• Sonuç bulunamadı

OPTIMAL SINGULAR ADAPTIVE COMPUTER OBSERVATION AND MODELING OF DISCHARGE PROCESSES IN XENON PULSE TUBES

N/A
N/A
Protected

Academic year: 2021

Share "OPTIMAL SINGULAR ADAPTIVE COMPUTER OBSERVATION AND MODELING OF DISCHARGE PROCESSES IN XENON PULSE TUBES"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

St\LJ

Fcıı l3iliınlcri Fııstitüsü Dergisi 9.Cilt, !.Sayı

2005

Optimal Siııgular Adaptive Computer Observation and Modeling of Discharge Processesin Xenon Pul se Tubes-L.N. SOTIROV

OPTIMAL SINGULAR ADAPTIVE COMPUTER OBSERVATION AND

MODELING

OF D

I

SCHARGE PROCESSES IN XENON PULSE TUBES

Lyubomir

N.

SOTIROV1,

Stefan T. BARUDOV2, Stela L. SOTIROVA3

.

.

Ozet: Bu makale, şimdiye kadar doğrusal ve kalıcı

olıııa�an sürekli süreçler şcklinde düşüniilen xenon vuruın tüplerindeki deşarj süreçlerinin, ayrık uyarlamalı gözleınİ ve modellernesi için yeni bir �·ak

..

laşım sunar. Bu amaçla, Varna Teknik Universitesi'nde son

25

yılda geliştirilen optimum

tekil uyarlanıalı bilgisayar gözlenıi ve nıodellemesi teorisinin araçları uygulandı.

Analıtar Kelime/er: Xcron vurum tiipleri, deşarj süreçleri, doğrusal olmayan diferansiyel denklemler,

aHık

sistemler, optimum tekil uyarlamalı bilgisayar gözlcnıi, tanımlama, ayrık modelleme, başlangıç

d

ıı rııın vcktörü değerlenci irmesi .

. lhstract: The paper presents a new approach of

dio,crctc

adaptive obscrvation and modeling of di�charge processes in Xenon pulse tubes considered

so far as nonlinear and non-stationary continuous

processes. The tools of the Theory of Optimal Singular Adaptive Computer Observation and Discrcte Modeling, which have been developed in the n·cent

25

years in the Technical University Varna are applied.

1\eyıvords: Xenon pulse tubes, discharge processes, optimal singular adaptive computer observation, identitlcation, discrete nıodeling.

1 VTU Faculty ol' Computer Systems and Automation, Department of Computer Scicnce and Engineering, Varna, Sotinw({,;iccc.b.;

2 VTU Faculty of Elcctrical Engineering. Depaı1nıcnt of Elecıric Power Sypply and Equipnıent, Vanıa, ı:c'c10r{a>tu-varııa.acad.lıQ

.l VTU Faculty of Elcctronics, Department of Coınınunicatioıı Eng i ne eri ng, V anıa, S tel i:ısot(aJvalıoo. co.u k

79

1.

INTRODUCTION

The Xenon pulse tubes have various applications

including optically excited lasers operating in pulse

nıode. lrrespectively of their type (tinctorial or solid state)

the requirements to the discharge pulses are:

lmpulse energy;

lmpulse duration;

Repeatability of inıpulse paranıeters.

Considering the pulse tubes as a load in the discharge

chain w e can isoiate two group s of problems:

The Xenon pulse tubes are nonlİnear

eleıııents, i.e. it is necessary to model the

discharge circuit.

Accepting the concept of

a

tube constant

-A,

defıned by

the construction features of the tube

-

distance between

electrodes and crass-seetion of the discharge channel,

they can be determined by the following equations [I, 2]:

'A

U 2

Ri\ =U�_;Ii\

{;

(I)

.

=

4'A wc

t

1 3 '

u/\

p

av

= Wc.f'

where:

R"

[Q]-

is the discharge resistance of the pulse tube,

1"

[A] -is the tube discharge current,

U"

[V] -tube applied voltage,

Wc [J]- energy accumulated in the operating

capacıtor,

t; [s] - duration of the discharge impulse

t;=2

R,,

.C,

type:

Pav [W] -average power dissipated by the tube,

f[Hz]- is the frequency of the discharge impulses,

Ic

[Q2.A] -can be defıned by expressions of the

k

212

'A=

--

,

(2)

S ·\ Lı Fe

n

B i ı i

n

ıle

�:n st ı t ü s ü D

e r

g i

s i

9

o

(�

ıl t ,

ı

o Say ı

2

O

O

5

S

l

n12] is the cross-sectıon of the capillary channel,

k = 1,13

[QOA

0'5] is a proportional coefficient.

A.

=

2

0

0

-7-

800

[02

.!\]

for the n1ost frequcntly u sed

Xenon lan1ps.

'fhe following equation is valid for the sin1plified circuit - Fig.

1

of the discharge chain:

L d I.'\

(

t

)

+

1

)l

( t)

+

R. I

(t)

==

-U

(t)

dt

� A � A '

l,(O

)

==i,0•

(3)

\V here:

R"'

- rcflccts the cun1ulati ve resistance of the

coiL the capacitor and the connecting wircs.

L

c

K

Fig.

1

The nonlineaı- diffcrential equation (3) [

1,

2] suggests nurnerical solution. So, the first problen1 is that the nıodeling even of a sin1plifıed discharge circuit is a quite complex process. Second problen1 is to secure repeatability of the discharge pulses. While the initiation of the discharge and the increase of the current can·iers are processes depending on various factors

[

1

], the

discharge

or

the

nıain capacitor battery nıost often flows at ce rta in concentration of the current carriers in the pulse Xenon lamp. This suggests use of either "duty are" rnode

lda

- Fig.2 or Hpre-discharge'' ("double pulse") rnode

-Fig.3.

K1

closes first and after certain delay,

K

closes as well. The solution of the second problem makes the discharge circuit much ınore complex. All this makes it clear that the discharge processes interpreted in this paper

as

objects of identifıcation, adaptive observation, nıodeling and conh·ol, are specified mainly by nonlinear and non-stationary dynan1ics, by lack of repeatability of the experinıents and difficulties for measurement of ınain variables of the discharge process. These specific peculiarities of the discharge processes explain the limited number of publications cornmitted to the application and development of the contemporary theory of nonlİnear assessınent for observation of parameters and state of discharge tubes. The existing n1ethods nıentioned above are appropriate mainly for continuous n1odels of discharge processes. They do not assess, on the basis of input-output data for the process, its order, paranıeters and current states. They do not assess also the

Opti

ınal

S i ngu lar Adaptive Computer Observation a

Modeling of D ischarge Processesin Xenon Puls

Tubes-L.No SOTlRO\

initial state vector. The influence of the inaccurate initial

assessments on the convergence of recurrent algorithms is not yet studied sufficiently in literature. The objective of this publication is to present a new approach for discrete

adaptive observation and modeling of discharge processes in Xenon pulse tubes, which uses the Theory

for Optimal Singular Adaptive (OSA) Computer

Observation and Modeling, developed in the last

25

years

in the Technical University Varna.

Iınpression about the status and the development of the OSA theory of con1puter observation and modeling can

be formed fronı [3-7-16].

II. DISCRETE MODELING OF THE

DYNAMICS OF THE DISCHARGE

PROCESSES IN XENON PULSE TUBES

The approach requires presentation of the discrete linearized observable sub-models of the studied discharge process in the state space as follows:

80

lA

(k)==

cT

x(k),

k=0,1,2, ... ,

(5)

where x(k)

E R11

is a unknown current state vector,

x(O) E R11

is a tınknown initial state vector, UA(k)[V]

ER1

is a control scalar input, IA(k)[A]

E

R1

is the measured scalar output reaction of the discrete model.

A

is a

unknown n1atrix of the type:

A==

ı

O

ı ı

J

11_1

where

111_1

is a single (n-1) x (n-1) matrix.

bT=

[0, ... , 0,

1]

,

CT=

[1, O, ... , OJ.

(6)

(7)

(8)

The set of algorithms of the discrete computer­ mathenıatical nıodel

( 4-7-8)

uses the instıtırnents of the

OSA theory for observation and modeling.

(3)

SAll

Fen Bilinıleri

FnstitüsCı

Dergisi

9.Cilt.

l.Say1

2005

Fig.2

lll. ALGORI'rHMI(� S\'N'fi-IESIS OF THE

OPTIMAI.J SIN(;tJI.�AR ADAPTIVE M3Al C'O!VIPU'TEI� (

)

I

J

SEI�VER OF LYUBOMIR SOl�IROV FOI� I)ISC�HARGE PROCESSES

IN

X

E

N

ON

PlJ(}E

'l'UBES

Step

1.

F

orn

ıat

i

o

n

or

input-output

data

arrays:

Y

,�"

=

[I

.

, (O)�

I.,

(

1

)

,

... ,

1

"

(

n

-

1)]

,

K

Y.,=

'-Y

��

=

[I

\ (n

)�

I

\

(n

+

1 ),

... ,

I

"

(

2

n

-

ı)]

,

V

'

=

[U

\ (O)�

U .

\

( 1 ), ... , U

t\

(n -

ı)]

ı

,

\

(o)

ıt\(ı)

I.!\

(2)

ı.\ (ı)

I·' (

2)

I ,\

( 3)

• • • • • • • • •

I,\

(

n

-ı)

lA

(

n

)

r.l\

(n+ ı)

• '

\\'here

v,2

is

a n

X

n Hankcl nıatrix.

Step 2.

Calculation of the assessments of the n­

d

i

ıııcns

i ona

1

veetar a,

as a solution of the systenı of Iinear

algcbraic

cquations:

Step 3.

Calculation of the elenıents of the n­

diıncnsional vcctor x(O), \Vİth the help of the optiınal

coıııputcr

cva1uator of the type:

Step

4.

Assessnıent of the n-diınensional current

s ta tc

veetar x(k), k=

1

,

2

, .

. , w ith the h elp of the full

optinıal singular adaptive computer abserver of the type:

81

Optin1al

Si

n

g

u

la

r Adaptive Coınputer Observation and

Model ing of Discharge Process es in X en on Pul se Tubes-L.N. SOTIROV

Fig.3

x(k +ı)= Fx(k)+ bU t\ (k)+ git\ (k), x(O)= x0,

k

=0,

1

,

2

, . . . . ,

where:

" " 'J""�

F

=A-ge ,

g,.

=

[gı,gR.gnJ

The choice of vector g elenıents is arbitrary and

can be cffectcd by one of the following ways:

ı)

g=b.

2)

g=O.

3) The vector

g

elenıents could be selected so

"

that the

F

nıatrix passesses eigenvalues located inside the

un it circle .

Step

5

. The degenerative OSA conıputer

abserver (at g=O) of the type:

k

=

O

,

l

,

2

, .

..

. ,

could be considered as a degenerative case of the full

OSA con1puter observers (at

g

=

O)

and can be constructcd

easier.lt follows froın the analysis of the derived

algorithm:

M3Al Tlıeorem.

An only solution of the

forn1ulated task for optimal singular adaptive computer

observation and ınodeling w ith the help of M3A

1

algorithm, exists if and only if the nıatrix

ı

is not

s i ngu lar or:

(9)

1\

1\

(4)

r

SAÜ Fen B ilimleri

Enstitüsü

Dergisi 9.Cilt,

l.Sayı 2005

IV.MATLAB-INTERPRET A TION OF l'lIE OPTIMAL

-SINGULAR ADAPTIVE M3A

1

COMPUl'ER

OBSERVER

Step

1.

The one-diınensional arrays and the bi­

dinıensional array of the input-output data are fornıed by

the fol

l

o

w

i

n

g

Matlab-nıodu le:

e nd

yl

=

Ilanıbda

(

ı: n

\

y2

=

Ilambda

(

n

+

1;

2

*

n

},

v

=

U 1

anı b da

(

l

: n

)�

for

i

=

ı

: n

for j

=

1

:

n

Y

12

(i, j)

=

I

I

anı b da

(i

+

j

-

l

)

en d

Step

2. Set

up and solution of the rcspcctive

1 inear systenı of a

lg

ebra

i

c cqua tions:

a e

=

i

n

v

(

Y

ı

2

)

*

(y

2

-

v

)

;

Step 3

. As s

c

s

s nı c nt of

t

h c

i

n i

t

i a

1

st at c

v

c ct or:

x

e

O=

y

l

;

Step

4.

The f

u

ll

O

A

conıputer abserver is

interpreted by the fol

lo,v

in

g

Matlab

-

nıodul

e:

b=

[

zeros

(

n- 1 ,

ı

}

ı

}

c

=

[ı;

zeros

(n

-

1

,

ı

)}

g =

zeros

(

n,

1

}

I

= ey e

(n

-

1

)

;

Ae

=

[

zeros

(

n -1,

ı

)

, �

I

ae

}

Fe= Ae-g*

c';

x e

(

:

, 1

)

= x

eO;

for k = 1

:

2

*

n - l

Optinıal Singular Adaptivc Conıputer

Observation

and

Modeling of Dischargc P

r

ocess

e

si

n

Xenon

Pulse

Tubcs-L.N. SOTIRO\

St

ep

5. The relative

error of the

OSA

observation

is

calculated by the

f

a

l

l

a

wing Matlab-MO.LlyJI:

for

k

=

1

:

2

*n

Ilambdae =

c'*xe

(

, k

),

en d

for

k=

1: 2

*n

V. RESUL'fS OF THE OPTIMAL SINGULAR

ADAPTIVE COi\1PUTER OBSERVATTON AND MODELING OF A DISCHARGE PROCESS IN

A

XENON J>Ut,SE l"'UBE 1FP800.

The

f

ollo

\v

ing

i

npu

t-

output data about the

discharge

pro

c

ess

werc

obtained

froın

e

x

perinıen

t

s: (Tab le 1)

T

hey \VCre pr

nct'"s

ed further in the mode of

three

randonıly

s

cle

c

t

c

d

sanıplcs. The evaluated order of

the

three eliserete suh-ıııodels is

ll =

2.

The degenerative

OSA

conıputcr observer

(at g=O)

was

selected

for

asscssnıcnt

of

the

current

statc vector and of the

three

discretc sub-nıodcls. lt

is known that

all OSA

observers

ca}culatc

the

I'C'Stılts

of the adaptİve observatİOll

\Vith

al nı o st

equa 1 acc

uracy

thus the

OSA

conıputer

obsenrer

\vith the sinıplcst structurc for rcalization was selected.

Wc shall

givc

tlı�

f

o

llowing

rcp

rc

s

e

ntat

i

ve results

for

the

first

sa

n

ı

pl

c,

at k

O.

1

,2,3:

/\

a =

-

6.

3

1

0

5

()

o

/\

()

2.ÜÜÜÜ

'

i

Ü =

2Ü.ÜÜÜÜ

' X

J

::::

"

(

)

40.0000

"

( )

x2=

.,

x3=

60.0000

60.0000

17.7800

20.0000

40.0000

They are

obtained

\V

İ

tlı

the f

a

ll

a

w

i

ng

relative

errors:

�ıo-15,

k=0,1,2,3.

xe

(:

, k+l

)

=Fe*xe

(:,

k

)

+b*Ulambda

(

k

)

+

at that,

+

g *

Ilambda

(

k

)

;

cond

(

Y17

)

=

5.8284,

en

d

e

(

k) =

norm

(

Ilambda

(k

)

- Ilambdae(

k))

!

/norın

(

Ilan1bda(

k

))

;

en d

-

-82

i.e. the value or the nu

n

ı

b

e

r

of condition of the respective

Hankel ıııatrix tclls that the considered here task for

OSA

observation

and n

ı

odeling of discharge processes of

Xcnon pulse tubes, nıodeled by a continuous nonlinear

nıathenıatical nıodcl [I .,2], is well deternıined in the case

of discrctc prcscntation, which leads to a better computer

(5)

..

'ı:\l'

l·cn 11iliınlcrı Ln:-ıtıtCı�ti Dcıgi'->i 9.Cilt, !.Sayı

2005

intcrprctation, c.g. to a n1iniınal

con1putational

coıııplexi

ty

and to reduction

or the opcrating conıputer

ll1Cll10ry

lO t\11 ordcr of ınagnitudc� C0111parcd

Wİth the

cxisting nıethod for nıatrix in\crsion,

solution of linear

systenıs of

algcbra

i

c

cquations w

ith

a

s pe c i al, dense

stnıcturc.

The ei gen va lu es of the s ta tc nıatrix

of this sub­

ınodel are

Xıı

=

1.0000

+

2.3045i,

X

ı,

=

1.0000-

2.3045i.

Table 1

L

I\

(O)

-

o

ıvı

LJ\(1)

106,1l[Vl

L1 \

(2) = ı

50,20 [

V]

ll\

(3)-= ı

RJ,96

fVl

Ll\(-ı) 212,41\VJ

l'\ (5)

-

1]7,49\VJ

ll.\

(

6)

-=

260,

ı S

lV

J

U.\

(7)

=

2R I ,00 l

V

]

U\

(X)

==

300,40 [

V

l

ı

·

\

(

()) =

J ı x,

6

2

r v J

t

ı\

O)=-

335,86

ıvı

U,\

( 11)--=

352,25\VJ

L

\

t

l

2

)

367,YI\VI

L

:

\

(

ı

J)

-::

3 X 2, 9..ı [

V]

ll\

(

ı4)-=

397,39

1

V]

U

i\

(lS)

=

41

1

,34

[

V]

u\

6)

=

424,R3

ıvı

I

.\

(

O)

=

O

[

A]

1,\(1)

20[/\j

ı

.\

(

2) =

4o

rA

ı

ı

\

(

3)

=

60

[

A

J

ı

:\

(

4 )

-

RO

[

A

]

1

\

(

5)

== ı

00

[i\]

1

.ı\

( 6 )

-= ı

2 O

lA]

1,\(7)=

l40[A]

I

,\

( 8)

=

I

60

[

A

J

ı.\ (9)

go [AJ

I

,\

(

1

O)

=-

2

O O

[ A

]

1

.

\

( ı

I )

=

220

[

A

J

11\ (

ı

2 )

==

2 4 O [ A]

I\(ı3)=260[Al

l:

\

(14)

=

280

f

A

J

lt\ ( 1

S) =

3 00 lA]

li\

( 16) = 320 [A]

ut\

c

17)

=

43

7,90 [VJ

U

i\

(I 8)

=

450,60

[V]

u/\

c

19)

=

462,95

[VJ

u/\ (20)

=

474,97

[VJ

U

t\

( 2

1

) ==

486

,

70

[V]

u,\

(22)

=

498,16

[VJ

U

i\

(23)

=

509,35

[

V]

U

t\

(24)

=

520,31

[V]

U

i\

(25)

=

53 ı ,04

[V]

ut\

(26)

=

541,55

[VJ

U

A

(27)

=

551 ,87

[V]

U

t\

(28)

=

562,00

[V]

u"

(29)

=

5

71,94

[VJ

u/\

(30)

=

581

,

72

[VJ

u/\

(3 1 )

=

591,34

[VJ

U

t\

(32)

=

600,80

[V]

Ut\(33)=610,11 [V]

1

t\

( 1 7)

==

3 40 [ A]

It\ ( 1

8

)

==

360 [A]

It\

( 1 9)

=

380 [A]

It\

(20)

==

400

[A]

It\

(2 1 )

==

420 [A]

Ii\

(22)

==

440

[A]

It\

( 23)

=

460 [ A]

It\

(24)

==

480

[A]

It\

(25)

=

500

[

A

]

lA (26)

=

520 [A]

It\

(27)

=

540

[A]

It\

(28)

=

560

[A ]

lA

(29)

=

580 [A]

Ii\ (30)

=

600 [A]

I

i\

(3 1)

=

620 [ A]

It\ (32)

==

640 [A]

lA (33)

==

660 [A]

Optinıal Singular Adaptivc Conıputer Observation and Modeling of Discharge Proccsscs in Xcnon Pul se Tubes-L.N. SOTIROV

u/\

(34)

=

619,29

[VJ

u/\

(35)

=

62

8

.

JJ

[VJ

U

t\

(36)

=

63 7

,

2

4

[V]

U

t\

(3

7)

=

646,03 l

V

]

U

t\

(38

) =

654,7

1

[V]

U

t\

(39)

=

663,26

1

V

]

U

t\

( 40)

=

6 7 1 ,71

[V]

U

t\

(4 1 )

=

680,06 [

V]

U

t\

(

42)

=

688,30

[V]

U

t\

( 43)

=

696.45

[V]

U

A

(

44)

=

7

ı 2,46 [

V]

U

A

( 45)

=

720,33 [V]

U

t\

(

46)

=

728, 1 2

[V]

U,\ ( 4 7)

=

735.83

[V]

u/\

(

48)

=

743,45 [

V

J

u/\

(49)

==

75 1

oo

[VJ

lA (34)

=

680

[

A

]

It\

(35)

=

700

[A]

It\

(36)

=

720

[

A]

It\ (37)

=

740 [A]

It\

(38)

=

760 [A]

It\

(39)

==

780

[AJ

It\

( 40)

=

800

[A]

It\

( 41)

=

820

[A]

lA

(42)

=

840 [A]

lA

(43)

=

860

[

A

]

lA

(44)

=

900 [A

]

lA

(45)

=

920

[A]

lA

(46)

=

940 [A]

lA

(47)

=

960

[A]

1"

(48)

=

980 [A]

lA

(49)

=

1000 [A]

The di

sc

ha

rge

process in

this tinıe interval is oscillating

with inercasing anıplitude,

i.e. unstable.

The ei

gen

v

a

l

u

e

s

of the

dcgenerative

OSA

conıputer abserver (at

g==O),

are

ob

vious

l

y

the sanıe.

but

the

stated

OSA

abserver

insta

b

i

l

ity does

not inıpact negatively the e

x

cep

t

i

o

n

a

ll

y

high a

cc

u

r

a

c

y

of the deseribed observation and nıodeling

We shall give the fallawing representative results for the

second san1ple, at

k=29,30,31 ,32:

83

(6)

---SAÜ

Fen Bilinıleri Enstitüsü Dergisi 9.Cilt,

I

.Sayı

2005

A

12.9270

a=

- 12.4160 '

x(29)

=

580.0000

600.0000 '

600.0000

X

(

30

)

=

620.0000 '

( )

620.0000

'

i(32)

=

X 3 1 =

640.0000

640.0000

659.0000

They are obtained w ith the fol lawing relative errors:

I"

(

k

)

-

(

,

(

k

_14

e

(

k

)

=

( �

10

, k= 29,30,31,32.

I

.

\

k

At that,

cond(Y12)

= 3.6020.103,

i.e. in the considered tinıe interval the task for OSA

conıputer observation and nıodeling is not well

determined but as it is evident fronı the enclosed results

this has no negative impact on the exceptionally high

conıputational accuracy which is a result of the robust

features of OSA observation, studied for the general case

in [3-7-16].

The eigenvalues of the state nıatrix of this sub­

nıodel are:

Xıı

= 0

.9

6

60

,

X22

=-13.3820,

i

.e.

the discharge process is unstab le again, but is not

oscillating.

We shall give the following representative

results

for the third sanıple at k=44,45,46,47:

"

16.5220

a =

- 15.9155

'

X ( 45)

=

920.0000

940.0000

x ( 46) =

940.0000

960.0000

'

X(44 )= 900.0000

920.0000

' X(4?)= 960.0000

979.0000

They are obtained with the following relative errors:

'

84

Optimal Singular Adaptive Conıputer Observation and

Modeling of Discharge Processcs in Xenon

Pu!se

Tubes-L.N. SOTIRO\.

- I/\

(

k

)

-

Ii\

(

k

-12

e

(

k

)

-( �

= 10

, k= 44,45,46,47.

I/\

k

At that,

cond(Y12)

=

8.4660.103.

The eigenvalues of the state nıatrix of this third sub­

model are:

X31

= 0.9780,

X32

=

-16.8935.

Obviously the conıments regarding the behavior of the

discharge

process

in

this tiıne interval are analogical

to

the previous two discrcte structures approximating the

dynanıic behavior of the discharge process of the studied

Xenon lanıp in the respective time sub-intervals.

VI. CONCLUSION

The results of the coınputer processed input­

output data

on

the

basis

of the

proposed

approach,

M3A

I

algorithnı and Matiab software illustrates the possibility

to solve the

task

for

optimal singular adaptive

computer

observation and discrete nıodeling of discharge processes

in Xenon pulse tubcs with guaranteed accuracy. These

conıputational results illustrate the ınathenıatical and

prograın consistency of the algorithnıic synthesis of OSA

coınputer observers.

The conıputer processing of arbitrary, sequential

or sequential with overlapping saınples of input-output

data for the discharge process allows to interpret the

considered class of nonlİnear and non-stationary

continuous systems with a Jimited set of discrete sub­

models with variable structure, variable parameters and

variable initial and current states ..

The respective processing of experimental

information of this type can be used for design, modeling

and realization of adaptive systems for regulation,

stabilization of discharge processes in Xenon pulse tubes

and other objects on the basis of identifiers, optimal

conıputer evaluators of initial state, optimal singular

adaptive computer observers of cuıTent state, regulators

and stabilizers ..

lt can be shown [3--:- 16], that the assessments

received above are optiınal in terms of the minimum of

the quadratic functional of the type:

e

(

k

r

= x

(

k

)

-X

(

k

f

, k=0,1,2, ... ,

(

1

O)

where

1

(7)

.'.\C1

Fen Bilinıleri Eıı�tillis(i Dcrl!i"ı - 9

(

ı lt. I.Savı .

2005

Tr e

(k )

= X

(k

)

-

X

(k

)

,

k

=

O�

1

,

2,

... ,

( ı

1 )

and

the nornı i s de fi n cd as:

c(

k

r

=

< e

(

k

)

, e

(

k

)

'>

'

k

-

()'

ı

,

2,

...

'

( ı

2)

H. EFE 1� E N (,ES:

[1]

Barudov, S. Electrical Proce<.;ses and Dcviccs for

Dischargc Control in a (ia�cous Environnıent. A

Scientific Monograplı, Varna, (2004), p91-98.

[

7]

Barudov

S.,

Panov

E.

S

pc c i

fics

or

d ischarge i

nıpulse

nıodcling in a pulsc xcııoıı tubc. /\eta Univcrsitatis

Pontica Euxinus.

Volun1c

4,

Nunıbcr

I. p. ]6-;-20.

(2005)

lJI

Sotirov, L. N., A direct ıncthod for adaptive

obscrvation of singlc-input <.;İnglc- output linear

stationary discrctc systcıııs \\ith iııitial state vector

csti nı at i on, Rcports or the B ulgarian Acadenıy of

Scicnccs, vol. 4

7,

No. 1

ı,

5-X,

Sofia. ( 1994)

1-+J

Sotirov,

L.

N., Optin1al singular adaptivc obscrvation

Of'

Slationary efiserete systCJllS \\"İth İnİtİal Statc VeCtOr

cstiıııation. Autonıation and

Rcnıotc Control,

Russian Acadeıny of Scicnccs No 9 l l 0-ı 18

ı ' '

Moscow, Nc\v York, London .

997)

IS 1

Sotirov,

L.

N., An algoritlını for synthesis of optimal

singular adaptive obscrvcrs \Vİth direct estiınation of

the initial state vector. International Journal of

Systenıs Science, vol. 28, No 6, 559-562. ( 1997)

r6J Sotirov, L. N., E.

G.

Sukhov, A paral1e1 direct

nıcthod for opti nı al adaptivc esti nıation of di serete

linear systcnı, Autonıation and Renıote Control,

Russin n Acadcıny of Scicnces, No 1 O, 154-163,

Moscow, Ne�' York, London . ( 1997)

(7]

Sotirov L.N., Rcduced order optinıal singuıar

adapti ve observation for a class of di serete systeıns,

J\utoıııation and Rcnıote Control, Russian Acadenıy

85

O

pt i nıa

1

S i ngular /\da pt i ve Coıııputcr ( )bscrva tion and Modeling of Disclıcırgc Proce�scs in :Xcııon Pul sc Tubcs-L.N.

SC)riRC)V

of Sciences, No.2, 75-g2, Moscc)\v, Nc\v York,

London. (I 999)

[8] Sotirov L.N. An algorithnı for synthcsis of discrcte

reduccd order optinıal singular adaptivc observers.

International Journal of ystcnıs ciencc , vo1.30,

No. 6, 665-6 71. ( 1999)

[9] Sotirov L.N., Optinıal singular adaptive obscrvation

of nıulti-

input discrete linear systenıs \Vİth

perturbation, Autonıation and Renıotc Control,

Russian Acadenıy of Scicnces, No 7, 120- l 30,

Mosco\v, New York, London . (2000)

[10] Sotirov L.N., An algorithnıic synthcsis of di crete

optinıal singular adaptivc observers for nıultiplc­

input singlc- output linear systcıns, International

Journal of Systenıs Scicncc , vol.

I 2, No. 5, 545-55 I.

(200 ı)

[ 1 ı] Soti rov

L.

N., An a lgori th nı for syn thesis of di serete

tinıe- optinıal adaptivc controllers, Rcports of the

Bulgarian Acadcnıy of Scicnccs, vol. 54, No. 3,

ı9-24, Sofıa. (200 1)

[ 1 2]

S

ot i rov L. N., S.L. Soti ro va, An a lgori thnıic synthcs is

of discrctc optimal singular adaptive observers for

singlc- input singlc- output linear systenıs, Reports of

the Bulgarian Acadenıy of Scienccs, vol. 55, No. 7,

31-36, Sofia. (2002)

[I 31 Sotirov L.N., Chosen chapters fronı the modern

control theory, Technical University of Varna,

Bulgaria. (1998)

[ 1 4) Sotirov L.N ., A theory of autonıatic control,

Technical University ofYarna, Bulgaria. (2000)

[ı 5] Sotirov, L. N., Sotirova S.L., Conıputer-Mathenıatica l

Methods for Synthesis of Optinıal Singular Adaptive

Conıputcr Observers- Part

I,

Conıputer Science and

Technologies, Number I, p. 68-72, V ama Technical

University. (2003)

[ 16] Sotirov, L.N ., Sotirova S.L., Conıputer­

Mathenıatical Methods for Synthesis of Optinıal

Singular Adaptive Coınputer Observers- Part

TT,

Conıputer Science and Technologies, Nunıber 1, p.

83-89, Varna Technical University. (2003)

Referanslar

Benzer Belgeler

Taha

Zaman zaman da (haksız mal ik- tisab eden) devlet ricali hakkın­ da fetvalar verilirdi.. Şeyhülislâm Kadızade Mehmed Tahir Efendinin bu yolda verdiği bir fetvada

Feature matrices resulting from the 2D mel-cepstrum, Fourier LDA approach and original image matrices are individually applied to the Common Matrix Approach (CMA) based face

To overcome this problem, the learning component should feed the similarity translation template learning algorithm with all pos- sible instances of the match sequence with equal

İmkân kavramının İslam dünyasında İbn Sînâ’ya kadar olan serüvenini sunmak suretiyle İbn Sînâ’nın muhtemel kaynaklarını tespit etmek üzere kurgulanan ikinci

Genel akademik başarı seviyelerine göre yapılan değerlendirmede ise Gregorc Öğrenme Stili Modeli’nde teknik öğretmen adaylarının en fazla kullanmayı tercih

As a result of our ongoing investigations of purine and purine nucleoside derivatives, which have displayed promising cytotoxic activity, 28,29 herein, we synthesized new series

In this regard, early steps that have been taken by the Greek Cypriot administration (the Republic of Cyprus) to exploit these resources, including the signing of agreements