• Sonuç bulunamadı

Influence of the coating method on the formation of superhydrophobic silicone–urea surfaces modified with fumed silica nanoparticles

N/A
N/A
Protected

Academic year: 2021

Share "Influence of the coating method on the formation of superhydrophobic silicone–urea surfaces modified with fumed silica nanoparticles"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Progress

in

Organic

Coatings

jou rn al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Influence

of

the

coating

method

on

the

formation

of

superhydrophobic

silicone–urea

surfaces

modified

with

fumed

silica

nanoparticles

Cagla

Kosak

Söz,

Emel

Yilgör,

Iskender

Yilgör

KUYTAMSurfaceScienceandTechnologyCenter,ChemistryDepartment,KocUniversity,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2014

Receivedinrevisedform10March2015 Accepted11March2015

Availableonline7April2015 Keywords: Superhydrophobicsurfaces Fumedsilica Spraycoating Spincoating

a

b

s

t

r

a

c

t

Effectofthecoatingmethodontheformationofsuperhydrophobicpolydimethylsiloxane–urea copoly-mer(TPSC)surfaces,modifiedbytheincorporationofhydrophobicfumed silicananoparticleswas investigated.Fourdifferentcoatingmethodsemployedwere:(i)layer-by-layerspin-coatingof hydropho-bicfumedsilicadispersedinanorganicsolventontoTPSCfilms,(ii)spin-coatingofsilica–polymermixture ontoaglasssubstrate,(iii)spraycoatingofsilica/polymermixturebyanair-brushontoaglasssubstrate, and(iv)directcoatingofsilica–polymermixturebyadoctorbladeontoaglasssubstrate.Influenceof thecoatingmethod,compositionofthepolymer/silicamixtureandthenumberofsilicalayersapplied onthetopographyandwettingbehaviorofthesurfacesweredetermined.Surfacesobtainedwere char-acterizedbyscanningelectronmicroscopy(SEM),whitelightinterferometry(WLI)andadvancingand recedingwatercontactanglemeasurements.Itwasdemonstratedthatsuperhydrophobicsurfacescould beobtainedbyallmethods.Surfacesobtaineddisplayedhierarchicalmicro-nanostructuresand super-hydrophobicbehaviorwithstaticandadvancingwatercontactangleswellabove150◦andfairlylow contactanglehysteresisvalues.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Preparation and characterization of superhydrophobic poly-mericsurfacesand coatingshave beeninvestigated extensively duringthepast15years,followingthedetaileddescriptionofthe surfacestructuresandhierarchicalmicroandnanotopographiesof alargenumberofnaturalplantleaves[1,2].Amajorreasonforsuch aremarkableinterestinsuperhydrophobiccoatingsandsurfaces hasbeentheirinterestingcombinationofproperties,suchasthe self-cleaning,anti-fouling,stain-resistantandice-repellant behav-iors[3–5],whichenablepotentialapplicationsinavarietyoffields, whichincludepaintsandcoatings,textiles,exteriorglasswindows, rooftops,windshields,solarpanels,aircraftwingsandwind tur-bineblades[3,4,6,7].Aswelldocumentedintheliterature,wetting behaviorofasurfaceismainlycontrolledbytwoparameters,which are;(i)thesurfacechemicalstructureandcomposition,and(ii)the surfacetopographyorroughness[8–10].Whennaturally occur-ringsuperhydrophobicplantsurfaces,suchasalotusleafsurfaceis examinedunderascanningelectronmicroscope,itisseenthatthe

∗ Correspondingauthor.Tel.:+902123381418;fax:+902123381559. E-mailaddress:iyilgor@ku.edu.tr(I.Yilgör).

surfaceiscoveredbyirregularlydistributed,micron-sized protru-sionscalledpapilla,whichalsodisplayafurynanoscaleroughness [1,2,10].Whensuchamicro-nanodualsurfaceroughnessis com-binedwiththeinherenthydrophobicityofthewaxylayeronthe leaf,theyprovidethelotusleafitssuperhydrophobicity,withstatic watercontactanglevaluesabove150◦andcontactanglehysteresis valuesbelow10◦[11–17].Similarsuperhydrophobicsurfaceswith micro-nano hierarchicalstructuresare alsoobserved invarious insects,suchasthebutterflywings,whichdisplaytwokeyperiodic structures [18–21].Theindividual shingle-like epidermal scales whichcomprisethewingsofbutterfliesareabout40×80␮meach andthemicro-reliefoftheraisedridgescoveringeachwingscale, eachbetween1.0and1.5␮m[22].Thecontactanglesofthewater dropletsonthebutterflywingsurfacearemeasuredtobehigher than150◦[23],whichrollsfreelywhentheincliningangleislarger than3◦,thuskeepingthebutterflywingsurfacecleanofdustand otherdebris.Awiderangeofsyntheticmaterialswith superhy-drophobicsurfaces,basedonpolymers,ceramics,metalsorhybrid compositesystemshavebeenpreparedbytemplatingthe natu-ralsystemssuchaslotusleaf,riceleaf,butterflywings[18,19]and others[24,25].

Theoreticaltreatmentoftheeffectof thetopographyonthe wetting behaviorofsurfaceshasbeenprovided byWenzel[26] http://dx.doi.org/10.1016/j.porgcoat.2015.03.015

(2)

andCassieandBaxter[27].Wenzelassumedcompletewettingofa roughsurfacebythedropletandmodifiedthecontactangle mea-suredbyintroducingaroughnessfactor(r),definedastheratioof theactualareaofaroughsurfacetoitsprojectedgeometricarea, whichhasavaluegreaterthan1.CassieandBaxterassumedthe apparentcontactangleonaroughsurfacetobetheweighted aver-ageofthecontactanglesonthesolidandairsurfaces.Theydefined (f)tobethesurfacefractionontopoftheprotrusionsand(1−f) onairpockets[28].WhenCassie–BaxterandWenzelrelationships arecombined,ageneralequationgivenbelow,whichprovidesthe apparentcontactanglesmeasuredona roughsurface (R)as a functionofthecontactanglemeasuredonasmoothsurface(), roughness(r)andsurfacevoidfraction(f)isobtained.Thisequation clearlyindicatesthatforaninherentlyhydrophobicandflatsurface withacontactanglegreaterthan90◦,increasedsurfaceroughness willleadtomuchhighercontactangles.Modifiedversionsofthis equationexplainingthecontactanglebehaviorofroughsurfaces havealsobeenreported[29–32].

cosR=r·f·cos+f1

Asaresult oftheremarkableacademicand industrial inter-estin thesuperhydrophobicity,alargenumberofmethods and processes have been developed for the preparation of super-hydrophobicpolymersurfacesshowing hierarchicalmicro/nano roughnesses.Theseincludelayer-by-layerdeposition[33], electro-spinning[34],microphaseseparation[28,35,36],etching[37,38], spin-coatingordip-coating[28,39,40],sol–gelsynthesis[10,41], templating [20,21,28,36,42], spraying [5,43] and many others [10,16,28,37,38,44]. Although a wide range of approaches have beenproposedforthepreparationofsuperhydrophobicpolymer surfaces,mostofthemare polymerspecific,fairlycomplex and involveseveralsteps.Recentlywereportedafairlysimplemethod, whichwasbasedonthespincoatingoffumedsilicadispersions inanorganicsolventontopolymersurfacesforthepreparation ofpolymericmaterialswithcontrolledwettability,from superhy-drophilictosuperhydrophobic[39,40].Themethodwasapplicable toawiderangeofpolymericmaterials,thermoplasticorthermoset. In this study we investigated the utilization of more prac-tical coating methods for thepreparation of superhydrophobic silicone–ureacopolymer surfaces,whichincludedspray coating using an airbrush and direct coating using a doctor blade, in additiontothespin-coating process.Topographyand the aver-ageroughnessofthesuperhydrophobicpolymersurfacesobtained werecharacterizedbyfieldemissionscanningelectronmicroscopy (FESEM)and whitelightinterferometry(WLI). Static,advancing andrecedingwatercontactangle(CA)measurementswerealso performedtodemonstratetheformationofsuperhydrophobic sur-faces.Our results indicate that: (i) the extent of surface silica coverageandthedistancebetweensilicaparticles,(ii)averagesizes ofthesilicaparticlesoragglomerates,(iii)presenceofmicro-nano hierarchicalstructures,and(iv)theaveragesurfaceroughness,play criticalrolesinobtainingsuperhydrophobicsurfaces.

2. Experimental

2.1. Materials

Segmentedthermoplastic polydimethylsiloxane-urea copoly-mer(GeniomerTPSC140)(TPSC)withaPDMScontentofabout 92%by weightand thehydrophobicfumed silica(HDKH2000) weresuppliedbyWackerChemie,Munich,Germany[45].Primary particlesizeforthehydrophobicsilicaisreportedtobe5–30nm, whichincreasesto100–250nmafteraggregation.Thespecific sur-faceareais170–230m2/g[45].Reagentgradeisopropanol(IPA),

tetrahydrofuran(THF)andtoluenewereobtainedfromMerckand wereusedasreceived.

2.2. Preparationofsuperhydrophobicsilicone–ureacopolymer surfaces

Methodsusedforthepreparationofsuperhydrophobicpolymer surfacesthroughtheuseofhydrophobicfumedsilica(HDKH2000) areexplainedindetailbelow.

2.2.1. SpincoatingofsilicadispersedinTHFontotheTPSCsurface Thefirstmethodwaslayer-by-layerspincoatingofsilica par-ticles onto TPSC surface from a dispersionin THF, which was explainedindetailpreviously[39,40].TPSCwasdissolvedinIPA (15%byweight),whereasthehydrophobicsilicawasdispersedin THFataconcentrationof0.5%byweightandwassubjectedto ultra-soundsonicationatafrequencyof35kHzonaSonorexRK255H typebathfor10h.Dynamiclightscattering(DLS)measurementson hydrophobicsilicasuspensionsinTHF(10mg/mL)indicatedfairly homogeneousdistributionofthesilicananoparticles,witha num-beraveragesizedistributionof44±9nm.Spincoatingwasapplied onaModel7600SpinCoaterbySpecialtyCoatingSystems,Inc., Indianapolis,IN,USA.

Glassslides(20×20×0.15mm),cleanedbywipingwithIPAand THFwereusedasthesubstrateforspincoatedTPSCfilms,which hadathicknessofabout20–30␮m.8–10dropsof0.5%byweight silicadispersioninTHFwerethenplacedontothepolymerfilm andspincoatedafterwaitingfor1mintoallowthesurfacewetting andefficientpenetrationofsilicaparticlesintothepolymerfilm. Thisstepwasrepeatedseveraltimestoachieveoptimum cover-age.Toimprovethedurability,thesilicacontainingsurfaceswere finallyspincoatedwithathinlayerofTPSCfilm.Spincoatingwas performedat1000rpmfor70s.Allsamplesweredriedatroom temperatureovernightandtheninavacuumovenatroom tem-peratureuntilconstantweightandwerekeptinsealedcontainers untilfurthertesting.

2.2.2. SpincoatingofTPSC/silicadispersionsonaglasssubstrate TPSCwasdissolvedinIPAataconcentrationof0.5%byweight. Tothispolymersolutionsilicaparticleswereaddedatdifferent amountstoobtainTPSC/silicaratiosof1/4,1/7and1/10(byweight). Mixtureswerestirredvigorouslyfor30minbyamagneticstirrer andthenweresonicatedfor30mintoobtainhomogeneous disper-sions.DLSmeasurementsonTPSC/silica(1/10)mixturescontaining 40mg/mLsilicaindicatednumberaverageparticlesizedistribution of272.0±24.7nm,whichwasstableforseveralhours.TPSC/silica dispersionswerespincoatedontoglassslidesat1000rpm.Spin coatingstepwasrepeatedtoapplysuccessivelayers.Sampleswere driedatroomtemperatureovernightandtheninavacuumoven at40◦Cfor24h.

2.2.3. CoatingofTPSC/silicadispersionsonaglasssubstrateusing adoctorblade

TPSC/silica (1/10) (byweight) dispersion preparedin IPA as described before wascoated on a glass substrate using a doc-torblade witha gaugethickness of200␮m.Coatingwasdried overnightatroomtemperatureandtheninavacuumovenat40◦C for24h.

2.2.4. SpraycoatingofTPSC/silicadispersionswithanairbrush SpraycoatingwasappliedbyusingaMaxH2000modelCora airbrushpainterwithanozzlediameterof0.8mm,pressurizedby aBlackandDeckercompressor.TPSC/silica(1/10)(byweight) mix-turepreparedinIPAwastransferredintothetankoftheairbrush andthemixturewassprayedontotheglassslidesunder differ-entconditions.Thecoatingparametersincludedthetankpressure,

(3)

distancebetweennozzleandthesubstrateandthedurationofthe sprayingprocess.

2.3. Characterizationmethods

Dynamiclightscattering(DLS)measurementsonsilica disper-sions wereperformedonMalvernZetaSizerNano-SInstrument withtheNano-Ssoftware.Glasscuvetteswithsquareapertures wereusedassampleholders.Transparenciesofthesampleswere determinedinthevisibleregion,usingaSchimadzuModel3600 UV–vis-NIRspectrophotometeragainstairasthereference.

Staticwatercontact anglemeasurementswereconductedat roomtemperature(23±2◦C)onaDataphysicsOCA35 goniome-terequippedwithSCA20software,whichprovidedtheelectronic controlof thedeviceparameters andmeasurement ofthe con-tactangles.Anaverageofatleast10contactanglereadingswere takenforeachsampleusing5␮Ldeionized,tripledistilledwater droplets.Contactanglehysteresismeasurementswereconducted bydynamicsessiledropmethodbyplacinga0.5␮Lwaterdroplet ontothesurfacefromsyringetipandgraduallyincreasingto5␮L. Duringthemeasurementoftheadvancingangle,thevolumeofthe sessiledropwasincreasedfrom5␮Lto25␮Latarateof0.2mL/s and thehighest angle achievedwasaccepted asthe advancing angle.Then,thevolumeofthewaterdropletwasdecreasedfrom 25␮Lto5␮Lwiththesamerate.Thelowestanglewasacceptedas therecedingcontactangleafterthecontactlinebetweenthewater dropletandthesurfacestartedtodecreasewithasatisfactorydrop shape.

Afield-emissionscanningelectronmicroscope(FESEM)(Zeiss UltraPlusScanningElectronMicroscope)operatedat2–10kVwas usedtoinvestigatethecoatedsurfaces.PriortoFESEMstudy, sam-pleswerecoatedwitha2–3nmlayerofgoldtominimizecharging. Surfacetopographiesandaverageroughnessvaluesofthesilica coatedsurfaceswereinvestigatedbyWhiteLightInterferometry (WLI)onaBrukerContourGTMotion3DMicroscopeandNon Con-tactSurfaceProfilerattheverticalscanninginterferometry(VSI) mode.UsingWLIfeaturesizesfromsubnanometertomillimeter rangecaneasilybemeasured.InVSImodeaveragesurface rough-nesseswithheight discontinuitiesbetween150nm and several mmcanbepreciselydetermined.Atleast10surfacemapswith dimensionsof47×63␮m2wereobtainedfromdifferentpartson thesampletocalculatetheaverageroughnessvalues.

3. Resultsanddiscussion

Althoughthesuperhydrophobicbehaviorofroughsurfaceshave beentheoreticallyformulatedbyWenzel[26]andCassieandBaxter [27]over 70 yearsago, preparation,characterization and appli-cationsofsuperhydrophobicsurfaceshave receivedwidespread attentiononlyduringthepast10–15yearsfollowingseveral pub-lications reporting the characteristic surface morphologies and superhydrophobicproperties of a largenumber of plants [1,2]. Asa classical example, thesurface of the lotus leafwas found to beconsisting of cone type protrusions with base diameters of 5–15␮m, heights of 10–50␮m and aspect ratios in 0.7–10 range. Theyare irregularly distributed ontheleaf surface with distances betweeneach other rangingfrom 10 to100␮m.The conesalsodisplayednanometersized hairyfeatures,which are reported to be critical in achieving superhydrophobic surfaces withlowcontactanglehysteresis[11–17].Someofthe pioneer-ingworkinthefieldwasperformedbyMcCarthyandco-workers [8,9,11–14,46–58] and other groups [4,10,15–17,28,41,59–74], whichincludedexperimentalstudiesonthepreparationand char-acterizationofsuperhydrophobicsurfacesandcriticalevaluation ofthetheoreticalfoundations.Alargenumberofexcellentreview

articles were also published recently, which provide detailed experimentaland theoretical information onvarious aspectsof superhydrophobicsurfaces[4,10,28,36–38,44,62,63,75].

In this report we discuss our studies on the development of superhydrophobicsilicone–ureacopolymersurfacesbyusing hydrophobicfumedsilicaandvariouscoatingtechniques.Effect of;(i)thecoatingmethod,(ii)TPSC/silicaratiointhecoating mix-tureand(iii)thenumberofsilicalayersapplied,ontheformationof thesuperhydrophobicsurfaceswereinvestigated.Surface topogra-phies,includingtheextentofsurfacecoveragebysilicaparticles, theirsize,distributionandaveragesurfaceroughnessvalueswere determinedbyvarioustechniques.Formationof superhydropho-bicsurfaceswasdemonstratedbyadvancingandrecedingwater contactanglemeasurementsandcontactanglehysteresis(CAH). Beforebeginningourdiscussions,itisimportanttonotethat vir-ginTPSCcoatedsurfacesdisplaya staticwatercontactangleof 110.0±1.0◦andcontactanglehysteresisof22.0±2.0◦,fairly sim-ilar tothat ofthe crosslinkedsilicone rubber.Thesevalues are independentofthecoatingmethodused.

3.1. SpincoatingofsilicadispersedinTHFontotheTPSCsurface SurfacemodificationofTPSCthroughlayer-by-layerspin coat-ingbyusingasilicadispersioninTHFhasalreadybeendiscussed indetailinourpreviouspublications[39,40,76].Asaresulthere wewillonly provideexamplesregardingthetopography, aver-ageroughnessandwatercontactanglebehaviorofthesurfaces obtainedbythistechniqueasareferenceinordertocomparethem withthetopographyand propertiesofthesurfacesobtainedby othercoatingtechniques.Fig.1a–cprovidestheSEMimagesof theTPSCsurfacesspincoatedwithdifferentnumberoflayersof hydrophobicfumedsilica.Sinceverydilutesilicadispersion(0.5% byweightinTHF)isused,surfacecoverageofparticlesand sur-faceroughnessincreaseslowlyascanbeseenthroughFig.1a–c. TPSCsurfacebecomessuperhydrophobicafterthreelayersof coat-ingasindicated bythevaluesofthestaticwatercontactangles displayedonFig.1a–c[76].Averagesurfaceroughnessofthevirgin TPSCcoatingis6.3±1.1nm,whereastheroughnessvaluesfor sam-plescoatedwithone,threeandsevenlayersofsilicaare76.6±14.4, 124.3±28.6and208.0±70.4nm,respectively[76].

3.2. SpincoatingofTPSC/silicadispersionsonaglasssubstrate In ordertosimplifytheprocessand obtainrobust, superhy-drophobicsurfacesafterminimumnumberofcoatinglayersand possibly withonly onelayer,in this processsilica particlesare premixedwiththesilicone–ureacopolymerindiluteIPAsolutions (2–5%byweightsolids)toobtainTPSC/silicaratiosof1/4,1/7and 1/10(byweight).Solutionswerethenspincoatedonglass sub-strates,toobtainfilmswiththicknessesin20–30␮mrange.SEM imagesofTPSC/silica(1/10)coatedglasssurfacesasafunctionof thenumberoflayersofcoatingappliedarereproducedinFig.2.Due tothehigherconcentrationofthesilicadispersionused,afteronly onelayerofcoatingthesurfacesobtaineddisplayedfairly homoge-neousanddensesilicacoverageandsuperhydrophobicproperties withcontact angleswellabove 160◦ asdisplayed oneach SEM image.Asexpected, applicationof successivelayersof coatings increasedthedensityofthesurfacesilicacoverage.Averagesizesof theagglomeratedsilicaparticlesalsoincreasedslightly.Asshown inFig.3silicaagglomeratesdisplayednanoroughnessandall sur-faceswerehighlysuperhydrophobicwithverysmallcontactangle hysteresisvaluesasshownonTable1.

Two-dimensionalsurfacetopographyimagesandaverage sur-faceroughnessvaluesofsilicacoatedTPSCsurfaceswereobtained usingaWhiteLightInterferometer(WLI).WLIimagesofthe sur-facesspin coated withsilicaare provided in Fig.4a and b and

(4)

Fig.1.SEMimagesofhydrophobicfumedsilicacoatedTPSCsurfaces,(a)onelayer,(b)threelayersand(c)sevenlayersofsilicaand(d)expandedwievofanagglomerated micronsizedsilicaparticledisplayingnanostructure.

roughnessprofilesalongXandYaxesaregiveninFig.4candd. Aver-ageheightsofsilicaagglomeratesweregenerallyaround1–2␮m withmaximumheightsreachingtoabout4␮masshowninFig.4c andd.

Table1providestheaveragesurfaceroughnessvaluesandstatic watercontactanglesasafunctionoftheTPSC/silicaratioandthe

numberofcoatinglayersapplied.AscaneasilybeseenfromTable1, evenafteronelayerofcoatingwith(1/4)mixture,asurfacewith anaverageroughnessvalueabove100nmisobtained, whichis aroundthethresholdroughnessvaluetoobtaina superhydropho-bicsurfacebasedonourpreviousstudiesfortheTPSCsystem[76]. AssummarizedonTable1,astheTPSC/silicaratiointhecoating

Fig.2.SEMimagesofTPSC/silica(1/10)spin-coatedglasssurfaces,(a)onelayer,(b)twolayers,(c)threelayersand(d)fourlayersofspin-coatings.Scalebaris50␮mforall samples.

(5)

Table1

AveragesurfaceroughnessvaluesandstaticwatercontactanglesasafunctionoftheTPSC/Silicaratio(byweight)andnumberofcoatinglayersapplied.

TPSC/Silica:1/4 TPSC/Silica:1/7 TPSC/Silica:1/10

Ra(nm) CA(◦) Ra(nm) CA(◦) CAH(◦) Ra(nm) CA(◦) CAH(◦)

Onelayer 127±34 144.5±1.1 140±31 168.0±0.7 6.6 195±72 167.7±0.3 7.0

Twolayers 142±72 163.4±0.4 172±8 168.1±1.1 2.4 222±110 168.1±0.9 3.0

Threelayers 141±64 165.0±0.8 190±29 167.4±1.5 2.1 207±45 165.8±1.2 2.1

Fourlayers 178±42 167.5±0.9 189±38 169.7±0.8 4.3 237±40 164.0±1.0 2.4

Fig.3. SEMimageofthenanostructuredisplayedbythesilicaagglomeratesonthree layersofTPSC/silica(1/10)spincoatedglasssurface.

solutionincreasesto(1/7)and(1/10)orthenumberofcoating

lay-ersappliedisincreased,theaverageroughnessvalues obtained

alsoincrease,asexpected.Except for thesurface obtainedbya

singlelayercoatingofthe(1/4)mixture,whichdisplayedastatic

watercontactangleof144.5◦,allsurfacesdisplayedveryhighwater

contactanglesbetween163and170◦andwatercontactangle

hys-teresisvalueswellbelow10◦,clearlyindicatingtheformationof

superhydrophobicsurfaces.

3.3. CoatingofTPSC/silicadispersionsonaglasssubstrateusinga

doctorblade

Conventionally,doctorbladetechniquehasbeenanimportant

methodforthepreparationofthinpolymericfilmsandcoatingson

varioussubstratesfromsolution.Itisafairlysimpletechniqueand

providesprecisecontrolofthefilmthicknessandiswidelyused

bothforresearchandcommercialapplications,especiallyforthe

directortransfercoatingofwovenandnon-wovenfabrics.

InthisstudyaTPSC/silica(1/10)mixturewaspreparedinIPA

andwascoatedonacleanglasssurfaceusingadoctorbladewith

agapthicknessof200␮m,whichprovidedadrycoatingthickness

ofabout5␮m.SEMimagesofthecoatedsurfacesareprovidedin

Fig.5atvariousmagnificationstoprovidethedetailsofthe topog-raphyandthehierarchicalmicro-nanostructuresobtained.Fig.5a clearlyshowsveryhomogeneousdistributionofthesilica parti-clesonthesurfacewithparticlesizesranginginafairlynarrow rangeofabout2–5␮m,asshownonFig.5b.Silicaparticlesare wellembeddedintothepolymer(Fig.5c),providingarobustand durablesurface.Thesurfaceofthesilicaparticlesclearlydisplays

(6)

Fig.5.SurfaceSEMimagesofthedoctorbladecoatedTPSC/silicafilmsatvariousmagnificationsprovidingthedetailsofthetopographyandmicro-nanostructuresformed. (a)500×,(b)2000×,(c)20,000×and(d)50,000×.

ahairynanostructure(Fig.5d),similartothelotusleaforother naturalsurfaces.

WLIimageofthefilmsurfaceisprovidedinFig.6a,together withtheroughnessprofilesalongX(Fig.6b)andY(Fig.6c)axes. Inadditiontoafairlynarrowparticlesizeandhomogeneous dis-tribution,averageheightsofthesilicaagglomeratesarealsoina verynarrowrangearound1–2␮m.Averagesurfaceroughness(Ra) wasdeterminedtobe168±57nmbyWLIstudies.Formationof asuperhydrophobicsurfacewasdemonstratedbyastaticwater contactangleof161.0±1.2◦ andacontactanglehysteresisvalue below10◦.

3.4. SpraycoatingofTPSC/silicadispersionswithanairbrush Spraycoatingisoneofthemostversatileandpracticalcoating methods,whichcanbeusedonsmallorlargeareasandonflator intricatesurfacessuccessfully.InthisstudyweutilizedTPSC/silica (1/10)dispersioninIPAandspraycoated2×2cm2glassslides. Dur-ingthecoatingprocessweinvestigatedtheinfluenceofpressure, distancebetweennozzleandsubstrateandspraytimeontheextent ofsurfacesilicacoverage,topography,averageroughnessandstatic watercontactanglesandcontactanglehysteresisofthesurfaces obtained.Allofthesamplesdiscussedherewerepreparedusing atankpressureof2barandnozzletosampledistanceof20cm. Theonlyvariablewasthespraytime,whichwas1,2and3s.SEM imagesofsilicamodifiedTPSCsurfacesobtainedatdifferentspray timesarereproducedinFig.7.

SEMimagesprovidedinFig.7clearlyindicateafairly homo-geneous coverage of the TPSC surfaces with silica aggregates, regardlessofthe spraytime. Coatingthickness obtainedfor 2s spraytimeisabout35␮m.Averagediametersofthesilica aggre-gatesaregenerallyin2–20␮mrange.Asthespraytimeincreases there seem tobea slight increase in the averageparticlesize. Moreinterestinglytheaveragedistancebetweensilica agglomer-atesseemtodecreasewithanincreaseinthespraytime.Aswill bediscussedlater onindetail, this seemstohave asignificant effectonthecontactanglehysteresisbehaviorofthesurfaces.Fora

betterunderstandingofthenatureofthesurfacestructuresformed, highermagnificationSEMimagesofthesamplecoatedfor2sare providedinFig.8.AscanbeseeninFig.8a,silicaagglomeratesare homogeneouslydistributedandwellembeddedintothepolymer matrix,indicatingtheformationofadurablesurface.Thedistance betweensilicaaggregatesseemtobebetween1and20␮m.When closelyexamined,thehairysurfacenanostructureofthesilica par-ticlescanalsoclearlybeseen,asprovidedinFig.8b.Thisclearly demonstratestheformationofahierarchicalsurfacestructurewith micro-nanofeatures,whichwasshowntobecriticalinobtaining superhydrophobicbehavior[1,2,10].

2Dand3DWLIimagesandroughnessprofilesofthesurface obtainedfor 2sspray coated sample are reproduced in Fig. 9. 47×63␮m22Dand3DimagesgiveninFig.9aandbshowafairly goodsurfacecoverageandabroaddistributionofsilica agglom-erateswithparticlesizesin2–20␮mrange.Heightsofthelarge silicaagglomeratesarearound5␮m,whicharemuchhigherthan thoseobtainedbydoctorbladecoatingtechnique. Formationof suchlargesilicaagglomeratesresultsinanincreaseintheaverage surfaceroughnessfromabout170nmforthedoctorbladecoated sampletoabove300nmforthespraycoatedsamplesasgivenin Table2.Interestingly,theroughnessprofilesofthe47×63␮m2 surfaceprovidedinFig.9canddclearlyshowsthepresenceoffairly smoothvalleysbetweensilicaagglomerates.

Table2providesasummaryoftheeffectofspraytimeonthe averagesurfaceroughness,staticwatercontactanglesandcontact anglehysteresis(CAH)forTPSC/silica(1/10)coatingsperformed underapressureof2barandatanozzletosubstratedistanceof 20cm.

As provided in Table 2, all samples display average surface roughnessvaluesbetween300and400nm,whichisfairlyhigh. Averagesurfaceroughnessvaluesofthesamplesshowasignificant increasewithspraytime,whichmaybeexpected.Ascanclearlybe seeninTable2,allsurfacesdisplayveryhighstaticwatercontact anglesabove160◦,indicatingtheformationofsuperhydrophobic surfaces.Contactanglehysteresis(CAH)valuesforsamplesS2and S3are4.8and2.9◦respectively,stronglysupportingtheformation

(7)

Fig.6.47×63␮m2WLIimageof(a)thedoctorbladecoatedTPSC/silica(1/10)surfaceandtheroughnessprofilesalong(b)Xand(c)Yaxes.

(8)

Fig.8. SurfaceSEMimagesoftheTPSC/silica(1/10)samplespraycoatedfor2s,showingtheformationofmicro-nanohierarchicalsurfacestructures.

Fig.9.(a)2Dand(b)3D47×63␮m2WLIimagesofthe2sTPSC/silica(1/10)spraycoatedsamplesurfaceandtheroughnessprofilesalong(c)Xand(d)Yaxes.

of truly superhydrophobic surfaces. Interestingly, although the staticwatercontact angleforsample S1is above160◦,itsCAH valueis26◦andveryhigh.WhentheSEMimagesprovidedinFig.7 iscloselyexaminedwebelievethisismainlyduetothepresence ofalargenumberofsmallersizedsilicaagglomeratesonsampleS1 surface,togetherwiththelongerdistancesbetweenthe agglom-erates.Webelievethesmallersilicaagglomeratesseparatedfrom each other by longerdistances are not able tohold the water

dropletsonthetopoftheprotrusionswithanaircushionunder themasinthecaseofCassie–Baxterregimeschematicallyshown inFig.10a.AsthedropletsgetlargerduringCAHmeasurements, theyseem topenetrate through theagglomerates and wetthe surface,therebychangingthemechanismfromCassie–Baxterto theWenzelregime(Fig.10b),whichresultsinadecreaseinthe recedingwatercontactangleandanincreaseintheCAH.Detailed studiesinordertobetterunderstandthisbehaviorisunderway.In Table2

Effectofspraytimeontheaveragesurfaceroughness,staticwatercontactanglesandcontactanglehysteresisvaluesonspraycoatedTPSC/silicasurfacesperformedunder 2barpressureandatanozzletosubstratedistanceof20cm.

Sampleno Pressure(bar) Spraytime(s) Distance(cm) Roughness(Ra)(nm) Av.CA(◦) CAH(◦)

S1 2 1 20 293±85 162.0±1.8 26

S2 2 2 20 375±59 165.7±0.5 4.8

(9)

Fig.10.Schematicdescriptionof(a)Cassie–Baxterand(b)Wenzelwettingstates. 60 70 80 90 100 400 500 600 700 800

Transmittance (%)

Wavelength (nm)

Fig.11.Comparisonoftherelativetransparenciesofuncoatedglassslide( ) andTPSC/silicacoatedglasssurfacesbydifferentmethods.Doctorbladecoating(

),spin-coatingofsilicaparticlesonTPSC(···),spin-coatingofTPSC/silica(1/10) ( )andspraycoating( ·· ·· ).

addition,thelongerdistancesbetweenthesilicaparticlesin

sam-pleS1,whencomparedtoS2andS3mayresultindroppinning,

resultinginafairlyhighCAHvalue.

For various applicationsa critical requirement is the

trans-parency of the superhydrophobic coatings. We measured the

transparencies of the glass slides used as the substrate and

TPSC/silicacoatedglassslidesobtainedbyvariouscoatingmethods

describedinthispaper.Percenttransmittanceversuswavelength

curves obtained against air as thereference are reproduced in

Fig.11.Uncoatedglassslidesontheaverageshow85%transparency inthevisibleregion.Itisinterestingtonotethatthedoctorblade coated TPSC/silica film,with a thicknessof about 5␮m, shows anaverageof90% transparency,which ishigher thantheglass substrate.Silicaspin-coatedTPSCfilmwithathicknessofabout 20␮m, alsodisplays about85% transparency similar tothat of theglasssubstrate. Spray coatedTPSC/silica (1/10)film, witha thicknessof about 35␮m displaysa fairly low transparency of around63%at400nm,whichgraduallyincreasesto85%at800nm. SpincoatedTPSC/silica(1/10)filmhasthelowestaverage trans-parencyofaround75%,whichdoesnotchangewithwavelength. Theseresultsindicatethatthetransparencyofthesilicamodified superhydrophobicTPSCfilmsisfairlygood.Asmightbeexpected, transparencyofthecoatingdependsonthefilmthicknessandthe coatingmethodused.

4. Conclusions

Influence of coating methods on the preparation of super-hydrophobicsilicone–urea copolymer (TPSC)surfaces, modified bythe incorporationof hydrophobicfumed silica nanoparticles was investigated. The methods employed were: (i) successive spincoatingofhydrophobicfumedsilicadispersedinanorganic solventonto preformed silicone–ureafilms, (ii)spin coating of silica–polymerdispersionontoaglasssubstrate,(iii)direct coat-ingofsilica–polymermixturebyusingadoctorblade,ontoaglass substrate,and(iv)spraycoatingofsilica–polymerdispersionbyan air-brushontoaglasssubstrate.Inadditiontothemethodused,

influenceoftheconcentrationofthefumedsilicadispersionand thenumberofcoatinglayersappliedonthesurfacetopography, theextentandnatureofthesilicacoverageandaveragesurface roughnessweredetermined.Allsurfacesobtaineddisplayed micro-nanohierarchicalstructuresasobservedbySEM studies.It was demonstratedthatsuperhydrophobicsurfacescouldbeobtained byallmethodsemployed,whichisclearlyindicatedbythestatic andadvancingwatercontactangleswellabove150◦andcontact anglehysteresisvaluesbelow10◦.Twocriticalquestionsregarding thesurfacesformedaretheirdurabilityandtransparency. Dura-bilityorsuperhydrophobicityretentionofthecoatedsurfaceswas determinedbytwosimpletests.Firstoneinvolvedthe measure-mentofthewatercontactangles(CA)andcontactanglehysteresis (CAH)onsamples,whichwerestoredforoverayearunder ambi-entconditions.Inthesecondtestascotchtapewasfirmlypressed ontothecoatedsurfaceandwaspeeledoffafter5sofcontact.CA andCAHvaluesdidnotshowanynoticeable changeafterthese tests,whichindicatedtheformationofdurable,superhydrophobic surfaces.Regardingthetransparencyofthefilms,wehave demon-stratedthatsuperhydrophobicTPSC/silicafilmswiththicknesses uptoabout20␮mareverytransparent.Formanypractical appli-cationsspraycoatingprovidesasimplerouteforthepreparationof superhydrophobicsurfaces.Ontheotherhand,doctorblade tech-niquecanbeusedtoobtainsuperhydrophobicpolymerfilmsor textilesbyusingconventionaldirectcoatingmethods.

References

[1]W.Barthlott,C.Neinhuis,Purityofthesacredlotus,orescapefrom contami-nationinbiologicalsurfaces,Planta202(1)(1997)1–8.

[2]C.Neinhuis,W.Barthlott,Characterizationanddistributionofwater-repellent, self-cleaningplantsurfaces,Ann.Bot.79(6)(1997)667–677.

[3]T.Verho,C.Bower,P.Andrew,S.Franssila,O.Ikkala,R.H.A.Ras,Mechanically durablesuperhydrophobicsurfaces,Adv.Mater.23(5)(2011)673–678.

[4]M.Nosonovsky,B.Bhushan,Superhydrophobicsurfacesandemerging appli-cations:non-adhesion,energy,greenengineering,Curr.Opin.ColloidInterface Sci.14(4)(2009)270–280.

[5]P.N.Manoudis,I.Karapanagiotis,A.Tsakalof,I.Zuburtikudis,C.Panayiotou, Superhydrophobiccompositefilmsproducedonvarioussubstrates,Langmuir 24(19)(2008)11225–11232.

[6]C.Y.Peng,S.L.Xing,Z.Q.Yuan,J.Y.Xiao,C.Q.Wang,J.C.Zeng,Preparationand anti-icingofsuperhydrophobicPVDFcoatingonawindturbineblade,Appl. Surf.Sci.259(2012)764–768.

[7]P.N.Manoudis,I.Karapanagiotis,A.Tsakalof,I.Zuburtikudis,B.Kolinkeova,C. Panayiotou,Surfacepropertiesofsuperhydrophobiccoatingsforstone protec-tion,J.NanoRes.8(2009)23–33.

[8]L.C. Gao, T.J. McCarthy, The “lotus effect” explained: two reasons why twolength scales oftopography are important, Langmuir22(7) (2006) 2966–2967.

[9]D.Oner,T.J.McCarthy,Ultrahydrophobicsurfaces.Effectsoftopographylength scalesonwettability,Langmuir16(20)(2000)7777–7782.

[10]B.Bhushan,Y.C.Jung,Naturalandbiomimeticartificialsurfacesfor superhy-drophobicity,self-cleaning,lowadhesion,anddragreduction,Prog.Mater.Sci. 56(1)(2011)1–108.

[11]W.Chen,A.Y.Fadeev,M.C.Hsieh,D.Oner,J.Youngblood,T.J.McCarthy, Ultra-hydrophobicandultralyophobicsurfaces:somecommentsandexamples, Langmuir15(10)(1999)3395–3399.

[12]N.Takeshita,L.A.Paradis,D.Oner,T.J.McCarthy,W.Chen,Simultaneous tail-oringofsurfacetopographyandchemicalstructureforcontrolledwettability, Langmuir20(19)(2004)8131–8136.

[13]L.C.Gao,T.J.McCarthy,Contactanglehysteresisexplained,Langmuir22(14) (2006)6234–6237.

[14]J.W.Krumpfer,T.J.McCarthy,Contactanglehysteresis:adifferentviewanda trivialrecipeforlowhysteresishydrophobicsurfaces,FaradayDis.146(2010) 103–111.

[15]Y.C.Jung,B.Bhushan,Contactangle,adhesionandfrictionpropertiesof micro-andnanopatternedpolymersforsuperhydrophobicity,Nanotechnology17 (19)(2006)4970–4980.

[16]K.Koch,B.Bhushan,Y.C.Jung,W.Barthlott,FabricationofartificialLotusleaves andsignificanceofhierarchicalstructureforsuperhydrophobicityandlow adhesion,SoftMatter.5(7)(2009)1386–1393.

[17]G.McHale,N.J.Shirtcliffe,M.I.Newton,Contact-anglehysteresison super-hydrophobicsurfaces,Langmuir20(23)(2004)10146–10149.

[18]Z.W.He,W.Zhang,W.L.Wang,M.Tassin,J.J.Gu,Q.L.Liu,etal.,Fabricationof Fe-wingsusedformicroimprintingwithanaturalbutterflywingstructureby insitucarbothermicreduction,J.Mater.Chem.B1(12)(2013)1673–1677.

(10)

[19]F.Yao,Q.Q.Yang,C.Yin,S.M.Zhu,D.Zhang,W.J.Moon,etal.,Biomimetic Bi2WO6withhierarchicalstructuresfrombutterflywingsforvisiblelight absorption,Mater.Lett.77(2012)21–24.

[20]G.D.Bixler,B.Bhushan,Rice-andbutterfly-wingeffectinspiredself-cleaning and low dragmicro/nanopatterned surfaces in water, oil, and air flow, Nanoscale6(1)(2014)76–96.

[21]G.D.Bixler,A.Theiss,B.Bhushan,S.C.Lee,Anti-foulingpropertiesof microstruc-tured surfaces bio-inspiredby riceleaves and butterfly wings,J. Colloid InterfaceSci.419(2014)114–133.

[22]G.D.Bixler,B.Bhushan,Bioinspiredriceleafandbutterflywingsurface struc-tures combiningshark skinand lotuseffects, SoftMatter.8(44) (2012) 11271–11284.

[23]Y.M.Zheng,X.F.Gao,L.Jiang,Directionaladhesionofsuperhydrophobic but-terflywings,SoftMatter.3(2)(2007)178–182.

[24]T.Wagner,C.Neinhuis,W.Barthlott,Wettabilityandcontaminabilityofinsect wingsasafunctionoftheirsurfacesculptures,ActaZool.77(3)(1996)213–225.

[25]D.Byun,J.Hong,P.Saputra,J.H.Ko,Y.J.Lee,H.C.Park,etal.,Wetting character-isticsofinsectwingsurfaces,J.BionicEng.6(1)(2009)63–70.

[26]R.N.Wenzel,Resistanceofsolidsurfacestowettingbywater,Ind.Eng.Chem. 28(1936)546–551.

[27]A.B.D.Cassie,S.Baxter,Wettabilityofporoussurfaces,Trans.FaradaySoc.40 (1944)546–551.

[28]P.Roach,N.J.Shirtcliffe,M.I.Newton,Progessinsuperhydrophobicsurface development,SoftMatter.4(2)(2008)224–240.

[29]T.Onda,S.Shibuichi,N.Satoh,K.Tsujii,Super-water-repellentfractalsurfaces, Langmuir12(9)(1996)2125–2127.

[30]C.W.Extrand,Contactanglesandhysteresisonsurfaceswithchemically het-erogeneousislands,Langmuir19(9)(2003)3793–3796.

[31]C.W.Extrand,Modelforcontactanglesandhysteresisonroughandultraphobic surfaces,Langmuir18(21)(2002)7991–7999.

[32]H.Y. Erbil,C.E. Cansoy,Range ofapplicabilityof theWenzeland Cassie-Baxterequationsforsuperhydrophobicsurfaces,Langmuir25(24)(2009) 14135–14145.

[33]J. Bravo,L.Zhai, Z.Z.Wu,R.E. Cohen,M.F.Rubner,Transparent superhy-drophobic films based onsilica nanoparticles, Langmuir 23 (13) (2007) 7293–7298.

[34]K.Acatay,E.Simsek,C.Ow-Yang,Y.Z.Menceloglu,Tunable, superhydrophobi-callystablepolymericsurfacesbyelectrospinning,Angew.Chem.Int.Ed.43 (39)(2004)5210–5213.

[35]J.T.Han,X.R.Xu,K.W.Cho,Diverseaccesstoartificialsuperhydrophobic sur-facesusingblockcopolymers,Langmuir21(15)(2005)6662–6665.

[36]Y.Y.Yan,N.Gao,W.Barthlott,Mimickingnaturalsuperhydrophobicsurfaces andgraspingthewettingprocess:areviewonrecentprogressin prepar-ing superhydrophobicsurfaces,Adv. ColloidInterfaceSci. 169(2) (2011) 80–105.

[37]N.J.Shirtcliffe,G.McHale,S.Atherton,M.I.Newton,Anintroductionto super-hydrophobicity,Adv.ColloidInterfaceSci.161(1–2)(2010)124–138.

[38]M.L.Ma,R.M.Hill,Superhydrophobicsurfaces,Curr.Opin.ColloidInterfaceSci. 11(4)(2006)193–202.

[39]I.Yilgor,S.Bilgin,M.Isik,E.Yilgor,Tunablewettingofpolymersurfaces, Lang-muir28(41)(2012)14808–14814.

[40]I.Yilgor,S.Bilgin,M.Isik,E.Yilgor,Facilepreparationofsuperhydrophobic polymersurfaces,Polymer53(6)(2012)1180–1188.

[41]N.J.Shirtcliffe,G.McHale,M.I.Newton,C.C.Perry,P.Roach, Superhydropho-bictosuperhydrophilictransitionsofsol-gelfilmsfortemperature,alcoholor surfactantmeasurement,Mater.Chem.Phys.103(1)(2007)112–117.

[42]L.Zhang,Z.L.Zhou,B.Cheng,J.M.DeSimone,E.T.Samulski,Superhydrophobic behaviorofaperfluoropolyetherlotus-leaf-liketopography,Langmuir22(20) (2006)8576–8580.

[43]P.N.Manoudis,I.Karapanagiotis,A.Tsakalof,I.Zuburtikudis,B.Kolinkeova, C. Panayiotou,Superhydrophobicfilmsfortheprotectionofoutdoor cul-tural heritage assets, Appl. Phys. A Mater. Sci. Process. 97 (2) (2009) 351–360.

[44]N.J.Shirtcliffe,G.McHale,M.I.Newton,Thesuperhydrophobicityofpolymer surfaces:recentdevelopments,J.Polym.Sci.BPolym.Phys.49(17)(2011) 1203–1217.

[45]HDK–PyrogenicSilica.Availablefrom:http://www.wacker.com/cms/media/ publications/downloads/6180 EN.pdf

[46]L.C.Gao,T.J.McCarthy,Aperfectlyhydrophobicsurface(theta(A)/theta(R)=180 degrees/180degrees),J.Am.Chem.Soc.128(28)(2006)9052–9053.

[47]L.C.Gao,T.J.McCarthy,“Artificiallotusleaf”preparedusinga1945patentand acommercialtextile,Langmuir22(14)(2006)5998–6000.

[48]K.A.Wier,T.J.McCarthy,Condensationonultrahydrophobicsurfacesandits effectondropletmobility:ultrahydrophobicsurfacesarenotalwayswater repellant,Langmuir22(6)(2006)2433–2436.

[49]L.C.Gao,T.J.McCarthy,Ionicliquidsareusefulcontactangleprobefluids,J.Am. Chem.Soc.129(13)(2007)3804+.

[50]L.C.Gao,T.J.McCarthy,HowWenzelandCassiewerewrong,Langmuir23(7) (2007)3762–3765.

[51]J.A.Lee,T.J.McCarthy,Polymersurfacemodification:topographyeffectsleading toextremewettabilitybehavior,Macromolecules40(11)(2007)3965–3969.

[52]L.C.Gao,A.Y.Fadeev,T.J.McCarthy,Superhydrophobicityandcontact-line issues,MRSBull.33(8)(2008)747–751.

[53]L.C.Gao,T.J.McCarthy,Teflonishydrophilic,commentsondefinitionsof hydrophobic,shearversustensilehydrophobicity,andwettability characteri-zation,Langmuir24(17)(2008)9183–9188.

[54]L.C.Gao,T.J.McCarthy,(CH3)(3)SiCl/SiCl4azeotropegrowssuperhydrophobic nanofilaments,Langmuir24(2)(2008)362–364.

[55]L.C. Gao, T.J. McCarthy, Wetting 101 degrees, Langmuir 25 (24) (2009) 14105–14115.

[56]J.W.Krumpfer,P.Bian,P.W.Zheng,L.C.Gao,T.J.McCarthy,Contactangle hysteresisonsuperhydrophobicsurfaces:anionicliquidprobefluidoffers mechanisticinsight,Langmuir27(6)(2011)2166–2169.

[57]J.W.Krumpfer,T.J.McCarthy,Dip-coatingcrystallizationona superhydropho-bicsurface:amillionmountedcrystalsina1cm(2)array,J.Am.Chem.Soc.133 (15)(2011)5764–5766.

[58]M.McCarthy,K.Gerasopoulos,R.Enright,J.N.Culver,R.Ghodssi,E.N.Wang, Biotemplated hierarchicalsurfaces and theroleof duallength scales on the repellency of impacting droplets, Appl. Phys. Lett. 100 (26) (2012) 263701–263705.

[59]B.Bhushan,Y.C.Jung,Micro-andnanoscalecharacterizationofhydrophobic andhydrophilicleafsurfaces,Nanotechnology17(11)(2006)2758–2772.

[60]M.Nosonovsky,B.Bhushan,Biomimeticsuperhydrophobicsurfaces: multi-scaleapproach,NanoLett.7(9)(2007)2633–2637.

[61]M.Nosonovsky,B.Bhushan,Biologicallyinspiredsurfaces:broadeningthe scopeofroughness,Adv.Funct.Mater.18(6)(2008)843–855.

[62]B.Bhushan,Biomimetics:lessonsfromnature–anoverview,Philos.Trans.R. Soc.Math.Phys.Eng.Sci.367(1893)(2009)1445–1486.

[63]K.Koch,B.Bhushan,W.Barthlott,Multifunctionalsurfacestructuresofplants: aninspirationforbiomimetics,Prog.Mater.Sci.54(2)(2009)137–178.

[64]P.Wagner,R.Furstner,W.Barthlott,C.Neinhuis,Quantitativeassessmentto thestructuralbasisofwaterrepellencyinnaturalandtechnicalsurfaces,J.Exp. Bot.54(385)(2003)1295–1303.

[65]K.Koch,C.Neinhuis,H.J.Ensikat,W.Barthlott,Selfassemblyofepicuticular waxesonlivingplantsurfacesimagedbyatomicforcemicroscopy(AFM),J. Exp.Bot.55(397)(2004)711–718.

[66]R.Furstner,W.Barthlott,C.Neinhuis,P.Walzel,Wettingandself-cleaning prop-ertiesofartificialsuperhydrophobicsurfaces,Langmuir21(3)(2005)956–961.

[67]K.Koch,K.D.Hartmann,L.Schreiber,W.Barthlott,C.Neinhuis,Influencesof airhumidityduringthecultivationofplantsonwaxchemicalcomposition, morphologyandleafsurfacewettability,Environ.Exp.Bot.56(1)(2006)1–9.

[68]H.J.Ensikat,P.Ditsche-Kuru,C.Neinhuis,W.Barthlott,Superhydrophobicityin perfection:theoutstandingpropertiesofthelotusleaf,BeilsteinJ.Nanotechnol. 2(2011)152–161.

[69]N.J.Shirtcliffe,G.McHale,M.I.Newton,C.C.Perry,Intrinsically superhydropho-bicorganosilicasol-gelfoams,Langmuir19(14)(2003)5626–5631.

[70]G. McHale, S. Aqil, N.J. Shirtcliffe, M.I. Newton, H.Y. Erbil, Analysis of dropletevaporationonasuperhydrophobicsurface,Langmuir21(24)(2005) 11053–11060.

[71]N.J.Shirtcliffe,G.McHale,M.I.Newton,C.C.Perry,P.Roach,Porousmaterials showsuperhydrophobictosuperhydrophilicswitching,Chem.Commun.25 (2005)3135–3137.

[72]G.McHale,D.L.Herbertson,S.J.Elliott,N.J.Shirtcliffe,M.I.Newton, Electrowet-tingofnonwettingliquidsandliquidmarbles,Langmuir23(2)(2007)918–924.

[73]G.McHale,M.I.Newton,N.J.Shirtcliffe,Dynamicwettingandspreadingandthe roleoftopography,J.Phys.Condens.Matter.21(46)(2009)464122–464133.

[74]N.J. Shirtcliffe, G.McHale, M.I. Newton,Learningfrom superhydrophobic plants:theuseofhydrophilicareasonsuperhydrophobicsurfacesfordroplet control,Langmuir25(24)(2009)14121–14128.

[75]L.Feng,S.H.Li,Y.S.Li,H.J.Li,L.J.Zhang,J.Zhai,etal.,Super-hydrophobicsurfaces: fromnaturaltoartificial,Adv.Mater.14(24)(2002)1857–1860.

[76]C.KosakSöz,E.Yilgör,I.Yilgör,Influenceoftheaveragesurfaceroughness ontheformationofsuperhydrophobicpolymersurfacesthroughspin-coating withhydrophobicfumedsilica,Polymer62(2015)118–128.

Şekil

Fig. 1. SEM images of hydrophobic fumed silica coated TPSC surfaces, (a) one layer, (b) three layers and (c) seven layers of silica and (d) expanded wiev of an agglomerated micron sized silica particle displaying nanostructure.
Fig. 4. 47 × 63 ␮m 2 (a) 2D and (b) 3D WLI images of three layers of TPSC/silica (1/10) spin coated glass surface and the roughness profiles along (c) X and (d) Y axes.
Fig. 5. Surface SEM images of the doctor blade coated TPSC/silica films at various magnifications providing the details of the topography and micro-nano structures formed.
Fig. 7. SEM images of spray coated TPSC/silica (1/10) surfaces. (a) 1 s, (b) 2 s, and (c) 3 s
+3

Referanslar

Benzer Belgeler

ÇEKMECE NÜKLEER ARAŞTIRMA VE EĞİTİM MERKEZİ 2014 TAHRİBATSIZ MUAYENE KURS PROGRAMI. Eğitimler ISO9712:2012 standardına göre Çekmece Nükleer Araştırma ve Eğitim

Destinasyon imajını kesinlikle etkileyen faktörler çalıĢma kapsamına alınan Y kuĢağı turistlerin öğrenim durumu açısından lise mezunu katılımcılar için

Zindan iyi bir mutfak, temiz mezeler, güzel ser­ vis ile ilginç bir mekanın biraraya gelmesiyle oluş­ muş Beyoğlu'nun hoş bar meyhanelerinden ya da ta v e rn a

Although stability characterizes the Turkish-Iranian relationship, especially from 2011 to 2015 the Syrian crisis had revealed the clashing strategic interests of Turkey and Iran

Herein, we present a case of primary gastrointestinal tract malignant melanoma who presented ini- tially with iron deficiency anemia, which consequently trigge- red an invagination

According to the needs, the interior architect/designer has to create a good form of management at this stage; work distribution should be shaped according to the work program done

When matrices, generated based on amino acid replacements observed in closely related sequences, were used, the prediction accuracy of subcellular classes was better than those of

Bu yazıda süpermarket söylentisi olarak adlandırılacak bu olayın (daha doğ- rusu hikâyenin) bir yönüyle kent efsanele- ri içinde değerlendirilebileceğini söylemek