%aspHvalueincreasedto 9.Thevariation inreductionefficiencyof Cr(VI)atdifferentpH valuesmaybeattributedtotheaffinitiesofPAN-CNT/TiO2-NH2 compositesnanofibersforthedifferentspeciesofCr(VI)existing atacidicpHvaluesnamelyH2CrO40,HCrO4−,CrO42−,andCr2O72− [40].TheNH2groupsonthesurfaceoftheTiO2nanoparticlescan eitherbeprotonatedtoformNH3+atlowpHorbedeprotonated toformNH2···OH athighpH.Itisclearthatnegativelycharged HCrO4−and Cr2O72− areeasilytobeadsorbedtothepositively chargedPAN-CNT/TiO2-NH2compositesnanofibersatlowpH val-uesduetotheelectrostaticattraction,thereforeahigheryieldof photoreduction[47,48].Theelectrostaticrepulsionbetween neg-ative Cr(VI)species and negatively chargedPAN-CNT/TiO2-NH2 compositesnanofibersincreasedwithincreasingpHvalues,and therebyresultedinthedecreaseofthereductionofCr(VI)[49].To investigatethekineticsofCr(VI)photoreductionunderdifferent pHvalues,theexperimentaldataweresuccessfullyfittedusingthe pseudo-firstorderasshownin(Fig.S1,Supplementarydata). 3.2.4. EffectofCr(VI)initialconcentration

TheeffectofinitialCr(VI)concentrationonthephotoreduction efficiencyofCr(VI)ontoPAN-CNT/TiO2-NH2compositenanofibers wasstudied at initialCr(VI) concentration of 10–100mg/L and pH=2. The obtainedresult areshown in Fig. 7 shows thatthe photoreductionefficiencyofCr(VI)graduallydecreaseswiththe increaseoftheinitialCr(VI)concentrationfrom10to100mg/L. Thecompletereductioncanbeachievedafter30minat10–20mg/L initialCr(VI)concentration,whiletherespectivevaluedecreasesto 79%at100mg/L.Apossibleexplanationhastodowiththefactthat increasedCr(VI)concentrationincreasesthesolutionabsorbance and,therefore,agreaterfractionofthelightisinterceptedbefore reachingthecatalystsurface,thusdecreasingthedegreeof

(5)

reduc-Fig.5.(a)PhotoreductionofCr(VI)undervisiblelightirradiation(b)UV–viscurvesofCr(VI)beforeandafterphotoreduction(c)Fittingofpseudo-firstordermodel,(Cr (VI)=20ppm,pH=2,catalystamount=20mg).

250 300 350 400 450 pH 9 pH 7 pH 5 pH 4 pH 3 Ab so rp ti on (a .u .) Wavelength (nm) pH 2

(a)

0 10 20 30 40 50 60 0.0 0.2 0.4 0.6 0.8 1.0 C/ C0

Irradiation Time (min)

pH 2 pH 3 pH 4 pH 5 pH 7 pH 9

(b)

Fig.6.(a)UV–visspectraofphotoreductionofCr(VI)atdifferentpH(b)PhotoreductionofCr(VI)atdifferentpHontoPAN-CNT/TiO2-NH2compositenanofibers.

tion[33].Thekineticexperimentsforthephotoreductionofvarious concentrationsofCr(VI)areshownin(Fig.S2,Supplementarydata) wassuccessfullyfittedusingpseudo-first-order.Accordingto(Fig. S2,Supplementarydata)withtheincreaseoftheinitial concentra-tionofCr(VI),therateconstantkadecreased.Thiscanbeattributed totheincreaseinCr(VI)concentration,whichdecreasesthepath lengthofphotonsenteringintothereactionmixture,andfewer

photonsreachthecatalystsurface.Inaddition,theunchangeable value of light intensity,the amount of catalyst and irradiation timeleadtothedecreaseoftheavailabilityofactivesites. Con-sequently,thephotoreductionefficiencyofCr(VI)decreasesasthe concentrationincreases[3,50,51].Moreover,anincreaseinCr(VI) concentrationcanleadtothesaturationofthelimitednumberof

(6)

250 300 350 400 450

Wavelength (nm)

0 10 20 30 40 50 60

0.0

Irradiation Time (min)

Fig.7. (a)UV–visspectraofphotoreductionofCr(VI)atdifferentconcentration(b)PhotoreductionofCr(VI)atdifferentinitialconcentrationontoPAN-CNT/TiO2-NH2

compositenanofibers.

accessibleactivesitesonthephotocatalystsurface,resultingina reductioninthephotoreductionefficiency.

3.2.5. XPSdataanalysis

Inordertoinvestigatetheinfluenceactivityofthe photocat-alyticcompositenanofibersonthephotoreductionofCr(VI),the compositenanofibers afteradsorptionstep inthedarkand the photoreductionstep under visiblelight irradiation wasdirectly examinedbyXPS.Fig.8showntheXPSpatternsofthe compos-itenanofibers,whichshowedtheCr2pspectrarecordedforCr(VI) andCr(III).AstheCr2ppeakisadoublet,thepeakcomponentat lowerbindingenergycorrespondstoCr2p3/2orbital,whilethose athigherbindingenergycorrespondtoCr2p1/2orbital.Beforethe photoreductionprocesstookplace,bandscorrespondingtoCr(VI) appearedatabindingenergyof579.2and588.3eV,which con-firmstheadsorptionofCr(VI)onthesurfaceofPAN-CNT/TiO2-NH2 compositenanofibers.Aftertheirradiationofthenanocomposites withvisiblelight,newsignificantbandsappearcorrespondingto Cr(III)bindingenergyof577.1and586.5eV,whichconfirmsthe reductionofCr(VI)toCr(III)ontoPAN-CNT/TiO2-NH2composite nanofibers[52].Thewide-scanXPSspectrumshowsalsofourpeaks at458.2eV,531.3eV,284.6eV,and399.3eVcorrespondingtoTi2p, O1s,C1s,andN1s,respectively,indicatingtheexistenceofTi,O, C,andNelements.ThepeaksintheTi2pspectrumat458.2eVand 464.1eVrepresentedtoTi2p3/2andTi2p1/2,respectively, indicat-ingthattitaniumboundedtooxygenremainsinoxidationstateIV forthetitanium-oxocluster.TheO1sspectrumhasabroadpeakat 531.3eVthatisindicativeofoxygeninmetaloxidessuchasTiO2. Inaddition,thepeaksintheN1sregionat399.3eVcanbeassigned totheNoftheaminefunctionality.

3.2.6. PhotoreductionofCr(VI)inthepresenceofphenol

ThePAN-CNT/TiO2-NH2compositenanofiberswastested simi-larlytotheindustrialwastewaterconsistsofamixtureoforganic andinorganicpollutants.Inthisexperiment,wetestedthe PAN-CNT/TiO2-NH2compositenanofibersat20ppmofCr(VI)aqueous solution and 20ppm of phenol as a combination of pollutants incontinuousmode[53,54].Fig.9shows thekineticfirst-order reaction for thedegradation efficiency of phenol and the pho-toreductionofCr(VI)intheabsenceorpresenceofphenol.This synergismisbasedonthephotogeneratedelectronsandholeson thesurfaceofthecompositenanofibers[22–26].Theresults indi-catedthattherateofCr(VI)photoreductionwasabout1.4times higherinthepresenceofphenolthaninitsabsence,whichcan beexplainedbasedonthemechanismasdescribedinthe

follow-ingsections.Therefore,simultaneousredoxreactionsincreasethe efficiencyofthereaction,withaconcomitantdecreaseofwater treatmentcost.

3.2.7. Proposedreductionmechanism

ThemechanismofphotoreductionofCr(VI)canbesimplified schematicallyasshowninFig.10.TheNH2groupsonthesurface oftheTiO2/CNTcomposite nanofiberscaneitherbeprotonated toformNH3 atlowpH.ItisclearthatnegativelychargedCr(VI) speciesareeasytobeadsorbedtothepositivelychargedTiO2/CNT composite nanofibersat lowpH values dueto theelectrostatic interaction.AftervisiblelightirradiationCr(VI)reducedtoCr(III)on thesurfacesofTiO2/CNTcompositenanofibersandreleaseintothe solutionbyelectrostaticrepulsionbetweentheprotonatedsurfaces ofTiO2/CNTandthecationCr(III). ThephotoreductionofCr(VI) achievedundervisiblelight,whereTiO2/CNTNPsleadstothe gen-erationofelectron-holepairsatthesurfaceofthephotocatalyst (Eq2).Afterthemigrationofelectron-holepairstothesurfaceof theparticles,thephotogeneratedelectronsreduceCr(VI)toCr(III) (Eq.(3)),andtheholesmayleadtogenerationofO2(Eq.(4))and produce•OHradicalsintheabsenceofanyorganics(Eq.(5))[55]. Phenolcanscavengethevalencebandholeinthephotocatalytic reactionsystemleadingtoaninhibitionofrecombinationof elec-tronand holepairsonthecatalystsurface andacceleratingthe reductionofCr(VI)byphotogeneratedelectrons[56].Inthe pres-enceofphenol,theholescanproduce•OHradicalsmorethanin thepresenceofCr(VI),whichcanfurtherdegradethephenolto CO2 andH2O(Eq.(6))[57].Therefore,theholescanalsodirectly oxidizethephenol(Eq.(7)).

TiO2/CNT+h



→h++e− (2) Cr2O72−+14H++6e−→2Cr3++7H2O (3) 2H2O+4h+→ O2+4H+ (4) H2O+h+→•OH+H+ (5) •OH+Phenol CO2+H2O (6) H++Phenol →CO2+H2O (7) 3.2.8. Catalystreuse

Thereuseofthecatalystisconsideredasanimportantaspect and an economic necessity. In these experiments, the PAN-CNT/TiO2-NH2 composite nanofibers were used in consecutive photocatalytic conditions in order toevaluatethe durability of thecompositenanofibers.Attheendofeachcycle,thecomposite

(7)

595 590 585 580 575 570 Cr 2p1/2 Cr 2p3/2 Dark Int e ns it y ( a .u .)

Binding Energy (eV) Cr 2p Visible Light 472 468 464 460 456 458.2 eV Ti 2p In te ns it y ( a .u.)

Binding Energy (eV)

543 540 537 534 531 528 525 531.3 eV O 1s In te n s it y ( a .u .)

Binding Energy (eV)

294 291 288 285 282 284.6 eV C 1s Int e ns it y ( a .u .)

Binding Energy (eV)

408 405 402 399 396 393 399.3 eV In te n s it y ( a .u. ) N 1s

Binding Energy (eV)

Fig.8. XPSspectraofthePAN-CNT/TiO2-NH2compositenanofibersforCr(VI)beforeandafterphotocatalyticreductionprocess.

nanofiberswaswashedwithdeionizedwaterandthendriedinair. ThephotoreductionefficiencyofPAN-CNT/TiO2-NH2 composites nanofibersslightlydecreasedwiththecyclenumberrepeatedas showninFig.11.Afterfiveconsecutiveadsorption-photoreduction cycles,thephotoreductionefficiencyofthecompositesnanofibers decreasedbyabout3%,whichimpliesthatthecatalystretainedits photoreductionactivityforCr(VI).Theslightdecreaseofthe pho-toreduction performance of thePAN-CNT/TiO2-NH2 composites nanofibersmight bedue totheadsorptionof theCr(III) gener-atedafterphotocatalyticreactions,whichresultsinthedecrease ofadsorptionandactivesitesonthesurfaceofPAN-CNT/TiO2-NH2 compositesnanofibers.Theseresultshavedemonstratedthatthe goodstabilityandreusabilitypropertywouldgreatlypromotethe

practicalapplicationsofcompositenanofibersinthereductionof heavymetalpollutantsfromwastewater.

4. Conclusions

Accordingtotheresultsobtainedinthiswork,thefabricated compositenanofibersdisplaypromisingphotocatalyticreduction efficiencyforCr(VI)inaqueoussolutionundervisiblelight irra-diation.Thekineticsofthephotoreductionprocessshowedthat completephotoreductionwasachievedafterapproximately30min andtheexperimentaldatafolloweda pseudo-first-ordermodel. ThephotoreductionefficiencyofCr(VI)washigherinacidic solu-tionsthanthatinalkalinesolutionsduetotheCr(VI)speciesand

(8)

0 10 20 30 40 50 60 0.0

Irradiation Time (min)

0 5 10 15 20 25

0

Irradiation Time (min)

Fig.9. PhotoreductionofCr(VI)intheabsenceorpresenceofphenol.(Cr(VI)=20ppm,phenol=20ppm,catalystamount=20mg,andpH2).

Fig.10. ProposedmechanismofphotocatalyticreductionofCr(VI)undervisible-lightirradiation.

0 20 40 60 80 100 Ph o to re d u c ti on e ff ic ie n cy (% ) Regeneration cycle 1st 2nd 3rd 4th 5th

Fig.11.ReusabilityofthecompositenanofibersforthephotoreductionofCr(VI).

theprotonationdegreeofthephotocatalyticsurface.Theaddition ofphenolenhancesthephotoreductionofCr(VI),duetoitsability

toadsorbonthecatalystsurface,whichcanalsoactasahole scav-enger.TheUV–visspectrophotometerandXPSanalysesprovedthat chromateCr(VI)wasreducedtoCr(III).Furthermore,the flexibil-ityandthereuseofthePAN-CNT/TiO2-NH2compositenanofibers, revealtheirpromising potentialforadvanced wastewater treat-ment.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.molcata.2016.08. 010.

References

[1]L.Khezami,R.Capart,Removalofchromium(VI)fromaqueoussolutionby activatedcarbons:kineticandequilibriumstudies,J.Hazard.Mater.123(1–3) (2005)223–231.

[2]X.Guo,etal.,High-Performanceandreproduciblepolyaniline

Nanowire/TubesforremovalofCr(VI)inaqueoussolution,J.Phys.Chem.C 115(5)(2011)1608–1613.

[3]Y.Ku,I.-L.Jung,PhotocatalyticreductionofCr(VI)inaqueoussolutionsbyUV irradiationwiththepresenceoftitaniumdioxide,WaterRes.35(1)(2001) 135–142.

[4]M.Wang,M.Leitch,C.Xu,Synthesisofphenol–formaldehyderesolresins usingorganosolvpinelignins,Eur.Polym.J.45(12)(2009)3380–3388.

(9)

[5]D.Fabbri,A.B.Prevot,E.Pramauro,Effectofsurfactantmicrostructureson photocatalyticdegradationofphenolandchlorophenols,Appl.Catal.B: Environ.62(1–2)(2006)21–27.

[6]L.B.Khalil,W.E.Mourad,M.W.Rophael,Photocatalyticreductionof environmentalpollutantCr(VI)oversomesemiconductorsunderUV/visible lightillumination,Appl.Catal.B:Environ.17(3)(1998)267–273.

[7]F.Jiang,etal.,AqueousCr(VI)photo-reductioncatalyzedbyTiO2andsulfated TiO2,J.Hazard.Mater.134(1–3)(2006)94–103.

[8]Y.C.Sharma,EffectoftemperatureoninterfacialadsorptionofCr(VI)on wollastonite,J.ColloidInterfaceSci.233(2)(2001)265–270.

[9]R.J.Kieber,G.R.Helz,Indirectphotoreductionofaqueouschromium(VI), Environ.Sci.Technol.26(2)(1992)307–312.

[10]J.Doménech,J.Mu ˜noz,PhotocatalyticalreductionofCr(VI)overZnOpowder, Electrochim.Acta32(9)(1987)1383–1386.

[11]Y.Zhang,J.C.Crittenden,D.W.Hand,Thesolarphotocatalytic decontaminationofwater,Chem.Ind.18(1994)714–717.

[12]Z.Yao,etal.,PhotocatalyticreductionofpotassiumchromatebyZn-doped TiO2/Tifilmcatalyst,Appl.Surf.Sci.256(6)(2010)1793–1797.

[13]P.Mohapatra,S.K.Samantaray,K.Parida,Photocatalyticreductionof hexavalentchromiuminaqueoussolutionoversulphatemodifiedtitania,J. Photochem.Photobiol.A:Chem.170(2)(2005)189–194.

[14]J.A.Navı´ıo,etal.,Heterogeneousphotocatalyticreactionsofnitriteoxidation andCr(VI)reductiononiron-dopedtitaniapreparedbythewetimpregnation method,Appl.Catal.B:Environ.16(2)(1998)187–196.

[15]B.Sun,E.P.Reddy,P.G.Smirniotis,VisiblelightCr(VI)reductionandorganic chemicaloxidationbyTiO2photocatalysis,Environ.Sci.Technol.39(16) (2005)6251–6259.

[16]G.Bidoglio,etal.,HumicacidbindingoftrivalentTlandCrstudiedby synchronousandtime-resolvedfluorescence,Environ.Sci.Technol.31(12) (1997)3536–3543.

[17]D.Chen,F.Li,A.K.Ray,Externalandinternalmasstransfereffecton photocatalyticdegradation,Catal.Today66(2–4)(2001)475–485.

[18]D.S.Bhatkhande,V.G.Pangarkar,A.A.C.M.Beenackers,Photocatalytic degradationforenvironmentalapplications–areview,J.Chem.Technol.Biot. 77(1)(2002)102–116.

[19]J.Liqiang,etal.,Reviewofphotoluminescenceperformanceofnano-sized semiconductormaterialsanditsrelationshipswithphotocatalyticactivity, Sol.EnergyMater.Sol.Cells90(12)(2006)1773–1787.

[20]M.M.Rashad,etal.,Synthesisandcharacterizationofmesoporousanatase TiO2nanostructuresviaorganicacidprecursorprocessfordye-sensitized solarcellsapplications,J.Ind.Eng.Chem.19(6)(2013)2052–2059.

[21]M.a.T.DeVolder,S.H.Baughman,R.H.Hart,AJCarbonnanotubes:presentand futurecommercialapplications,Science339(2013)535–539.

[22]R.Leary,A.Westwood,Carbonaceousnanomaterialsfortheenhancementof TiO2photocatalysis,Carbon49(3)(2011)741–772.

[23]Y.Liu,etal.,EngineeringhighlyactiveTiO2photocatalystsviathe surface-phasejunctionstrategyemployingatitanatenanotubeprecursor,J. Catal.310(2014)16–23.

[24]A.Kongkanand,R.MartínezDomínguez,P.V.Kamat,Singlewallcarbon nanotubescaffoldsforphotoelectrochemicalsolarcells:captureand transportofphotogeneratedelectrons,NanoLett.7(3)(2007)676–680.

[25]W.Feng,etal.,Synthesisandcharacterizationofnanofibroushollow microsphereswithtunablesizeandmorphologyviathermallyinducedphase separationtechnique,RSCAdv.5(76)(2015)61580–61585.

[26]A.B.Sulong,M.Nurhamidi,JaafarSahari,RizauddinRamli,BabaMd.Dero, JoohyukPark,Electricalconductivitybehaviourofchemicalfunctionalized MWCNTsepoxynanocomposites,Eur.J.Sci.Res.29(1)(2009)13–21.

[27]H.Guo,etal.,Polyacrylonitrile/Carbonnanotubecompositefilms,ACSAppl. Mater.Interfaces2(5)(2010)1331–1342.

[28]H.Kuang-Ting,A.Justin,G.A.Suresh,Useofepoxy/multiwalledcarbon nanotubesasadhesivestojoingraphitefibrereinforcedpolymercomposites, Nanotechnology14(7)(2003)791.

[29]A.K.-T.Lau,D.Hui,Therevolutionarycreationofnewadvanced

materials—carbonnanotubecomposites,Compos.PartB:Eng.33(4)(2002) 263–277.

[30]D.J.Lipomi,Z.Bao,Stretchable,elasticmaterialsanddevicesforsolarenergy conversion,EnergyEnviron.Sci.4(9)(2011)3314–3328.

[31]C.Zhang,etal.,Polyacrylonitrile/manganeseacetatecompositenanofibers andtheircatalysisperformanceonchromium(VI)reductionbyoxalicacid,J. Hazard.Mater.229–230(2012)439–445.

[32]Y.A.Shaban,EffectivephotocatalyticreductionofCr(VI)bycarbonmodified (CM)-n-TiO2nanoparticlesundersolarirradiation,WorldJ.NanoSci.Eng3 (2013)154–160.

[33]H.Wang,etal.,Facilesynthesisofamino-functionalizedtitanium metal-organicframeworksandtheirsuperiorvisible-lightphotocatalytic activityforCr(VI)reduction,J.Hazard.Mater.286(2015)187–194.

[34]Q.Wu,etal.,PhotocatalyticreductionofCr(VI)withTiO2filmundervisible light,Appl.Catal.B:Environ.142–143(2013)142–148.

[35]X.Zhang,etal.,One-dimensionalhierarchicalheterostructuresofIn2S3 nanosheetsonelectrospunTiO2nanofiberswithenhancedvisible photocatalyticactivity,J.Hazard.Mater.260(2013)892–900.

[36]A.Mohamed,etal.,Compositenanofibersforhighlyefficientphotocatalytic degradationoforganicdyesfromcontaminatedwater,Environ.Res.145 (2016)18–25.

[37]T.A.O.AlaaMohamed,M.S.Toprak,M.Muhammed,A.Uheida,Efficient compositenanofibersforsolarphotocatalyticdegradationoforganicdyesand pharmaceuticaldrug,Appl.Catal.B:Environ.(2016).

[38]A.Mohamed,etal.,Tribologicalbehaviorofcarbonnanotubesasanadditive onlithiumgrease,J.Tribol.137(1)(2014)011801.

[39]C.Xiang,etal.,Experimentalandstatisticalanalysisofsurfacecharge: aggregationandadsorptionbehaviorsofsurface-functionalizedtitanium dioxidenanoparticlesinaquaticsystem,J.Nanopart.Res.15(1)(2012) 1293–1304.

[40]M.Avila,etal.,Surfacefunctionalizednanofibersfortheremovalof chromium(VI)fromaqueoussolutions,Chem.Eng.J.245(2014)201–209.

[41]L.Zhang,etal.,Antimicrobialnano-fibrousmembranesdevelopedfrom electrospunpolyacrylonitrilenanofibers,J.Membr.Sci.369(1–2)(2011) 499–505.

[42]S.H.Park,etal.,Effectsofironcatalystontheformationofcrystallinedomain duringcarbonizationofelectrospunacrylicnanofiber,Synth.Met.150(3) (2005)265–270.

[43]L.Wang,X.Jiang,Unusualcatalyticeffectsofironsaltsonphenoldegradation byglowdischargeplasmainaqueoussolution,J.Hazard.Mater.161(2–3) (2009)926–932.

[44]C.M.Ling,A.R.Mohamed,S.Bhatia,Performanceofphotocatalyticreactors usingimmobilizedTiO2filmforthedegradationofphenolandmethylene bluedyepresentinwaterstream,Chemosphere57(7)(2004)547–554.

[45]D.P.Das,K.Parida,B.R.De,Photocatalyticreductionofhexavalentchromium inaqueoussolutionovertitaniapillaredzirconiumphosphateandtitanium phosphateundersolarradiation,J.Mol.Catal.A:Chem.245(1–2)(2006) 217–224.

[46]M.-C.Lu,etal.,Factorsaffectingthephotocatalyticdegradationofdichlorvos overtitaniumdioxidesupportedonglass,J.Photochem.Photobiol.A:Chem. 76(1–2)(1993)103–110.

[47]T.Karthikeyan,S.Rajgopal,L.R.Miranda,Chromium(VI)adsorptionfrom aqueoussolutionbyHeveaBrasilinesissawdustactivatedcarbon,J.Hazard. Mater.124(1–3)(2005)192–199.

[48]N.Wang,etal.,Synergisticeffectsofcupricandfluorideionson

photocatalyticdegradationofphenol,J.Photochem.Photobiol.A:Chem.191 (2–3)(2007)193–200.

[49]R.Liang,etal.,NH2-mediatedindiummetal–organicframeworkasanovel visible-light-drivenphotocatalystforreductionoftheaqueousCr(VI),Appl. Catal.B:Environ.162(2015)245–251.

[50]H.Chen,etal.,EffectivecatalyticreductionofCr(VI)overTiO2nanotube supportedPdcatalysts,Appl.Catal.B:Environ.105(3–4)(2011)255–262.

[51]H.Mekatel,etal.,PhotocatalyticreductionofCr(VI)onnanosizedFe2O3 supportedonnaturalAlgerianclay:characteristics,kineticand thermodynamicstudy,Chem.Eng.J.200–202(2012)611–618.

[52]M.Bhaumik,etal.,Removalofhexavalentchromiumfromaqueoussolution usingpolypyrrole-polyanilinenanofibers,Chem.Eng.J.181–182(2012) 323–333.

[53]J.J.Testa,M.A.Grela,M.I.Litter,Experimentalevidenceinfavorofaninitial one-Electron-Transferprocessintheheterogeneousphotocatalyticreduction ofChromium(VI)overTiO2,Langmuir17(12)(2001)3515–3517.

[54]S.G.Schrank,H.J.José,R.F.P.M.Moreira,SimultaneousphotocatalyticCr(VI) reductionanddyeoxidationinaTiO2slurryreactor,J.Photochem.Photobiol. A:Chem.147(1)(2002)71–76.

[55]L.Huang,etal.,Thesimultaneousphotocatalyticdegradationofphenoland reductionofCr(VI)byTiO2/CNTs,J.Ind.Eng.Chem.18(1)(2012)574–580.

[56]A.D.Mani,etal.,FacilesynthesisofefficientvisibleactiveC-dopedTiO2 nanomaterialswithhighsurfaceareaforthesimultaneousremovalofphenol andCr(VI),Mater.Res.Bull.61(2015)391–399.

[57]A.Al-Hamdi,M.Sillanpää,J.Dutta,Intermediateformationduring photodegradationofphenolusinglanthanumdopedtindioxide nanoparticles,Res.Chem.Intermed.2015(2016)1–15.

Referanslar

Benzer Belgeler

Eleman silme yöntemi ile elde edilen sonuçta ise mavi renkli yani etkisiz elemanlar optimizasyon işlemi esnasında silindiği için sadece kırmızı renkli yük taşıyan

İlginç olan bu tarihteki saptamaya rağ- men kontamine veya yanlış tanımlanmış olduğu bi- linen pek çok hücrenin halen yanlış şekilde araştır- malarda kullanılmasının

environmental effects of selected metal nanoparticles, which are used intensively in polymer nanocomposite productions such as titanium dioxide (TiO 2 ), zinc oxide

As this concept in the triad emphasizes the role of abstract space representing the concrete environment differently from its actuality, debates under this category

San’at hayatına ait diğer bir hatıra da son zamanlarda kullandığı kıymetli sazına taallûk eder: Gençliğinde pek maruf bir ıııacar çellisti olup

The obtained results showed that composite BiOCl/AgI catalyst was more active to degrade 3-CP than the pure BiOCl and AgI samples.. The amount of BiOCl was changed up to 50% in

2008 芝加哥 I.C.O.I 台灣大會紀行 文/羅文杰醫師 ◎Day 1—Aug.21,2008 台灣 這是要出發到芝 加哥參加 I.C.O.I 年度

新聞報章雜誌常看到對胖子岐視的報導,走在路上經常