• Sonuç bulunamadı

Başlık: On the boundedness of the maximal operator and Riesz potential in the modified Morrey spacesYazar(lar):AYKOL, Canay; YILDIRIM, M. EsraCilt: 63 Sayı: 2 Sayfa: 001-011 DOI: 10.1501/Commua1_0000000707 Yayın Tarihi: 2014 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: On the boundedness of the maximal operator and Riesz potential in the modified Morrey spacesYazar(lar):AYKOL, Canay; YILDIRIM, M. EsraCilt: 63 Sayı: 2 Sayfa: 001-011 DOI: 10.1501/Commua1_0000000707 Yayın Tarihi: 2014 PDF"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

IS S N 1 3 0 3 –5 9 9 1

ON THE BOUNDEDNESS OF THE MAXIMAL OPERATOR AND RIESZ POTENTIAL IN THE MODIFIED MORREY SPACES

CANAY AYKOL AND M. ESRA YILDIRIM

Abstract. In this paper we prove the boundedness of the maximal operator M and give the necessary and su¢ cient conditions for the boundedness of Riesz potential operator I in the modi…ed Morrey spaces by using Guliyev method

1. Introduction

Morrey spaces Lp; were introduced by Morrey in 1938 in connection with certain

problems in elliptic partial di¤erential equations and calculus of variations ([19]). Later, Morrey spaces found important applications to Navier Stokes ([18], [25]) and Schrödinger ([21, 22]) equations, elliptic problems with discontinuous coe¢ cients ([5, 8]) and potential theory ([1, 2]). An exposition of the Morrey spaces can be found in the book [17]. Morrey spaces were widely studied during last decades, including the study of classical operators of harmonic analysis such as maximal, singular and potential operators ([1, 3, 4, 6, 7]). Modi…ed Morrey spaces and the boundedness conditions of maximal operators and Riesz potential studied by some authors (see, for example [12, 13, 14, 15, 16]).

In [9] Guliyev considered the generalized Morrey spaces Mp;' with a general

function '(x; r) de…ning the Morrey-type norm. He found the conditions on the pair ('1; '2) without any assumption on monotonicity of '1, '2 which ensures the

boundedness of the maximal operator in generalized Morrey spaces. He also proved the Spanne and Sobolev-Adams type theorems for the Riesz potential operator I . In the present work, we prove the boundedness of the maximal operator M and Riesz potential operator I in modi…ed Morrey spaces by using Guliyev methods given in [9].

Received by the editors July 09, 2015, Accepted: Aug. 04, 2014. 2000 Mathematics Subject Classi…cation. 46E30, 42B20, 42B25.

Key words and phrases. Morrey space, modi…ed Morrey space, maximal operator, fractional maximal operator, Riesz potential

M.E. Yildirim was partially supported by the Scienti…c and Technological Research Coun-cil of Turkey (TUBITAK Programme 2228-B).

c 2 0 1 4 A n ka ra U n ive rsity

(2)

2. Definitions and Preliminary Tools Let f 2 L1

loc(Rn). As usual we de…ne the Hardy-Littlewood maximal function

of f , M f , setting M f (x) := sup t>0jB(x; t)j 1 Z B(x;t)jf(y)jdy;

where B(x; t) denotes the open ball centered at x of radius t for x 2 Rn and t > 0.

jB(x; t)j = !ntn and !n denotes the volume of the unit ball in Rn.

For 0 < n, we de…ne the fractional maximal function M f (x) := sup

t>0jB(x; t)j

n 1

Z

B(x;t)jf(y)jdy:

In the case = 0, we get M0f = M f . The fractional maximal function M f is

closely related to the Riesz potential operator I f (x) := Z Rn f (y)dy jx yjn ; 0 < < n; such that M f (x) !n 1 n (I jfj)(x): (2.1)

The operators M and I play important role in real and harmonic analysis (see, for example [1, 20, 23, 24]).

De…nition 2.1. Let 1 p < 1, 0 n, [t]1 = minf1; tg. We de…ne the

Morrey space Lp; (Rn), and the modi…ed Morrey space eLp; (Rn) as the set of

locally integrable functions f with the …nite norms kfkLp; := sup x2Rn;t>0 t pkfk Lp(B(x;t)); (2.2) kfkLep; := sup x2Rn;t>0 [t] p 1 kfkLp(B(x;t)); (2.3) respectively. Note that e Lp;0(Rn) = Lp;0(Rn) = Lp(Rn); e Lp; (Rn) ,! Lp; (Rn) \ Lp(Rn) and maxfkfkLp; ; kfkLpg kfkLep;

and if < 0 or > n, then Lp; (Rn) = eLp; = , where is the set of all functions

(3)

De…nition 2.2. [3, 4, 10, 11] Let 1 p < 1 , 0 n. We de…ne the weak Morrey space W Lp; (Rn), and the modi…ed weak Morrey space W eLp; (Rn) as the

set of all locally integrable functions f with …nite norms kfkW Lp; := sup x2Rn;t>0 t pkfk W Lp(B(x;t)); kfkW eLp; := sup x2Rn;t>0 [t] p 1 kfkW Lp(B(x;t)); respectively. Note that W Lp(Rn) = W Lp;0(Rn) = W eLp;0(Rn); Lp; (Rn) W Lp; (Rn) and kfkW Lp; kfkLp; e Lp; (Rn) W eLp; (Rn) and kfkW eLp; kfkLep; :

The following lemmas give some embeddings between Morrey spaces which were proved in [14, 15].

Lemma 2.3. Let 0 < n and 0 < n . Then for p = n ; Lp; (Rn) ,! L1;n (Rn); kfkL1;n !

1=p0

n kfkLp; :

Lemma 2.4. Let 0 < n and 0 < n . Then for n p < n e

Lp; (Rn) ,! L1;n (Rn); kfkL1;n ! 1=p0

n kfkLep; :

The following theorems proved by Guliyev in [9] will be our main tools to obtain the boundedness of maximal operator M and Riesz potential I in modi…ed Morrey spaces, respectively.

Theorem A. Let 1 p < 1 and f 2 Lloc

p (Rn). Then for p > 1 kMfkLp(B(x;t)) Ct n p Z 1 t r np 1kfk Lp(B(x;r))dr; (2.4) and for p = 1 kMfkW L1(B(x;t)) Ct n p Z 1 t r np 1kfk L1(B(x;r))dr; (2.5)

where C is a constant independent of f , x 2 Rn and t > 0.

Theorem B. Let 1 p < 1, 0 < < n p and f 2 L loc p (Rn). Then jI f(x)j Ct M f (x) + C Z 1 t r np 1kfk Lp(B(x;r))dr; (2.6)

(4)

where C is a constant independent of f , x and t.

3. Boundedness of the maximal operator and the Riesz potential in the modified Morrey spaces

In this section we prove the boundedness of the maximal operator and the Riesz potential in modi…ed Morrey spaces eLp; . We prove Theorems 3.1 and 2 with the

help of Theorems A and B, respectively.

Theorem 3.1. Let 1 p < 1, 0 < n and f 2 eLp; (Rn).

( i) If p > 1, then the maximal operator M is bounded in eLp; (Rn).

( ii)If p = 1, then M is bounded from eL1; (Rn) to W eL1; (Rn).

Proof. (i ) Let 1 < p < 1. From the inequality (2.4) we get

kMfkLep; = sup x2Rn;t>0 [t] p 1 kMfkLp(B(x;t)) C sup x2Rn;t>0 [t] p 1 t n p Z 1 t r np 1kfk Lp(B(x;r))dr C sup x2Rn;t>0 [t] p 1 t n pkfk e Lp; minf Z 1 t r np 1dr; Z 1 t r pn 1drg = C sup x2Rn;t>0 [t] p 1 t n pkfk e Lp; minft n p; t n p g = C sup x2Rn;t>0 [t] p 1 t n pkfk e Lp; [t] p 1t n p = CkfkLep; ;

(5)

(ii ) Let p = 1. From the inequality (2.5) we get kMfkW eL1; = sup x2Rn;t>0[t]1 kMfkW L1(B(x;t)) C sup x2Rn;t>0 [t]1 tn Z 1 t r n 1kfkL1(B(x;r))dr C sup x2Rn;t>0 [t]1 tnkfkLe 1; minf Z 1 t r n 1dr; Z 1 t r n 1drg = C sup x2Rn;t>0 [t]1 tnkfkLe 1; minft n; t n g = C sup x2Rn;t>0[t]1 t n kfkLe1; [t]1 t n = CkfkLe1; ;

which implies that M is bounded from eL1; (Rn) to W eL1; (Rn).

In the following we give the necessary and su¢ cient conditions for the bounded-ness of the Riesz potential in modi…ed Morrey spaces.

Theorem 3.2. Let 0 < < n, 0 < n and 1 p < n .

( i) If 1 < p < n , then condition n 1p 1q n is necessary and su¢ cient for the boundedness of the operator I from eLp; (Rn) to eLq; (Rn).

( ii) If p = 1 < n , then condition n 1 1q n is necessary and su¢ cient for the boundedness of the operator I from eL1; (Rn) to W eLq; (Rn).

Proof. (i ) Su¢ ciency. Let 1 < p < n , n 1p 1q n and f 2 eLp; (Rn).

(6)

kI fkLeq; = sup x2Rn;t>0 [t] q 1 kI fkLq(B(x;t)) = sup x2Rn;t>0 [t]1 Z B(x;t)jI f(y)j qdy !1 q C sup x2Rn;t>0 [t] q 1 Z B(x;t) r M f (y) + Z 1 r n p 1kfk Lp(B(x; ))d q dy !1=q C sup x2Rn;t>0 [t] q 1 Z B(x;t) r M f (y) + kfkLep; minf Z 1 r n p 1d ; Z 1 r + n p 1d g q dy !1=q = C sup x2Rn;t>0 [t] q 1 Z B(x;t) r M f (y) + kfkLep; minfr n p; r + n p g q dy !1=q : Minimizing with respect to r, with

r = " kfkLep; M f (y) # p n and r = " kfkLep; M f (y) #p n we have kI fkLeq; C sup x2Rn;t>0 [t] q 1 0 @ Z B(x;t) 0 @minf M f (y) kfkLep; !1 p n ; M f (y) kfkLep; !1 p n gkfkLep; 1 A q dy 1 A 1=q Ckfk1 p q e Lp; sup x2Rn;t>0 [t] q 1 kMfk p q Lp(B(x;t)):

Hence by Theorem 3.1(i ) we have

kI fkLeq; Ckfk 1 p q e Lp; kfk p q e Lp; = CkfkLep; ;

which implies that I is bounded from eLp; (Rn) to eLq; (Rn).

Necessity. Let 1 < p < n , f 2 eLp; (Rn). Suppose that I is bounded from

e

(7)

kfskLep; = sup x2Rn;t>0 [t] p 1 kfskLp(B(x;t)) = sup x2Rn;t>0 [t]1 Z B(x;t)jf s(y)jpdy !1=p = s np sup x2Rn;t>0 [t]1 Z B(x;st)jf(y)j pdy !1=p = s npsup t>0 [st]1 [t]1 p sup x2Rn;t>0 [st]1 Z B(x;st)jf(y)j pdy !1=p = s np[s]p 1;+kfkLep; ; (3.1) and I fs(x) = s I f (sx); kI fskLeq; = s sup x2Rn;t>0 [t]1 Z B(x;t)jI f(sy)j qdy !1=q = s nq sup t>0 [st]1 [t]1 q sup x2Rn;t>0 [st]1 Z B(sx;st)jI f(y)j qdy !1=q = s nq[s]q 1;+kI fkLeq; :

By the boundedness of I from eLp; (Rn) to eLq; (Rn) we get

kI fkLeq; = s +n q[s] q 1;+kI fskLeq; s +nq[s] q 1;+kfskLep; Cs +nq n p[s]p q 1;+ kfkLep; :

If 1p < 1q+n, then in the case t ! 0 we have kI fkLeq; = 0 for all f 2 eLp; (R n).

If 1 p >

1

q + n , then in the case t ! 1 we have kI fkLeq; = 0 for all f 2

e

Lp; (Rn).

(8)

(ii ) Su¢ ciency. Let p = 1 and n 1 1

q n . From the inequality (2.6) we

have jI f(x)j Ct M f (x) + C Z 1 t r n 1kfkL1(B(x;r))dr Ct M f (x) + CkfkLe1; minft n; t + n g: Minimizing with respect to t, with

t = " kfkLe1; M f (x) # 1 n and t = " kfkLe1; M f (x) #1 n we have jI f(x)j C min 8 < : M f (x) kfkLe1; !1 n ; M f (x) kfkLe1; !1 n 9 = ;kfkLe1; : Therefore we get jI f(x)j C(M f (x))1=qkfk1 1=qe L1; : (3.2)

Using the inequality (3.2) and from Theorem 3.1(ii ) we get

kI fkqW eLq; = sup x2Rn;t>0 [t]1 kI fkqW L q(B(x;t)) = sup r>0 rq sup x2Rn;t>0[t]1 jfy 2 B(x; t) : jI f(y)j > rgj sup r>0 rq sup x2Rn;t>0 [t]1 jfy 2 B(x; t) : C(Mf(y))1=qkfk1 1=qe L1; > rgj = sup r>0 rq sup x2Rn;t>0 [t]1 8 < :y 2 B(x; t) : Mf(y) > 0 @ r Ckfk1 1=qLe1; 1 A q9 = ; C sup r>0 rq 0 B @kfk 1 1 q e L1; r 1 C A q kfkLe1; = CkfkqLe1; ;

which implies that I is bounded from eL1; (Rn) to W eLq; (Rn).

(9)

kI fskW eLq; = sup x2Rn;t>0 [t] q 1 kI fskW eLq; (B(x;t)) = sup r>0 r sup x2Rn;t>0 [t]1 Z fy2B(x;t):jI fs(y)j>rg dy !1=q = sup r>0 r sup x2Rn;t>0 [t]1 Z fy2B(xs;t):jI f (sy)j>rs g dy !1=q = s nq sup t>0 [ts]1 [t]1 q sup r>0 rs sup x2Rn;t>0 [ts]1 Z fy2B(x;ts):jI f (y)j>rs g !1=q = s nq[s]q 1;+kI fkW eLq; :

By using the boundedness of I from eL1; (Rn) to W eLq; (Rn) we get

kI fkW eLq; = s +n q[s] q 1;+kI fskW eLq; Cs +nq[s] q 1;+kfskLe1; = Cs +nq n[s] q 1;+ kfkLe1; : If 1 < 1

q+n, then in the case t ! 0 we have kI fkW eLq; = 0 for all f 2 eL1; (R n).

If 1 > 1q + n , then in the case t ! 1 we have kI fkW eL

q; = 0 for all

f 2 eL1; (Rn).

Therefore n 1 1q n .

Corollary 1. Let 0 < < n, 0 < n and 1 p < n .

( i) If 1 < p < n , then condition n 1p 1q n is necessary and su¢ cient for the boundedness of the operator M from eLp; (Rn) to eLq; (Rn).

( ii) If p = 1 < n , then condition n 1 1q n is necessary and su¢ cient for the boundedness of the operator M from eL1; (Rn) to W eLq; (Rn).

Proof. Su¢ ciency of Corollary 1 is obtained from Theorem 3.2 and inequality (2.1). Necessity. For the fractional maximal operator M the following equality

M fs(x) = s M f (sx)

(10)

(i ) Let 1 < p < n and M be bounded from eL p; (Rn) to eLq; (Rn). Then we have kM fskLeq; = s n q[s]q 1;+kM fkLeq; :

By similar methods in Theorem 3.2 we obtain n 1p 1q n . (i ) Let M be bounded from eL1; (Rn) to W eLq; (Rn).

Then we have kM fskW eLq; = s n q[s]q 1;+kM fkW eLq; : Therefore we get n 1 1q n . References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. 42 (1975), 765-778. [2] D.R. Adams, Choquet integrals in potential theory, Publ. Mat. 42 (1998), 3-66.

[3] V.I. Burenkov and H.V. Guliyev, Necessary and su¢ cient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Studia Mathematica 163, 2 (2004), 157-176.

[4] V.I. Burenkov and V.S. Guliyev, Necessary and su¢ cient conditions for the boundedness of the Riesz operator in local Morrey-type spaces, Potential Analysis 30, 3 (2009), 211-249. [5] L. Ca¤arelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1990), 253-284. [6] F. Chiarenza and M. Frasca Morrey spaces and Hardy- Littlewood maximal function, Rend.

Math. 7 (1987), 273-279.

[7] G. Di Fazio and M. A. Ragusa Commutators and Morrey spaces, Bollettino U.M.I., 7 (5-A)(1991), 323-332.

[8] G. Di Fazio, D.K. Palagachev and M.A. Ragusa, Glocal Morrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coe¢ cients, J. Funct. Anal. 166(1999), 179-196.

[9] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. 2009, Art ID 503948, 20 pp.

[10] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessl dif-ferentai operator, Mathematical Inequalities and Applications 6, 2(2003), 317-330.

[11] V.S. Guliyev and J. Hasanov, Necessary and su¢ cient conditions for the boundedness of B-Riesz potential in the B-Morrey spaces, Journal of Mathematical Analysis and Applications 347, 1 (2008), 113-122.

[12] V.S. Guliyev, J. Hasanov and Y. Zeren, Necessary and su¢ cient conditions for the bound-edness of B-Riesz potential in modi…ed Morrey spaces, Journal of Mathematical Inequalities 5, 4 (2011), 491-506.

[13] V.S. Guliyev and Y.Y. Mammadov, Riesz potential on the Heisenberg group and modi…ed Morrey spaces, An. St. Univ. Ovidius Constanta 20(1) (2012), 189-212.

[14] V.S. Guliyev and K. Rahimova, Parabolic fractional maximal operator and modi…ed parabolic Morrey spaces, Journal of Function Spaces and Applications, 2012, Article ID 543475, 20 pages, 2012.

[15] V.S. Guliyev and K. Rahimova Parabolic fractional integral operator in modi…ed parabolic Morrey spaces, Proc. Razmadze Mathematical Institute, 163 (2013), 85-106.

[16] V. Kokilashvili, A. Meskhi and H. Rafeiro, Riesz type potential operators in generalized grand Morrey spaces, Georgian Math. J. 20 (2013), no. 1, 43-64.

[17] A. Kufner, O. John and S. Fucik, Function spaces, Noordho¤, Leyden and Academia, Prague, 1977.

(11)

[18] A.L. Mazzucato, Besov-Morrey spaces: function theory and applications to non-linear PDE. Trans. Amer. Math. Soc. 355 (2003), 1297-1364.

[19] C.B. Morrey, On the solutions of quasi-linear elliptic partial di¤ erential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.

[20] B. Muckenhoupt and R. Whedeen, Weighted norm inequalities for fractional integrals, Trans. Amer.Math. Soc. 192 (1974), 261-274.

[21] A. Ruiz and L. Vega, Unique continuation for Schrödinger operators with potential in Morrey spaces, Publ. Mat. 35 (1991), 291-298.

[22] A. Ruiz and L. Vega, On local regularity of Schrödinger equations, Int. Math. Res. Notices 1993, 1 (1993), 13-27.

[23] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press (1971).

[24] E.M. Stein, Singular integrals and di¤ erentiability properties of functions. Princeton Math. Ser. 30. Princeton University Press, Princeton(1971).

[25] M.E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolu-tion equaevolu-tions, Comm. Partial Di¤erential Equaevolu-tions 17(1992), 1407-1456.

Current address : Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

E-mail address : Canay.Aykol@science.ankara.edu.tr, meyildirim@ankara.edu.tr URL: http://communications.science.ankara.edu.tr/index.php?series=A1

Referanslar

Benzer Belgeler

Acil servise başvuran hastaların yaş gruplarına göre triaj kategorileri incelendiğinde; çok acil hasta grubunda en fazla başvuru sırasıyla 70-79 (n:168); 60- 69 (n:158)

Sonuç olarak, her iki karışımında tork ve güç değerlerinin SDY’dan düşük olduğunu, özellikle 2500 d/d motor hızına kadar BD karışımı ile SDY’dan

I argue that regardless of the newly introduced supranational channels into the EU policy process, the collective organizational experience at the national level locks in a certain

Bu nedenle, sağlık çalışanlarının, doğum öncesi dönemde gebe izlemleri sırasında doğum ve doğum sonrasına yönelik eğitimlere yer verilmesi, doğum sonrası

Sanayi üretim endeksi faktörü Gıda-İçecek sektör endeksini tüm piyasa koşullarında (yalnızca yükselen ve yatay piyasada istatistiksel olarak anlamlı biçimde)

Pervititch haritalarında özellikle Şişhane Caddesi, Kandilli Türbe ve Dervişzade Sokak çevresinde bitişik nizamlı ahşap konut yoğunluğu görülürken, İvaz Efendi

Bu taslak ayrıca vakıfların, vakıfların belgelendirilmesi, vakfedenin şer’i şartlarına riayet edilmesi, hayır hedeflerine yoğunlaşma ve özellikle ihtiyaç sahibi fakir

In order to generalize this method and thus obtain bound states and wave functions of hydrogen atom in MGECSC potential in presence of external electric field, which is used as a