• Sonuç bulunamadı

Substituent and solvent effects on the electronic and structural properties of silacyclopropylidenoids

N/A
N/A
Protected

Academic year: 2021

Share "Substituent and solvent effects on the electronic and structural properties of silacyclopropylidenoids"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Substituent and Solvent Effects on the Electronic and Structural Properties

of Silacyclopropylidenoids

Cem Burak Yildiz,

1,2 

and Akin Azizoglu

1,

*

1 Laboratory of Computational Chemistry, Department of Chemistry, Faculty of Arts and Sciences, University of Balikesir,  Balikesir, Turkey. azizoglu@balikesir.edu.tr 2 Department of Chemistry, Faculty of Arts and Sciences, University of Aksaray, Aksaray, Turkey. Received December 19th, 2013; Accepted September 30th, 2014 ISSN 1870-249X Abstract. The isomeric structures, energies, and properties of the sub-stituted silacyclopropylidenoids, SiC2H3RLiBr (R = -H, -CH3, -SiH3, 

-CN, -OH, -NH2), were studied by ab

initio calculations at the MP2/6-311+G(d,p)  level  of  theory.  The  calculations  indicate  that  each  of  SiC2H3RLiBrs has three stationary structures: silacyclopropylidenoid 

(S), tetrahedral (T1 or T2), and inverted (I). The conductor-like po-larizable continuum model (CPCM) using various solvents (dimethyl  sulfoxide,  acetone,  tetrahydrofuran,  and  diethyl  ether)  has  been  ap-plied to compute single point energies for title molecules. In addition,  the molecular electrostatic potential maps, natural bond orbitals, and  the frontier molecular orbitals of substituted silacyclopropylidenoids  were calculated.

Key words: Silacyclopropylidene;  ab initio;  MP2;  Reactive  Inter-mediate.

Resumen.  Las  estructuras  isoméricas,  energías  y  propiedades  de  los  silaciclopropilidenoides,  SiC2H3RLiBr  (R  =  -H,  -CH3,  -SiH3, 

-CN,  -OH,  -NH2),  fueron  estudiados  mediante  cálculos  ab initio  al 

nivel MP2/6-311+G(d,p). Los cálculos indican que cada uno de los  SiC2H3

RLiBrs posee tres estructuras estacionarias: silaciclopropilide-noide (S), tetraédrica (T1 o T2), e invertida (I). El modelo continuo  polarizable  similar  a  conductor  usando  varios  disolventes  (DMSO,  acetona, tetrahidrofurano y éter dimetílico) fue aplicado para calcular  las energías de un solo punto para las moléculas. Además, se calcula-ron los mapas del potencial electrostático molecular, los orbitales de  unión natural, y los orbitales moleculares frontera de los silaciclopro-pilidenoides substituidos.

Palabras clave: Silaciclopropilideno; ab initio; MP2; reactivo inter-medio.

Introduction

Silylenoids  (R2SiXM,  X  =  halogen,  M  =  alkali  metal),  are 

important intermediates in organic and silicon chemistry [1-4].  In few decades, the synthesis and chemistry of silylenoids have  attracted  considerable  attention  from  the  viewpoints  of  both  applied and theoretical chemistry. In principle, once formed si-lylenoids can react by dimerization, insertion, and cycloaddition  and otherwise just as silylene would do, and the preparation of  silylenoid is difficult [2-4]. Clark et al. [5] have carried out the  first theoretical study on the simplest silylenoid H2SiLiF, and 

then many different types of silylenoids have been systemati-cally investigated [6-8]. The unsaturated silylenoids have also  been studied well [9,10].

The  silacyclopropylidenoids,  silicon  analogue  of  cyclo-propylidenoids, are compounds in which Li and Br are bound  to the same silicon atom, and have been predicted to be active  intermediates  in  organosilicon  reactions  [11,12].  Contrast  to  extensive experimental and computational works on cyclopro-pylidenoids  [13-16],  only  a  few  scientific  studies  on  silacy-clopropylidenoids  have  been  reported  so  far  [17-19].  More  recently, the ab initio calculations at the Hartree-Fock and MP2  levels for SiC2H4MX (X = F, Cl, Br, and M = Li, Na) have 

been carried out to investigate several properties of silacyclo-propylidenoids,  silylenoidal  (S),  inverted  (I),  and  tetrahedral  (T)  (Scheme  1).  It  is  concluded  that  LiF  and  NaF  units  for  silacyclopropylidenoids  increase  the  configurational  stability  of the T and I forms, respectively. However, the S form has  lower energy than the I and T forms for LiCl, LiBr, NaCl, and 

NaBr. Computed energy differences between S, I, and T forms  range  from  0.70  to  8.70  kcal/mol  at  the  MP2/6-311+G(d,p)  level [19].

To  our  knowledge,  there  have  been  no  other  theoretical  calculations for the solvent and substituent effects on the iso-meric structures of silacyclopropylidenoids. Hence we wish to  investigate the isomeric structures, energies, and the properties  of substituted silacyclopropylidenoids, SiC2H3RLiBr (where R 

= -H, -CH3, -SiH3, -CN, -OH, -NH2) in both gas and solvent 

phases. The substituents have been located at appropriate po-sition  to  enhance  the  stability  of  the  isomeric  structures.  To  determine the influence of solvent on the stability of studied  molecules, we have also performed single point energy calcu-lations with the help of CPCM method in dimethyl sulfoxide,  acetone,  diethyl  ether,  and  tetrahydrofurane.  The  calculated  highest occupied molecular orbital (HOMO),  lowest  unoccu-pied molecular orbital (LUMO), and the molecular electrostatic  potential  maps  (MEP)  of  title  compounds  also  describe  the  molecular electronic properties in detail.

Scheme 1.  The  silacyclopropylidenoid  (S),  tetrahedral  (T),  and  in-verted (I) forms of SiC2H4MX (where M = Li or Na and X = F, Cl, 

(2)

Computational details

The geometry optimization and vibrational frequencies of the  silacyclopropylidenoids  for  each  forms  (S,  I,  and T (T1 or

T2)) were achieved in the gas phase using Møller-Plesset per-turbation theory (MP2) with the 6-311+G(d,p) basis set [20].  The harmonic vibrational frequency computations were used to  confirm that the optimized structures were minima, as charac- terized by the positive vibrational frequencies. The correspond-ing harmonic vibrational frequencies were calculated with the  help of Gaussian03 package program [21]. The optimized ge-ometries at the MP2/6-311+G(d,p) were used to calculate the  single point energies in dimethyl sulfoxide (ε = 46.7), acetone (ε = 21.0), tetrahydrofurane (ε = 7.5), and diethyl ether (4.3) solvents at the same level by employing CPCM method [22-24].  The  frontier  molecular  orbitals  (FMOs)  and  molecular  electrostatic potential maps (MEPs) were also calculated at the  MP2/6-311+G(d,p)  level  of  theory.  The  optimized  structures  were visualized with the help of GaussView 3.0 program [25].  In our previous study silacyclopropylidene, SiC2H4

, was con-sidered as singlet because its singlet-triplet gap was calculated  to  be  42.9  kcal/mol  at  the  B3LYP/6-31G(d)  level  [17].  The  singlet and triplet forms of substituted silacyclopropylidenoids  are also examined in this study.

Results and Discussion

At first the singlet and triplet states of silacyclopropylidenes,  SiC2H3R  (where  R  =  -H,  -CH3,  -SiH3,  -OH, -NH2, and -CN) 

were analyzed at the MP2/6-311+G(d,p) level of theory. How-ever,  triplet  state  of  SiC2H3R  (R  =  -NH2)  could  not  be 

opti-mized on its potential energy surface. For other substituents,  the singlet states are calculated to be of lower energy than the  triplet ones by 42.2 kcal/mol (for -H), 40.6 kcal/mol (for -CH3), 

44.2 kcal/mol (for -SiH3), 40.4 kcal/mol (for -OH), and 46.0 

kcal/mol  (for  -CN)  (Table  S26).  Like  silacyclopropylidenes  [17], the singlet is also determined to be the ground-state for  substituted silacyclopropylidenoids. Then, we have examined  the  possible  geometries  of  substituted  (R  =  -H,  -CH3,  -SiH3, 

-CN,  -OH,  -NH2)  silacyclopropylidenoids,  which  can  be 

re-garded as a complex formed by free silacyclopropylidene and  LiBr. The position of substituent has been considered in two  different sides: the substituent may locate either on the same  side of the Br atom or opposite side of the Br atom. In both  cases,  the  position  of  substituent  determines  the  stability  of  structures. The substituent is placed on the opposite side of Br  atom for of silylenoidal (S), inverted (I), and tetrahedral (T1)  isomers to form most stable configuration (Fig. 1). Especially,  tetrahedral (T1) forms with the -OH, -CN, and -NH2

 substitu-ents could not be optimized at the MP2/6-311+G(d,p) level. For  this  reason,  we  calculated  the  T2  isomer  for  the  substituents  (-OH, -CN, and -NH2) which are positioned on the same side  of the Br atom (Fig. 1). In the inverted geometry, the Li atom  is positioned between the C1 and C2 atoms. The Li atom of the 

I  form  interacts  strongly  with  the  C1  and  C2  atoms  (Fig.  1). 

Moreover,  the  Br  atom  shows  only  non-bonding  interactions  with the Si atom in silacyclopropylidene units. However, the  Li and Br atoms interact with the Si atom in the silylenoidal  (S) and tetrahedral (T1)/(T2) forms (Fig. 1).

Tables S1-S3, presented in Supplementary material, give  us a chance to compare bond lengths of title molecules with  the  reference  bond  lengths  of  H3Si-Br  (2.229  Å),  H3Si-Li 

(2.479 Å), and Li-Br (2.187 Å), H3C-SiH3

 (1.876 Å) at MP2/6-311+G(d,p) level of theory. It is clear from the results that the  most elongated Si-C2 bond is appeared in the I form of -CN

with 2.003 Å as compared to reference bond length of H3

Si-CH3 (1.876 Å) at MP2/6-311+G(d,p) theory (Table S1). The 

Si-C2 bond length of the I form for -CN is significantly higher 

than that of S, I, and T1/T2 forms, in the range of 0.034-0.111  Å. The theoretical results also indicate that the bond distance  of Li-Br raises with the increase of LiSiBr bond angle in the 

T1 and T2 isomers (Table S2). For the -NH2

 substituted struc-tures, the Li-Br bond of the I form increases slightly as com-pared to reference Li-Br bond (2.187 Å). In contrast, the most  strongly elongated LiBr bond distance is determined to be in  the -SiH3 substituted T1 geometry. Moreover, the Si-Li bond 

length  is  shortened  in  the  S,  T1 and T2  isomers.  However,  the bond length  alternation  is  increased  in  the  I  forms,  espe-cially for -CN with 3.120 Å.

Moreover,  the  calculated  C1SiC2 bond  angle  of  the 

T1(-H,  -CH3,  -SiH3)/T2(-OH)  forms  is  higher  than  that  of  I  and 

S forms (Tables S1-S3). When compared to the C1SiC2 bond 

angle of title compounds, the smallest one is found to be the 

I form (-NH2) with 44.2°. On the other hand, the largest one 

is determined to be the S form with the substituent of -SiH3 at  the MP2/6-311+G(d,p) level of theory. When compared to the  SiLiBr bond angles of S geometries, the smallest one is found  to be 62.5° for the -CN, whereas the largest one is determined  to be 64.4° for -NH 2 at the MP2/6-311+G(d,p) level of theory  (Table S3).

The  direct  bonding  interaction  between  neighboring  at-oms, provided by the Wiberg bond orders (WBO) as well, is  generally  associated  with  the  electron  density  between  two  relevant atoms [26-28]. The WBO values of title molecules at  the MP2/6-311+G(d,p) level of theory are tabulated in Tables  S4-S6. A WBO value is directly proportional to the strength of  covalent bonding interactions between neighboring atoms. For 

Fig. 1. The general representation of silacyclopropylidenoid (S), in-verted  (I),  and  tetrahedral  (T1  and  T2)  forms  of  title  molecules  (R  = -H, -CH3, -SiH3, -CN, -OH, -NH2). The atoms and their colors (in 

parenthesis): Si (green), C (grey), Br (red), Li (purple), H (white), and  R (yellow in red background).

(3)

instance, a large WBO value reflects a strong covalent bond-ing interaction between two relevant nuclei. The results depict  that the Si-Li bond of the I form for each substituent has an  ionic  rather  than  covalent  nature  due  to  the  estimated  WBO  values which are in the range of 0.016 and 0.021 (Table S4).  In contrast, the Si-Br bond of the I, S, and T1/T2 forms has a  substantial covalent character because of the high WBO values  (in the range of 0.468-0.848, Tables S4-S6). Furthermore, the  C1-C2 and C2-R bonds have strong covalent bond interactions  within the studied structures due to the high bond order values  (in the range of 0.756 and 1.088). However, it seems almost  certain that there is no covalent bond interaction between the  Li and Br atoms in the T1 and T2 forms because of extremely  low WBO values (in the range of 0.019 - 0.021, Table S5). In addition, we have performed conductor-like polarizable  continuum model (CPCM) calculations [22-24] to examine the  solvent effect on the stability of substituted silacyclopropyli-denoids  by  using  dimethyl  sulfoxide  (DMSO),  diethyl  ether,  acetone, and tetrahydrofurane (THF) as a solvent. The single  point  energy  calculations  in  selected  solvents  at  the  MP2/6- 311+G(d,p) level were then performed for all optimized struc-tures in gas phase. The obtained energy results are presented  at Tables S7-S9 in the supplementary material. The S forms of  SiC2H3RLiBr (R = -H, -OH, -CH3, -SiH3, -NH2, and -CN) are 

energetically more stable than the  I  and  T1/T2  forms  in  gas  phase. On the other hand, the T1 isomers with -H, -CH3, -SiH3 

and  T2  with  -OH,  -NH2,  -CN  substituents  are  energetically 

less  stable  than  the  corresponding  I  ones  by  7.66  kcal/mol,  7.40 kcal/mol, 6.49 kcal/mol, and 9.85 kcal/mol, 9.46 kcal/mol,  5.64 kcal/mol in gas phase, respectively. The relative energies  (Erel) in gas phase and solvents for S, I, and T1/T2 forms of 

the SiC2H3RLiBr (R = -H, -OH, -CH3, -SiH3, -NH2, and -CN) 

are also computed and summarized at Tables 1, 2, and 3. It can  easily be seen that the solvation stabilizes all the studied spe-cies. The stability of the S, I, and T1/T2 forms is increased by  increasing the dielectric constant (ε) of solvent. In other words, title structures are more strongly stabilized in DMSO than in  others. From the calculated energy values, the S form of R =  -CH3 in DMSO is more stable, by 1.0 kcal/mol, 4.03 kcal/mol,  and 7.48 kcal/mol than in acetone, THF, and diethyl ether, re-spectively (Table 1). The S form (R = -H) is determined to be  higher energy than the T1 form (R = -H) by 3.87 kcal/mol, 3.46  kcal/mol, 2.21 kcal/mol, and 0.78 kcal/mol in DMSO, acetone,  THF, and diethyl ether, respectively (Tablas 1-3).

NBO  (Natural  Bond  Orbital)  analyses  have  an  appeal-ing aspect of highlighting the individual bonds and lone-pairs  energy that play an important role in the chemical processes  [27,28]. A useful feature of the NBO method is that it describes  interactions in both filled and virtual orbital spaces that could  enhance the analysis of intra- and inter-molecular interactions.  In  NBO  analysis,  large  stabilization  energy  value,  called  as 

E(2), shows the intensive interaction between electron-donors 

and  electron-acceptors,  and  greater  the  extent  of  conjugation  of  the  whole  system.  The  large  stabilization  energy  value,  called as E(2), is calculated as described previously, using the  equation,   E( ) Eij q F i ji j i [ ( , )] ( ) 2 = = 2 − ∆ ε ε

where qi is the donor orbital occupancy, εi and εj are diagonal 

elements (orbital energies) and F(i,j) is the off-diagonal NBO  Fock matrix element.

The intra-molecular interactions are mainly formed by the  orbital overlap between bonding (BD)Si-Li and anti-bonding  (BD*)Si-Br bond orbitals in the T1 and T2 forms. These inter- actions result in intra-molecular charge transfer causing stabili-zation of the systems by 19.40 kcal/mol, 22.24 kcal/mol, 24.00  kcal/mol, 24.26 kcal/mol, 24.33 kcal/mol, and 24.85 kcal/mol 

Table 1. The relative energies (Erel  in  kcal.mol-1)  in  gas  phase  and 

solvents  (Dimethyl  sulfoxide  (DMSO),  Ether,  Acetone,  and  Te-trahydrofurane  (THF))  for  the  silacyclopropylidenoidal  (S)  form  of  the SiC2H3RLiBr (R= -H, -OH, –CH3, –SiH3, –NH2, and –CN) at the 

MP2/6-311+G(d,p) level. S-Isomer -H -SiH3 -CH3 -OH -NH2 -CN Gas Phase 65.69 76.07 83.33 71.90 78.40 71.44 DMSO 0.00 0.00 0.00 0.00 0.00 0.00 Ether 7.55 7.62 7.48 8.33 7.95 9.28 Acetone 1.00 1.02 0.99 1.10 1.05 1.23 THF 4.06 4.10 4.03 4.48 4.28 5.00

Table 2. The relative energies (Erel in kcal.mol-1

) in gas phase and sol- vents (Dimethyl sulfoxide (DMSO), Ether, Acetone, and Tetrahydro-furane (THF)) for the inverted (I) form of the SiC2H3RLiBr (R= -H, 

-OH, –CH3, –SiH3, –NH2, and –CN) at the MP2/6-311+G(d,p) level.

I-Isomer -H -SiH3 -CH3 -OH -NH2 -CN Gas Phase 60.29 70.51 78.25 66.48 73.69 66.74 DMSO 0.00 0.00 0.00 0.00 0.00 0.00 Ether 6.42 6.49 6.46 7.12 7.12 8.28 Acetone 0.85 0.86 0.86 0.94 0.95 1.10 THF 3.47 3.51 3.50 3.84 3.86 4.48

Table 3. The relative energies (Erel in kcal.mol-1

) in gas phase and sol- vents (Dimethyl sulfoxide (DMSO), Ether, Acetone, and Tetrahydro-furane (THF)) for the tetrahedral (T1)/(T2) forms of the SiC2H3RLiBr 

(R= -H, -CH3, -SiH3 for T1, and R= -OH, –NH2, –CN for T2) at the 

MP2/6-311+G(d,p) level.  T1-Isomer T2-Isomer -H -CH3 -SiH3 -OH -NH2 -CN Gas Phase 78.14 95.67 87.39 84.77 91.34 85.09 DMSO 0.00 0.00 0.00 0.00 0.00 0.00 Ether 10.64 10.58 10.50 11.59 11.30 12.88 Acetone 1.40 1.40 1.39 1.53 1.49 1.71 THF 5.72 5.69 5.65 6.23 6.08 6.95

(4)

for R = -CN, -SiH3, -OH, -NH2, -CH3, and -H, respectively. The  interaction of bonding (BD)C1-C2→ anti-lone pair (LP*)Li is  the most important factor contributing to stability of the I forms  with 10.50 kcal/mol, 9.07 kcal/mol, and 9.36 kcal/mol for R =  -H, -CH3, and -SiH3, respectively. On the other hand, the NBO  analysis clearly manifests the evidence of the intra-molecular  charge  transfer  from  (BD)C2-Si,  (LP)N,  and  (LP)O  to 

anti-bonding  orbitals  of  C2-H,  and  C2-H  in  the  I  forms  for  -CN, 

-NH2, and -OH, respectively. These interactions stabilize the I 

forms of -CN, -NH2, and -OH substituents by 21.97 kcal/mol, 

13.82 kcal/mol, and 12.20 kcal/mol, respectively. Furthermore,  the strongest delocalization of the S form involves the interac-tion  of  the  lone  pair  (LP)Br  with  the  anti-lone  pair  (LP*)Li  except for -CN substituent. From the NBO calculations of the 

S forms, the (LP)Br → (LP*)Li interactions are stabilized by

the energies of 60.09 kcal/mol, 60.59 kcal/mol, 60.98 kcal/mol,  61.20 kcal/mol, 55.31 kcal/mol, and 61.41 kcal/mol for -OH,  -SiH3, -CH3, -CN, -NH2 , and -H, respectively (see supplemen-tary material, Table S10-S25, available online). The MEP is used widely as an index of the charge distribu-tion within a molecule. Visualization of MEP is a good way for  understanding molecular reactivity, intermolecular interactions,  molecular recognition, electrophilic reactions, and a variety of  chemical phenomena [29-33]. The 3D plots of MEPs of title  compounds  calculated  from  MP2/6-311+G(d,p)  level  for  the 

S, I and T1 forms of unsubstituted structure (R = -H, Fig. 2). 

The Fig. 2 describes the electrostatic potentials at the surfaces  which  are  represented  by  different  colors  for  the  mentioned  compounds.  The  negative  (red  and  yellow)  and  the  positive  (blue) regions in the MEP were related to the electrophilic and  nucleophilic reactivity, respectively. As can be seen in Fig. 2,  the negative region of title structures is localized on the Si and  Br atoms, whereas the positive region is observed around the Li  atoms for the silylenoidal (S), inverted (I), and tetrahedral (T1)  forms for R = -H. These sites give information concerning the  region from where the compound may have metallic bonding  and intermolecular interactions. Highest Occupied Molecular Orbital (HOMO) and Low-est Unoccupied Molecular Orbital (LUMO) are very effective  parameters to describe structural properties [34-40]. Surfaces  for the frontier orbitals were drawn to understand the bonding  scheme of structures. The energy of the HOMO is directly re-lated to the ionization potential, and that of LUMO is directly  related  to  the  electron  affinity.  The  HOMO-LUMO  energy  gaps also give us a chance to determine chemical reactivity and  kinetic stability of molecules. Having a small frontier orbital  gap, a molecule is more polarizable and generally associated  with a high chemical reactivity, low kinetic stability and also  called as soft molecule. The plots of FMOs can be seen in Fig.  3. In the HOMO, the charge density is mainly accumulated on  the SiC2H3R ring of the S, I, and T1/T2 isomers, whereas in the  case of the LUMO, more charge density moves to the Li atom.  In consequence, SiC2H3R part of title structures, considered as  a free silylene, show nucleophilic character.

The  I  form  of  -CN  substituent  has  the  highest  HOMO-LUMO energy gap with 0.319 eV. However, the lowest one is  determined as 0.263 eV in the T2 form of -OH substituent. The  small energy gap means low excitation energies for many of the  excited states and low chemical hardness for T2 form of -OH.  Quantitative  data  also  indicate  that  SiC2H3R parts  of  studied 

molecules have largest contribution to HOMO and hence the  effect of electron donating/withdrawing groups in silacyclopro-pylidenoids affect significant changes in the HOMO level.

Conclusions

The structural and electronic properties of the substituted silacy-clopropylidenoids have been studied in detail. Counter ion (Li+)  attacks to the Si of the silacyclopropylidene unit in different  positions to form the S, I, and T1/T2 as local minima on their  PES. The S, I, and T1 T2 isomers of silacyclopropylidenoids  were calculated at the MP2/6-311+G(d,p) level. All substitu-ents stated on the opposite side of the Br atom to optimize most  stable structures except for the T2 forms for -CN, -NH2, and  -OH. In the T2 forms, the substituents located on the same side  of Br atoms. Theoretical WBO values indicate that the Li-Br 

Fig. 2. MEP maps of S, I, and T1 forms of R = - H calculated at the  MP2/6-311+G(d,p) level.

Fig. 3. HOMOs  and  LUMOs  of  S,  I, and  T1(-H, -CH3, -SiH3)/

T2(-OH, -NH2, -CN))  forms  with  the  energies  (eV)  at  the 

(5)

bond of the I, S, T1/T2 forms have ionic character rather than  covalent nature due to the calculated low WBO values which  are  in  the  range  of  0.012  and  0.307.  Furthermore,  the  C2-R 

bond of the I, S, and T1/T2 forms is the strongest bond having  a substantial covalent character with the WBO value between  1.088 and 1.089. The theoretical results prove that the S forms  are energetically the most stable ones in the gas phase. For the  present analysis, Conductor-like polarizable continuum model  (CPCM) was used to gauge the stability of title compounds in  different solvents (Dimethyl sulfoxide, Acetone, Diethyl ether,  and  Tetrahydrofurane).  From  CPCM  results,  the  T1 and  T2  forms  are  found  to  be  most  stable  ones  in  DMSO.  It  can  be  concluded from NBO analysis that the strongest delocalization  in the silylenoidal (S) forms involves the interaction of the lone  pair (LP)Br with the anti-lone pair (LP*)Li for all the calcu-lated molecules at the MP2/6-311+G(d,p) level.

Acknowledgements

The authors would like to acknowledge the financial support  from the Scientific and Technological Research Council of Tur- key (TUBITAK KBAG-212T049). Furthermore, we are grate-ful to the referees for their helpful suggestions.

References

  1. Tamao, K.; Kawachi, A. Angew. Chem. Int. Ed. Engl. 1995, 34,  818-820.

  2. Pietschnig, R. J. Chem. Soc. Chem. Commun. 2004, 2004, 546-547.

  3. Molev,  G.;  Zhivotovskii,  D.  B.;  Karni,  M.;  Tumanskii,  B.;  Bo-toshansky, M.;  Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 2784-2785.

  4. Cho, H. M.; Lim, Y. M.; Lee, B. W.; Park, S. J.; Lee, M. E. J. Organomet. Chem. 2011, 696, 2665-2668.

  5. Clark, T.; Schleyer, P. v. R. J. Organomet. Chem. 1980, 191, 347-353.

  6. Feng,  S.;  Feng,  D.;  Deng,  C. Chem. Phys. Lett.  1993,  214,  97-102.

  7. Flock, M.; Marschner, C. Chem. Eur. J. 2005, 11, 4635-4642.   8. Qi,  Y.;  Chen,  Z.;  Li,  P. Comput. Theory Chem.  2012,  969, 

61-65.

  9. Feng, S.; Feng, D.; Li, M.; Bu, Y. Chem. Phys. Lett. 2001, 339,  103-109.

 10. Feng, S. Y.; Feng, D. C.; Li, M. J. Int. J. Quant. Chem. 2002, 87,  360-365.

 11. Sigal, N.; Apeloig, Y. J. Organomet. Chem. 2001, 636, 148-156.  12. Escudie,  J.;  Ranaivonjatovo,  H.;  Bouslikhane,  M.;  Harouch,  Y. 

E.; Baiget, L.; Nemes, G.C. Russ. Chem. Bull. Int. Ed. 2004, 53,  1020-1033.

 13. Fedorynski, M. Chem. Rev. 2003, 103, 1099-1132.

 14. Azizoglu,  A.;  Ozen,  R.;  Hokelek,  T.;  Balci,  M. J. Org. Chem.  2004, 69, 1202-1206.

 15. Azizoglu,  A.;  Balci,  M.;  Mieusset,  J-L.;  Brinker,  U.  H. J. Org. Chem. 2008, 73, 8182-8188.

 16. Kilbas, B.; Azizoglu, A.; Balci, M. J. Org. Chem. 2009, 74, 7075-7083.

 17. Azizoglu,  A.;  Yildiz,  C.  B. Organometallics  2010,  29,  6739-6743.

 18. Azizoglu, A.; Yildiz, C. B. J. Organomet. Chem. 2012, 715, 19-25.

 19. Yildiz, C. B.; Azizoglu, A. Struct. Chem. 2012, 33, 1777-1784.  20. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab

Ini-tio Molecular Orbital Theory;  John  Wiley  &  Sons:  New  York,  1986.

 21. Frisch,  M.  J.;  Trucks,  G.  W.;  Schlegel,  H.  B.;  Scuseria,  G.  E.;  Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven,  T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; To-masi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega,  N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota,  K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,  Y.;  Kitao,  O.;  Nakai,  H.;  Klene,  M.;  Li,  X.;  Knox,  J.  E.;  Hrat-chian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.;  Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,  C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;  Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;  Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,  A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;  Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu,  G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox,  D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;  Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,  M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03. Revision C02 ed.;  Gaussian, Inc., Pittsburgh PA, 2003.

 22. Barone, V.; Cossi, M. J. Phys. Chem. A. 1998, 102, 1995-2001.  23. Cossi, M.; Barone, V. J. Chem. Phys. 2001, 115, 4708-4717  24. Barone, V.; Cossi, M.; Rega, N.; Scalmani, G. J. Comput. Chem. 

2003, 24, 669-681.  25. Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W.  L.; Gilliland, R. GaussView. Version 3.0; Semichem, Inc., Shaw-nee Mission, KS, 2003.  26. Wiberg, K. B. Tetrahedron 1968, 24, 1083-1096.  27. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,  899-926.

 28. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434-1445.

 29. Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984,  106, 855-860.

 30. Jovanovski, G.; Cahil, A.; Grupce, O.; Pejov, L. J. Mol. Struct.  2006, 784, 7-17.

 31. Sánchez-Sanz,  G.;  Trujillo,  C.;  Alkorta,  I.;  Elguero,  J. Comput. Theory Chem. 2012, 991, 124-133.

 32. Yildiz, C. B.; Azizoglu, A. Comput. Theory Chem. 2013, 1023,  24-28.

33. Kassaee, M. Z.; Najafi, Z.; Shakib, F. A.; Momeni, M. R. J. Or-ganomet. Chem. 2011, 696, 2059-2064.

 34. Fleming,  I.  Frontier  Orbitals  and  Organic  Chemical  Reactions;  John Wiley & Sons: London, 1976.

 35. Cabrera-Trujillo,  J.M.;  Robles,  J.  Phys. Rev. B, 2001,  64,  165408.

 36. Azizoglu, A. Struct. Chem. 2003, 14, 575-580.

37. Ugras, H. I.; Cakir, U.; Azizoglu, A.; Kılıc, T.; Erk, C. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 159-165.

 38. Aparicio, F.; Garza, J.; Galván, M. J. Mex. Chem. Soc. 2012, 56,  338-345.

 39. Mendoza-Huizar,  L.M.;  Rodríguez,  D.E.G.;  Rios-Reyes,  C.H.;  Alatorre-Ordaz, A. J. Mex. Chem. Soc. 2012, 56, 302-310.  40. Ghiasi, R.; Boshak, A. J. Mex. Chem. Soc. 2013, 57, 8-15.

Referanslar

Benzer Belgeler

The findings also display that openness does not have any impact on productivity in either the short or long- term periods whereas Foreign Direct Investment,

245 anaokulu öğretmeninin örneklem grubunu oluşturduğu araştırmada, öğretmenlerin örgütsel bağlılık düzeylerini belirlemek için Meyer, Allen ve Smith (1993)

Ziya Paşa’yı sorduğumda “ Eşek, m eşek...” diye şiir olmaz demiş ve Neyzen Tevfik için ne düşündüğünü sorduğumda adeta hiddetlenmişti; çok tabii

İnsan arama motoru olarak adlandırılan sistem bal peteği yaklaşımına göre dijital soy ağacı ve Hastalık risk formları olarak adlandırılan sistemlerin doğal bir sonucu

Bu çalışmada polimer esaslı kompozit malzemelerde destek materyali olarak kullanılan Hindistan cevizi liflerinin yüzey kimyasına, fonksiyonel özelliklerine, kristalin

Using this example as a guide, we define the integral

Chapters must be arranged in the following order: (i) abstract and keywords (in Turkish), (ii) abstract ve keywords (in English), (iii) main text, (iv) symbols, (v) acknowledgment

As in the expression data processing done in PAMOGK we generated separate graph kernels for amplifications and deletions to not lose information provided by type of variation [6]..