• Sonuç bulunamadı

Hipergeometrik fonksiyonu içeren harmonik tek değerlikli fonksiyonların Altsınıflarının bir uygulaması

N/A
N/A
Protected

Academic year: 2021

Share "Hipergeometrik fonksiyonu içeren harmonik tek değerlikli fonksiyonların Altsınıflarının bir uygulaması"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

An Application of Subclasses of Harmonic Univalent Functions Involving

Hypergeometric Function

Waggas Galib ATSHAN1, Enaam Hadi ABD2,3, Sibel YALÇIN4,*

1Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq

waggashnd@gmail.com, waggas.galib@qu.edu.iq, ORCID: 0000-0002-7033-8993

2Department of Computer, College of Science, University of Kerbala, Kerbala, Iraq 3Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

enaam_hadi2004@yahoo.com, ORCID: 0000-0003-3580-8379

4Department of Mathematics, Faculty of Arts and Science, Uludağ University, Bursa, Turkey

syalcin@uludag.edu.tr, ORCID: 0000-0002-0243-8263

Received: 27.01.2020 Accepted: 11.12.2020 Published: 30.12.2020

Abstract

The main purpose of this paper is to establish connections between various

subclasses of harmonic univalent functions by applying certain convolution operator

involving hypergeometric functions. We investigate such connections with

Goodman-Salagean-Type harmonic univalent functions in the open unit disc U.

Keywords: Univalent function; Uniformly convex; Linear operator; Hadamard product. Hipergeometrik Fonksiyonu İçeren Harmonik Tek Değerlikli Fonksiyonların

Altsınıflarının Bir Uygulaması Öz

Bu makalenin amacı, hipergeometrik fonksiyonları içeren belirli konvolusyon operatörünü uygulayarak harmonik univalent fonksiyonların çeşitli altsınıfları arasında bağlantılar kurmaktır.

(2)

Bu tür bağlantılar açık birim disk U da Goodman-Salagean tipli harmonik univalent fonksiyonları ile araştırılmıştır.

Anahtar Kelimeler: Univalent fonksiyon; Düzgün konveks; Lineer operatör; Hadamard

çarpımı.

1. Introduction

Let 𝐴 denote the class of analytic functions of the form: 𝑓(𝑧) = 𝑧 + ) 𝑎!𝑧!

" !#$

, ( 𝑎! ≥ 0 , k 𝜖𝑁 ), (1) which is univalent in the open unit disc U={𝑧 𝜖 𝐶 :|𝑧|< 1}. Hohlov [1] introduced the convolution operator 𝐻(𝑎, 𝑏; 𝑐): 𝐴 → 𝐴 defined by

𝐻(𝑎, 𝑏; 𝑐)𝑓(𝑧) = 𝑧𝐹(𝑎, 𝑏; 𝑐; 𝑧) ∗ 𝑓(𝑧),

where 𝐹(𝑎, 𝑏; 𝑐; 𝑧) is a well-known Gaussian hypergeometric function and defined by 𝐹(𝑎, 𝑏; 𝑐; 𝑧) = )(𝑎)!(𝑏)!

(𝑐)!(1)!

" !#%

𝑧! ,

where 𝑎, 𝑏, 𝑐 are complex numbers such that 𝑐 ≠ 0, −1, −2, … .

A hypergeometric function 𝐹(𝑎, 𝑏; 𝑐; 𝑧) is analytic in U and plays an important role in Geometric Function Theory. See the studies by Branges [2], Ahuja [3], Carleson and Shaffer [4], Owa and Srivastava [5], Miller and Mocanu [6], Ruscheweyh and Singh [7], Srivastava and Manocha [8], and Swaminathan [9].

For a function 𝑓 ∈ 𝐴 given by Eqn. (1) and 𝑔 ∈ 𝐴 defined by 𝑔(𝑧) = 𝑧 + ) 𝑏!𝑧!

" !#$

, we define the Hadamard product of 𝑓 and 𝑔 by (𝑓 ∗ 𝑔)(𝑧) = 𝑧 + ) 𝑎!𝑏!𝑧!

" !#$

, 𝑧 ∈ 𝑈 . (2) Let 𝐸 be the family of all harmonic functionsf = ℎ + 𝑔, where

(3)

are in the class 𝐴. For complex parameters 𝑎&, 𝑏&, 𝑐&, 𝑎$, 𝑏$, 𝑐$ (𝑐&, 𝑐$≠ 0, −1, −2, … ), we define the functions 𝛷&= 𝑧𝐹(𝑎&, 𝑏&; 𝑐&; 𝑧) and 𝛷$ = 𝑧𝐹(𝑎$, 𝑏$; 𝑐$; 𝑧) .

Corresponding to these functions, we consider the following convolution operator 𝛺 ≡ 𝛺 I𝑎𝑎&, 𝑏&, 𝑐&

$, 𝑏$, 𝑐$J ∶ 𝐸 → 𝐸 ,

defined by

𝛺 I𝑎𝑎&, 𝑏&, 𝑐&

$, 𝑏$, 𝑐$J 𝑓 = 𝑓 ∗ L𝛷&+ 𝛷$M = ℎ ∗ 𝛷&+ 𝑔 ∗ 𝛷$

for any function 𝑓 = ℎ + 𝑔 in 𝐸. Letting 𝛺 I𝑎𝑎&, 𝑏&, 𝑐&

$, 𝑏$, 𝑐$J 𝐹(𝑧) = 𝐻(𝑧) + 𝐺(𝑧) ,

we have

𝐻(𝑧) = 𝑧 + )(𝑎&)!'&(𝑏&)!'& (𝑐&)!'&(1)!'&

" !#$ 𝐴!𝑧! , 𝐺(𝑧) = )(𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& " !#& 𝐵!𝑧!. (4) We observe that 𝛺 I𝑎𝑎&, 1, 𝑎& $, 1, 𝑎$J 𝑓(𝑧) = 𝑓(𝑧) = 𝑓(𝑧) ∗ Q 𝑧 1 − 𝑧+ 𝑧 1 − 𝑧R, is the identity mapping.

This convolution operator 𝛺 were defined and studied by the author in [10]. Denote by 𝑆( the subclass of 𝐸 that are univalent and sense-preserving in U.

Note that )'*!)

&'|*!|"∈ 𝑆( whenever f ∈ 𝑆(. We also let the subclass 𝑆(

% 𝑜𝑓 𝑆 (

𝑆(%= {𝑓 = ℎ + 𝑔 ∈ 𝑆

(4)

The classes 𝑆(% and 𝑆

( were first studied in [11]. Also, we let 𝐾(%, 𝑆(∗,% and 𝐶(% denote the

subclasses of 𝑆(% of harmonic functions which are, respectively, convex, starlike and

close-to-convex in U. For definitions and properties of these classes, one may refer to ([11,12 ]) or [13].

For 0 ≤ 𝛼 < 1 , and let

𝑁((𝛼) = [𝑓 ∈ 𝐸 ∶ 𝑅𝑒 𝑓,(𝑧) 𝑧, ≥ 𝛼, 𝑧 = 𝑟𝑒/0 ∈ 𝑈_ , 𝐺((𝛼) = [𝑓 ∈ 𝐸 ∶ 𝑅𝑒 [L1 + 𝜌𝑒/1M 𝐷2𝑓(𝑧) 𝐷3𝑓(𝑧)− 𝜌𝑒/1_ ≥ 𝛼, 𝛾 ∈ 𝑅, 𝑧 ∈ 𝑈_ , where 𝑧,= 4 40L𝑧 = 𝑟𝑒 /0M, 𝑓,(𝑧) = 4 40𝑓L𝑟𝑒 /0M.

Define 𝑇𝑁((𝛼) = 𝑁((𝛼) ∩ 𝑇 and 𝑇𝐺((𝛼) = 𝐺((𝛼) ∩ 𝑇 , where T consists of the

functions 𝑓 = ℎ + 𝑔 in 𝑆( so that ℎ and 𝑔 are of the form ℎ(𝑧) = 𝑧 − )|𝐴!|𝑧! " !#$ , 𝑔(𝑧) = )|𝐵!|𝑧! " !#& . (5) The classes 𝑁((𝛼) and 𝐺((𝛼) were initially introduced and studied, respectively, in [14,

15]. A function in 𝐺((𝛼) is called Goodman-Salagean-type harmonic univalent function in U.

In this paper, we will frequently use the notations 𝛺(𝑓) = 𝛺 I𝑎&, 𝑏&, 𝑐&

𝑎$, 𝑏$, 𝑐$J 𝑓 ,

𝐷!'&=

(|𝑎&|)!'&(|𝑏&|)!'&

(|𝑐&|)!'&(1)!'& , 𝐸!'& =

(|𝑎$|)!'&(|𝑏$|)!'& (|𝑐$|)!'&(1)!'& , and a well-known formula

𝐹(𝑎, 𝑏; 𝑐; 1) =𝛤(𝑐 − 𝑎 − 𝑏)𝛤(𝑐)

𝛤(𝑐 − 𝑎)𝛤(𝑐 − 𝑏) , 𝑅𝑒(𝑐 − 𝑎 − 𝑏) > 0.

In this paper the main object is to establish some important connections between the classes 𝐾(%, 𝑆

(∗,% , 𝐶(% , 𝑁((𝛼) and 𝐺((𝛼) by applying the convolution operator.

2. Connections with Goodman-Salagean-type Harmonic Univalent Functions

N

(5)

In order to establish connections between harmonic convex functions, we need following results in Lemma 1 [11], Lemma 2 [15] and Lemma 4 [10].

Lemma 1. If 𝑓 = ℎ + 𝑔 ∈ 𝐾(% where ℎ and 𝑔 are given by Eqn. (3) with 𝐵

&= 0, then

|𝐴3| ≤𝑛 + 1

2 , |𝐵3| ≤ 𝑛 − 1

2 .

Lemma 2. Let 𝑓 = ℎ + 𝑔 be given by Eqn. (3). If

)i[(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)]|𝑎 !| + [(1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌)]|𝑏!|m " !#$ ≤ 1 − 𝛼 , (6) then 𝑓 is sense-preserving, Goodman-Salagean-type harmonic univalent functions in U and 𝑓 ∈ 𝐺((𝛼).

Remark 3. In [15], it is also shown that 𝑓 = ℎ + 𝑔 given by Eqn. (5) is in the family 𝑇𝐺((𝛼), if and only if the coefficient condition (6) holds. Moreover, if 𝑓 ∈ 𝑇𝐺((𝛼), then

|𝐴!| ≤ 1 − 𝛼 (1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌) , 𝑘 ≥ 2, |𝐵!| ≤ 1 − 𝛼 (1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌) , 𝑘 ≥ 1. Lemma 4. If𝑎, 𝑏, 𝑐 > 0 , then (i) 𝐹(𝑎 + 𝑛, 𝑏 + 𝑛; 𝑐 + 𝑛; 1) = (6)# (6'8'9'3)#𝐹(𝑎, 𝑏; 𝑐; 1) , for 𝑛 = 0, 1, 2, 3, … , 𝑖𝑓 𝑐 > 𝑎 + 𝑏 +

n.

(ii) ∑ (𝑘 − 1)(8)$%!(9)$%! (6)$%!(&)$%! " !#$ =6'8'9'&89 𝐹(𝑎, 𝑏; 𝑐; 1)

,

𝑖𝑓 𝑐 > 𝑎 + 𝑏 +1

.

(iii) ∑ (𝑘 − 1)$ (8)$%!(9)$%! (6)$%!(&)$%! " !#$ = r(6'8'9'$)(8)"(9)" "+6'8'9'&89 s 𝐹(𝑎, 𝑏; 𝑐; 1)

,

if 𝑐 > 𝑎 + 𝑏 +

2.

(iv) ∑ (𝑘 − 1): (8)$%!(9)$%! (6)$%!(&)$%! "

!#$ = r(6'8'9':)(8)&(9)& &+(6'8'9'$):(8)"(9)""+6'8'9'&89 s 𝐹(𝑎, 𝑏; 𝑐; 1)

,

if 𝑐 > 𝑎 + 𝑏 +

3.

Theorem 5. Let 𝑎/, 𝑏/ ∈ 𝐶\{0}, 𝑐/ ∈ 𝑅 and 𝑐/ > |𝑎/| + |𝑏/| + 2 for 𝑖 = 1, 2. If for some

(6)

𝑄&𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅&𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) ≤ 4(1 − 𝛼), is satisfied, then 𝛺(𝐾(%) ⊂ 𝐺 ((𝛼), where 𝑄&= (1 + 𝜌) (|8!|)"(|9!|)" (6!'|8!|'|9!|'$)"− (3 + 2𝜌 − 𝛼) |8!9!| (6!'|8!|'|9!|'&)+ 2(1 − 𝛼) 𝑅& = (1 + 𝜌)(6(|8"|)"(|9"|)" "'|8"|'|9"|'$)"+ (1 + 2𝜌 + 𝛼) |8"9"| (6"'|8"|'|9"|'&) .

Proof. Let 𝑓 = ℎ + 𝑔 ∈ 𝐾(% where ℎ and 𝑔 are of the form Eqn. (3) with 𝐵

&= 0. We need

to show that 𝛺(𝑓) = 𝐻 + 𝐺 ∈ 𝐺((𝛼), where 𝐻 and 𝐺 defined by Eqn. (4) are analytic functions in U. In view of Lemma 2, we need to prove that 𝑃&≤ 1 − 𝛼 where

𝑃&= ∑ [(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)] y(8(6!)$%!(9!)$%! !)$%!(&)$%! 𝐴!y " !#$ + ∑" [(1 + 𝜌)𝑘2−(−1)2'3𝑘3(𝛼 + 𝜌)] !#$ y(8(6""))$%!$%!(9(&)")$%!$%!𝐵!y.

In view of Lemma 1 and Lemma 4, it follows that

𝑃&≤1 2)(𝑘 + 1)[(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)]𝐷!'& " !#$ +1 2)(𝑘 − 1)[(1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌)] " !#$ 𝐸!'& =1 2)[(1 + 𝜌)(𝑘 − 1)$− (3 + 2𝜌 − 𝛼)(𝑘 − 1) + 2(1 − 𝛼)]𝐷!'& " !#$ +1 2)[(1 + 𝜌)(𝑘 − 1)$+ (1 + 2𝜌 + 𝛼)(𝑘 − 1)] " !#$ 𝐸!'& =&

$𝑄&𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + &

$𝑅&𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) − (1 − 𝛼)

.

Hence 𝑃&≤ 1 − 𝛼 follows from the given condition.

In order to determine connection between 𝑇𝑁((𝛽) and 𝐺((𝛼), we need the following

(7)

Lemma 6. Let 𝑓 = ℎ + 𝑔 where ℎ and 𝑔 are given by Eqn. (5) with 𝐵&= 0, and suppose that 0 ≤ 𝛽 < 1. Then 𝑓 ∈ 𝑇𝑁((𝛽) ⇔ ) 𝑘|𝐴!| + " !#$ ) 𝑘|𝐵!| ≤ 1 − 𝛽 " !#$ . Remark 7. If 𝑓 ∈ 𝑇𝑁((𝛽), then |𝐴!| ≤1 − 𝛽𝑘 , 𝑘 ≥ 2 , |𝐵!| ≤ 1 − 𝛽 𝑘 , 𝑘 ≥ 1.

Lemma 8. Let 𝑎, 𝑏 ∈ 𝐶\{0}, 𝑎 ≠ 1, 𝑏 ≠ 1, 𝑐 ∈ (0,1) ∪ (1, ∞) and 𝑐 > max{0, |𝑎| + |𝑏| − 1}. Then )1 𝑘 (|𝑎|)!'&(|𝑏|)!'& (𝑐)!'&(1)!'& " !#& = (𝑐 − |𝑎| − |𝑏|) (|𝑎| − 1)(|𝑏| − 1) 𝐹(|𝑎|, |𝑏|; 𝑐; 1) − (𝑐 − 1) (|𝑎| − 1)(|𝑏| − 1) .

Theorem 9. Let 𝑎/, 𝑏/∈ 𝐶\{0}, 𝑎/ ≠ 1, 𝑏/ ≠ 1, 𝑐/ ∈ 𝑅 and 𝑐/ > max{0, |𝑎/| + |𝑏/| − 1} for

𝑖 = 1, 2. If for some 𝛽(0 ≤ 𝛽 < 1) and 𝛼(0 ≤ 𝛼 < 1), when 𝑚 = 1, 𝑛 = 0 and 𝑚 = 2, 𝑛 = 0 and 𝑚 = 2, 𝑛 = 1 the inequality

𝑄$𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅$𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) ≤

(1 − 𝛼)(2 − 𝛽) (1 − 𝛽) −((𝛼 + 𝜌)) r (6!'&) (|8!|'&)(|9!|'&)− (6"'&) (|8"|'&)(|9"|'&)s is satisfied, then 𝛺(𝑇𝑁((𝛽)) ⊂ 𝐺((𝛼), where

𝑄$ = (1 + 𝜌) − (𝛼 + 𝜌) (𝑐&− |𝑎&| − |𝑏&|) (|𝑎&| − 1)(|𝑏&| − 1),

𝑅$= (1 + 𝜌) + (𝛼 + 𝜌)

(𝑐$− |𝑎$| − |𝑏$|) (|𝑎$| − 1)(|𝑏$| − 1) .

Proof. Let 𝑓 = ℎ + 𝑔 ∈ 𝑇𝑁((𝛽) where ℎ and 𝑔 are given by Eqn. (5). In view of Lemma

2, it is enough to show that 𝑃$≤ 1 − 𝛼 and

𝑃$= )[(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)] •(𝑎&)!'&(𝑏&)!'&

(𝑐&)!'&(1)!'& 𝐴!• "

(8)

+ )[(1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌)] "

!#&

‚(𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& 𝐵!‚ . Using Remark 7 and Lemma 8 if 𝑚 = 1, 𝑛 = 0. Then

𝑃$≤ (1 − 𝛽) ƒ) „(1 + 𝜌) − (𝛼 + 𝜌) 𝑘 … 𝐷!'& " !#$ + ) †(1 + 𝜌) +(𝛼 + 𝜌) 𝑘 ‡ " !#& 𝐸!'&ˆ = (1 − 𝛽) ‰

𝑄$𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅$𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) −(1 − 𝛼) + (𝛼 + 𝜌)(𝑐&− 1) (|𝑎&| − 1)(|𝑏&| − 1)− (𝛼 + 𝜌)(𝑐$− 1) (|𝑎$| − 1)(|𝑏$| − 1) Š ≤ (1 − 𝛼) by the given hypothesis.

Now, if 𝑚 = 2, 𝑛 = 0, then 𝑃$≤ (1 − 𝛽) ƒ) „(1 + 𝜌)𝑘 −(𝛼 + 𝜌) 𝑘 … 𝐷!'& " !#$ + ) †(1 + 𝜌)𝑘 −(𝛼 + 𝜌) 𝑘 ‡ " !#& 𝐸!'&ˆ = (1 − 𝛽) ƒ) „(1 + 𝜌)(𝑘 − 1) + (1 + 𝜌) −(𝛼 + 𝜌) 𝑘 … 𝐷!'& " !#$ + ) †(1 + 𝜌)(𝑘 − 1) + (1 + 𝜌) −(𝛼 + 𝜌) 𝑘 ‡ " !#& 𝐸!'&ˆ = (1 − 𝛽) ‰

𝑄$𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅$𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) −(1 − 𝛼) + (𝛼 + 𝜌)(𝑐&− 1) (|𝑎&| − 1)(|𝑏&| − 1)− (𝛼 + 𝜌)(𝑐$− 1) (|𝑎$| − 1)(|𝑏$| − 1) Š ≤ (1 − 𝛼) and 𝑄$ = (1 + 𝜌) |𝑎&𝑏&|

(𝑐&− |𝑎&| − |𝑏&| − 1)+ (1 + 𝜌)

|𝑎&𝑏&|

(𝑐&− |𝑎&| − |𝑏&| − 1)

+(𝛼 + 𝜌) (𝑐&− |𝑎&| − |𝑏&|) (|𝑎&| − 1)(|𝑏&| − 1)

(9)

+(𝛼 + 𝜌) (6"'|8"|'|9"|) (|8"|'&)(|9"|'&). Finally, if 𝑚 = 2, 𝑛 = 1, then 𝑃$ ≤ (1 − 𝛽) ƒ)[(1 + 𝜌)𝑘 − (𝛼 + 𝜌)]𝐷!'& " !#$ + )[(1 + 𝜌)𝑘 + (𝛼 + 𝜌)] " !#& 𝐸!'&ˆ = (1 − 𝛽) ƒ)[(1 + 𝜌)(𝑘 − 1) − (1 − 𝛼)]𝐷!'& " !#$ + )[(1 + 𝜌)(𝑘 − 1) + (1 + 2𝜌 + 𝛼)] " !#& 𝐸!'&ˆ

= (1 − 𝛽) L𝑄$𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅$𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) − (1 − 𝛼)M

≤ (1 − 𝛼) and

𝑄$= (1 + 𝜌) |𝑎&𝑏&|

(𝑐&− |𝑎&| − |𝑏&| − 1)− (1 − 𝛼),

𝑅$= (1 + 𝜌) |8"9"|

(6"'|8"|'|9"|'&)+ (1 + 2𝜌 + 𝛼) . We next find connections of the classes 𝑆(∗,%, 𝐶(% and 𝑇

(% with 𝐺((𝛼). However, we first

need the following result which may be found in [11, 12] or [16] .

Lemma 10. If 𝑓 = ℎ + 𝑔 ∈ 𝐶(%( 𝑆

(∗,%, 𝑇(%) where ℎ and 𝑔 are given by Eqn. (3) with 𝐵&=

0, then

|𝐴!| ≤(2𝑘 + 1)(𝑘 + 1)

6 , |𝐵!| ≤

(2𝑘 − 1)(𝑘 − 1)

6 .

Theorem 11. Let 𝑎/, 𝑏/ ∈ 𝐶\{0}, 𝑐/ ∈ 𝑅 and 𝑐/ > |𝑎/| + |𝑏/| +3 for 𝑖 = 1, 2. If for some

𝜌(0 ≤ 𝜌 ≤ 1) and 𝛼(0 ≤ 𝛼 < 1), when 𝑚 = 1, 𝑛 = 0 the inequality 𝑄:𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝑅:𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) ≤ 12(1 − 𝛼),

is satisfied, then 𝛺(𝐶(%) ⊂ 𝐺

((𝛼), 𝛺L 𝑆(∗,%M ⊂ 𝐺((𝛼), 𝛺( 𝑇(%) ⊂ 𝐺((𝛼), where

𝑄: = 2(1 + 𝜌)

(|𝑎&|):(|𝑏&|):

(𝑐&− |𝑎&| − |𝑏&| − 3):+ (9 + 7𝜌 − 2𝛼)

(|𝑎&|)$(|𝑏&|)$ (𝑐&− |𝑎&| − |𝑏&| − 2)$

(10)

+(13 + 6𝜌 − 7𝛼) |8!9!| (6!'|8!|'|9!|'&)+ 6(1 − 𝛼) , 𝑅:= 2(1 + 𝜌) (|𝑎$|):(|𝑏$|): (𝑐$− |𝑎$| − |𝑏$| − 3):+ (3 + 𝜌 − 2𝛼) (|𝑎$|)$(|𝑏$|)$ (𝑐$− |𝑎$| − |𝑏$| − 2)$ +(1 − 𝛼) |8"9"| (6"'|8"|'|9"|'&) . Proof. Let 𝑓 = ℎ + 𝑔 ∈ 𝐶(%( 𝑆

(∗,%, 𝑇(%) where ℎ and 𝑔 are of the form Eqn. (3) with

𝐵&= 0. We need to prove that 𝛺(𝑓) = 𝐻 + 𝐺 ∈ 𝐺((𝛼), where 𝐻 and 𝐺 defined by Eqn. (4) are

analytic functions in U. In view of Lemma 2, we need to show that 𝑃: ≤ 1 − 𝛼 where 𝑃:= )[(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)] ‚

(𝑎&)!'&(𝑏&)!'& (𝑐&)!'&(1)!'& 𝐴!‚

" !#$ + )[(1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌)] " !#$ ‚(𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& 𝐵!‚ .

In view of Lemma 4 and Lemma 10, it follows that

𝑃:≤ 1 6)(2𝑘 + 1)(𝑘 + 1)[(1 + 𝜌)𝑘 − (𝛼 + 𝜌)]𝐷!'& " !#$ +1 6)(2𝑘 − 1)(𝑘 − 1)[(1 + 𝜌)𝑘 + (𝛼 + 𝜌)] " !#$ 𝐸!'& =1 6) † 2(1 + 𝜌)(𝑘 − 1):+ (9 + 7𝜌 − 2𝛼)(𝑘 − 1)$ +(13 + 6𝜌 − 7𝛼)(𝑘 − 1) + 6(1 − 𝛼) ‡ 𝐷!'& " !#$ +1 6)[2(1 + 𝜌)(𝑘 − 1):+ (3 + 𝜌 − 2𝛼)(𝑘 − 1)$+ (1 − 𝛼)(𝑘 − 1)] " !#$ 𝐸!'& =1

6𝑄:𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 1

6𝑅:𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) − (1 − 𝛼). Hence 𝑃:≤ 1 − 𝛼 follows from the given condition.

In the next theorem, we establish connections between 𝑇𝐺((𝛼) and 𝐺((𝛼) .

Theorem 12. Let 𝑎/, 𝑏/∈ 𝐶\{0}, 𝑐/ ∈ 𝑅 and 𝑐/ > |𝑎/| + |𝑏/| for 𝑖 = 1,2. If for some 𝛼(0 ≤ 𝛼 < 1), when 𝑚 = 1, 𝑛 = 0 the inequality

(11)

is satisfied, then 𝛺(𝑇𝐺((𝛼)) ⊂ 𝐺((𝛼).

Proof. By using Lemma 2 and the definition of 𝑃$ in Theorem 9, we need to prove that 𝑃$ ≤ 1 − 𝛼.

By Remark 3, it follows that

𝑃$= )[(1 + 𝜌)𝑘2− 𝑘3(𝛼 + 𝜌)] ‚(𝑎&)!'&(𝑏&)!'&

(𝑐&)!'&(1)!'& 𝐴!‚ " !#$ + )[(1 + 𝜌)𝑘2− (−1)2'3𝑘3(𝛼 + 𝜌)] " !#& ‚(𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& 𝐵!‚ ≤ (1 − 𝛼) ƒ) 𝐷!'& " !#$ + ) 𝐸!'& " !#& ˆ

= (1 − 𝛼) (𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) − 1)

≤ (1 − 𝛼).

By the given condition, the proof is completed.

In the next results, we establish connections between 𝑇𝐺((𝛼) and 𝐺((𝛼). By diluting the restrictions on the complex coefficients of Theorem 12.

Theorem 13. Let 𝑎&𝑏&< 0 , 𝑎&, 𝑏& > −1 , 𝑐&> max {0, 𝑎&+𝑏&} , 𝑎$, 𝑏$∈ 𝐶\{0} and 𝑐$ > |𝑎$| + |𝑏$|, then a sufficient condition for 𝛺(𝑇𝐺((𝛼)) ⊂ 𝐺((𝛼) is that

𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) − 𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) ≥ 0 ,

for any 𝜌(0 ≤ 𝜌 ≤ 1) and 𝛼(0 ≤ 𝛼 < 1), when 𝑚 = 1, 𝑛 = 0.

Proof. Let 𝑓 = ℎ + 𝑔 ∈ 𝑇𝐺((𝛼) where ℎ and 𝑔 are of the form Eqn. (5). Then

𝛺(𝑓) = 𝑧 − )(𝑎&)!'&(𝑏&)!'& (𝑐&)!'&(1)!'& " !#$ |𝐴!|𝑧!+ ) (𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& " !#& |𝐵!|𝑧! .

This function can be rewritten as

𝛺(𝑓) = 𝑧 +|𝑎&𝑏&| 𝑐& ) (𝑎&+ 1)!'$(𝑏&+ 1)!'$ (𝑐&+ 1)!'$(1)!'& " !#$ |𝐴!|𝑧!+ ) (𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& " !#& |𝐵!|𝑧! .

(12)

In view of Lemma 2, we need to show that 𝑃<≤ 1 where 𝑃<= |𝑎&𝑏&| 𝑐& ) „ (1 + 𝜌)𝑘 − (𝛼 + 𝜌) 1 − 𝛼 … (𝑎&+ 1)!'$(𝑏&+ 1)!'$ (𝑐&+ 1)!'$(1)!'& " !#$ |𝐴!| + ) „(1 + 𝜌)𝑘 + (𝛼 + 𝜌) 1 − 𝛼 … (𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& " !#& |𝐵!| ≤ |𝑎&𝑏&| 𝑐& ) (𝑎&+ 1)!'$(𝑏&+ 1)!'$ (𝑐&+ 1)!'$(1)!'& " !#$ |𝐴!| + ) 𝐸!'& " !#& =|𝑎&𝑏&| 𝑎&𝑏& ) (𝑎&)!(𝑏&)! (𝑐&)!(1)!'& " !#& |𝐴!| + ) 𝐸!'& " !#&

= −𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) + 1 ≤ 1 ,

by the given condition.

In the next theorem, we present condition on the parameters 𝑎&, 𝑎$, 𝑏&, 𝑏$, 𝑐&, 𝑐$ and obtain a characterization for operator 𝛺 which maps 𝑇𝐺((𝛼) onto itself.

Theorem 14. Let 𝑎/, 𝑏/ > 0 , 𝑐/ > 𝑎/+𝑏/ (𝑖 = 1,2), 𝜌(0 ≤ 𝜌 ≤ 1) and 𝛼(0 ≤ 𝛼 < 1) when 𝑚 = 1, 𝑛 = 0 then 𝛺(𝑇𝐺((𝛼)) ⊂ 𝑇𝐺((𝜌, 𝛼) if and only if

𝐹(|𝑎&|, |𝑏&|; 𝑐&; 1) + 𝐹(|𝑎$|, |𝑏$|; 𝑐$; 1) ≤ 2.

Proof. Let 𝑓 = ℎ + 𝑔 ∈ 𝑇𝐺((𝜌, 𝛼) where ℎ and 𝑔 are of the form Eqn. (5). We need to prove that 𝛺(𝑓) = 𝐻 + 𝐺 ∈ 𝑇𝐺((𝜌, 𝛼), where 𝐻 and 𝐺 defined by Eqn. (4) 𝑃< ≤ 1, where

𝑃<= ) „(1 + 𝜌)𝑘 − (𝛼 + 𝜌)

1 − 𝛼 … ‚

(𝑎&)!'&(𝑏&)!'& (𝑐&)!'&(1)!'& 𝐴!‚

" !#$ + ) „(1 + 𝜌)𝑘 + (𝛼 + 𝜌) 1 − 𝛼 … " !#& ‚(𝑎$)!'&(𝑏$)!'& (𝑐$)!'&(1)!'& 𝐵!‚.

By using Remark 3, we obtain

𝑃<≤ ) 𝐷!+ ) 𝐸! " !#% "

!#&

(13)

References

[1] Hohlov, Y.E., Convolution operators preserving univalent functions, Ukrainian Mathematical Journal, 37, 220-226, 1985.

[2] de Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica, 154, 137-152, 1985.

[3] Ahuja, O.P., Connections between various subclasses of planar harmonic mappings

Involving hypergeometric functions , Applied Mathematics and Computation, 198 (1), 305-316,

2008.

[4] Carleson, B.C., Shaffer, D.B., Starlike and prestarlike hypergeometric functions, SIAM Journal on Mathematical Analysis, 15, 737-745, 1984.

[5] Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric

functions, Canadian Journal of Mathematics, 39, 1057-1077, 1987.

[6] Miller, S., Mocanu, P.T., Univalence of Gaussian and confluent hypergeometric

Functions, Proceedings of American Mathematical Society, 110(2), 333-342, 1990.

[7] Ruscheweyh, S., Singh, V., On the order of starlikeness of hypergeometric functions, Journal of Mathematical Analysis and Applications, 113, 1-11, 1986.

[8] Srivastava, H.M., Manocha, H.L., A Treatise on Generating Functions, Ellis Horwood Limited and John Wiley & Sons, New York, Chichester, Toronto, 1984.

[9] Swaminathan, A., Certain Sufficiency conditions on Gaussian hypergeometric

functions, Journal of Inequalities in Pure and Applied Mathematics, 5(4), Article 83, 1-10, 2004.

[10] Ahuja, O.P., Planar harmonic convolution operators generated by hypergeometric

functions, Integral Transforms and Special Functions, 18 (3), 165-177, 2007.

[11] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Annales Academie Scientiarum Fennice, Series A. I. Mathematica 9, 3-25, 1984.

[12] Ahuja, O.P., Planar harmonic univalent and related mappings, Journal of Inequalities in Pure and Applied Mathematics, 6(4) Art. 122, 1-18, 2005.

[13] Duren, P., Harmonic Mappings in the plane, Cambridge Tracts in Mathematics, Vol. 156, Cambridge University Press, Cambridge, 2004, ISBN 0-521064121-7.

[14] Ahuja, O.P., Jahangiri J.M., Noshiro-type harmonic univalent functions, Scientiae Mathematicae Japonicae, 6(2), 253-259, 2002.

[15] Aghalary, R., Goodman-Salagean-Type Harmonic Univalent Functions with Varying

Arguments, International Journal of Mathematical Analysis, Vol. 1, no. 22, 1051-1057, 2007.

[16] Wang, X.T., Liang, X.Q., Zhang, Y.L., Precise coefficient estimates for

close-to-convex harmonic univalent mappings, Journal of Mathematical Analysis and Applications,

Referanslar

Benzer Belgeler

A next step is the construction of the distribution of the concomitants of order statistics for the presented Pseudo–Gompertz distribution and the derivation of the survival and

Joint probability function for the variables of surplus immediate before ruin, deficit at ruin and time to ruin is obtained and potential applications of it are discussed. It

The results are applied to reliability analysis of coherent systems consisting of components each having two dependent subcomponents and to insurance models where the losses

The north–south quantile points, NSQP, approach for the computation of the quantiles of random loss variables can be efficiently utilized in order to model bivariate dependent

Kitapta, günümüzde bilinen bedensel engel olarak bilinen görme, işitme, konuşma ve ortopedik engellerden hareketle, İslâm hukukundaki ilgili hükümleri tespit

Muhtarlara yönelik anket çalıĢmasında; Tokat Ġlinde TAR-GEL Projesi kapsamında çalıĢan tarım danıĢmanlarının ikamet ettiği köy ve çalıĢma bölgelerine

The comparison curves of the tensile strength, tear strength, elongation and hardness values showed that the types and rates of UV stabilizers had no effect on the

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;