• Sonuç bulunamadı

Table 1: Properties of the Continuous-Time Fourier Series x(t) =

N/A
N/A
Protected

Academic year: 2021

Share "Table 1: Properties of the Continuous-Time Fourier Series x(t) ="

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Table 1: Properties of the Continuous-Time Fourier Series x(t) =

X +∞

k=−∞

a k e jkω

0

t = X +∞

k=−∞

a k e jk(2π/T )t

a k = 1 T

Z

T

x(t)e −jkω

0

t dt = 1 T

Z

T

x(t)e −jk(2π/T )t dt

Property Periodic Signal Fourier Series Coefficients

x(t) y(t)

 Periodic with period T and

fundamental frequency ω 0 = 2π/T

a k

b k

Linearity Ax(t) + By(t) Aa k + Bb k

Time-Shifting x(t − t 0 ) a k e −jkω

0

t

0

= a k e −jk(2π/T )t

0

Frequency-Shifting e jM ω

0

t = e jM (2π/T )t x(t) a k−M

Conjugation x (t) a −k

Time Reversal x(−t) a −k

Time Scaling x(αt), α > 0 (periodic with period T /α) a k

Periodic Convolution Z

T

x(τ )y(t − τ )dτ T a k b k

Multiplication x(t)y(t)

X +∞

l=−∞

a l b k−l

Differentiation dx(t)

dt jkω 0 a k = jk 2π

T a k

Integration

Z t

−∞

x(t)dt (finite-valued and periodic only if a 0 = 0)

 1 jkω 0

 a k =

 1

jk(2π/T )

 a k

Conjugate Symmetry

for Real Signals x(t) real

 

 

 

 

a k = a −k

ℜe{a k } = ℜe{a −k } ℑm{a k } = −ℑm{a −k }

|a k | = |a −k |

< ) a k = −< ) a −k

Real and Even Sig-

nals x(t) real and even a k real and even

Real and Odd Signals x(t) real and odd a k purely imaginary and odd Even-Odd Decompo-

sition of Real Signals

 x e (t) = Ev{x(t)} [x(t) real]

x o (t) = Od{x(t)} [x(t) real]

ℜe{a k } jℑm{a k } Parseval’s Relation for Periodic Signals

1 T

Z

T

|x(t)| 2 dt = X +∞

k=−∞

|a k | 2

(2)

Table 2: Properties of the Discrete-Time Fourier Series x[n] = X

k=<N >

a k e jkω

0

n = X

k=<N >

a k e jk(2π/N )n

a k = 1 N

X

n=<N >

x[n]e −jkω

0

n = 1 N

X

n=<N >

x[n]e −jk(2π/N )n

Property Periodic signal Fourier series coefficients

x[n]

y[n]

 Periodic with period N and fun- damental frequency ω 0 = 2π/N

a k

b k

 Periodic with period N

Linearity Ax[n] + By[n] Aa k + Bb k

Time shift x[n − n 0 ] a k e −jk(2π/N )n

0

Frequency Shift e jM (2π/N )n x[n] a k−M

Conjugation x [n] a −k

Time Reversal x[−n] a −k

Time Scaling x (m) [n] =

 x[n/m] if n is a multiple of m 0 if n is not a multiple of m

1 m a k

viewed as periodic with period mN

!

(periodic with period mN ) Periodic Convolution X

r=hN i

x[r]y[n − r] Na k b k

Multiplication x[n]y[n] X

l=hN i

a l b k−l

First Difference x[n] − x[n − 1] (1 − e −jk(2π/N ) )a k

Running Sum

X n k=−∞

x[k]  finite-valued and periodic only if a 0 = 0

 

1

(1 − e −jk(2π/N ) )

 a k

Conjugate Symmetry

for Real Signals x[n] real

 

 

 

 

a k = a −k

ℜe{a k } = ℜe{a −k } ℑm{a k } = −ℑm{a −k }

|a k | = |a −k |

< ) a k = −< ) a −k

Real and Even Signals x[n] real and even a k real and even

Real and Odd Signals x[n] real and odd a k purely imaginary and odd

Even-Odd Decomposi- tion of Real Signals

x e [n] = Ev{x[n]} [x[n] real]

x o [n] = Od{x[n]} [x[n] real]

ℜe{a k } jℑm{a k } Parseval’s Relation for Periodic Signals

1 N

X

n=hN i

|x[n]| 2 = X

k=hN i

|a k | 2

(3)

Table 3: Properties of the Continuous-Time Fourier Transform x(t) = 1

2π Z ∞

−∞

X(jω)e jωt

X(jω) = Z ∞

−∞

x(t)e −jωt dt

Property Aperiodic Signal Fourier transform

x(t) X(jω)

y(t) Y (jω)

Linearity ax(t) + by(t) aX(jω) + bY (jω)

Time-shifting x(t − t 0 ) e −jωt

0

X(jω)

Frequency-shifting e

0

t x(t) X(j(ω − ω 0 ))

Conjugation x (t) X (−jω)

Time-Reversal x(−t) X(−jω)

Time- and Frequency-Scaling x(at) 1

|a| X  jω a



Convolution x(t) ∗ y(t) X(jω)Y (jω)

Multiplication x(t)y(t) 1

2π X(jω) ∗ Y (jω) Differentiation in Time d

dt x(t) jωX(jω)

Integration

Z t

−∞

x(t)dt 1

jω X(jω) + πX(0)δ(ω)

Differentiation in Frequency tx(t) j d

dω X(jω) Conjugate Symmetry for Real

Signals x(t) real

 

 

 

 

X(jω) = X (−jω)

ℜe{X(jω)} = ℜe{X(−jω)}

ℑm{X(jω)} = −ℑm{X(−jω)}

|X(jω)| = |X(−jω)|

< ) X(jω) = −< ) X(−jω) Symmetry for Real and Even

Signals x(t) real and even X(jω) real and even

Symmetry for Real and Odd

Signals x(t) real and odd X(jω) purely imaginary and odd

Even-Odd Decomposition for Real Signals

x e (t) = Ev{x(t)} [x(t) real]

x o (t) = Od{x(t)} [x(t) real]

ℜe{X(jω)}

jℑm{X(jω)}

Parseval’s Relation for Aperiodic Signals Z +∞

−∞

|x(t)| 2 dt = 1 2π

Z +∞

−∞

|X(jω)| 2

(4)

Table 4: Basic Continuous-Time Fourier Transform Pairs

Fourier series coefficients

Signal Fourier transform (if periodic)

X +∞

k=−∞

a k e jkω

0

t

X +∞

k=−∞

a k δ(ω − kω 0 ) a k

e

0

t 2πδ(ω − ω 0 ) a 1 = 1

a k = 0, otherwise cos ω 0 t π[δ(ω − ω 0 ) + δ(ω + ω 0 )] a 1 = a −1 = 1 2

a k = 0, otherwise

sin ω 0 t π

j [δ(ω − ω 0 ) − δ(ω + ω 0 )] a 1 = −a −1 = 2j 1 a k = 0, otherwise

x(t) = 1 2πδ(ω)

a 0 = 1, a k = 0, k 6= 0

this is the Fourier series rep- resentation for any choice of T > 0

!

Periodic square wave x(t) =  1, |t| < T 1

0, T 1 < |t| ≤ T 2 and

x(t + T ) = x(t)

+∞ X

k=−∞

2 sin kω 0 T 1

k δ(ω − kω 0 ) ω 0 T 1

π sinc  kω 0 T 1 π



= sin kω 0 T 1

X +∞

n=−∞

δ(t − nT ) 2π

T

+∞ X

k=−∞

δ



ω − 2πk T



a k = 1

T for all k x(t)  1, |t| < T 1

0, |t| > T 1

2 sin ωT 1

ω —

sin W t

πt X(jω) =  1, |ω| < W

0, |ω| > W —

δ(t) 1 —

u(t) 1

jω + πδ(ω) —

δ(t − t 0 ) e −jωt

0

e −at u(t), ℜe{a} > 0 1

a + jω —

te −at u(t), ℜe{a} > 0 1

(a + jω) 2

t

n−1

(n−1)! e −at u(t), ℜe{a} > 0

1

(a + jω) n

(5)

Table 5: Properties of the Discrete-Time Fourier Transform x[n] = 1

2π Z

X(e )e jωn

X(e ) = X +∞

n=−∞

x[n]e −jωn

Property Aperiodic Signal Fourier transform

x[n]

y[n]

X(e ) Y (e )

 Periodic with period 2π

Linearity ax[n] + by[n] aX(e ) + bY (e )

Time-Shifting x[n − n 0 ] e −jωn

0

X(e )

Frequency-Shifting e

0

n x[n] X(e j(ω−ω

0

) )

Conjugation x [n] X (e −jω )

Time Reversal x[−n] X(e −jω )

Time Expansions x (k) [n] =

 x[n/k], if n = multiple of k

0, if n 6= multiple of k X(e jkω )

Convolution x[n] ∗ y[n] X(e )Y (e )

Multiplication x[n]y[n] 1

2π Z

X(e )Y (e j(ω−θ) )dθ

Differencing in Time x[n] − x[n − 1] (1 − e −jω )X(e ) Accumulation

X n k=−∞

x[k] 1

1 − e −jω X(e ) +πX(e j0 )

X +∞

k=−∞

δ(ω − 2πk)

Differentiation in Frequency nx[n] j dX(e )

Conjugate Symmetry for Real Signals

x[n] real

 

 

 

 

X(e ) = X (e −jω )

ℜe{X(e )} = ℜe{X(e −jω )}

ℑm{X(e )} = −ℑm{X(e −jω )}

|X(e )| = |X(e −jω )|

< ) X(e ) = −< ) X(e −jω ) Symmetry for Real, Even

Signals

x[n] real and even X(e ) real and even Symmetry for Real, Odd

Signals

x[n] real and odd X(e ) purely

imaginary and odd Even-odd Decomposition of

Real Signals

x e [n] = Ev{x[n]} [x[n] real]

x o [n] = Od{x[n]} [x[n] real]

ℜe{X(e )}

jℑm{X(e )}

Parseval’s Relation for Aperiodic Signals X +∞

n=−∞

|x[n]| 2 = 1 2π

Z

|X(e )| 2

(6)

Table 6: Basic Discrete-Time Fourier Transform Pairs

Fourier series coefficients

Signal Fourier transform (if periodic)

X

k=hN i

a k e jk(2π/N )n

+∞ X

k=−∞

a k δ



ω − 2πk N



a k

e

0

n

+∞ X

l=−∞

δ(ω − ω 0 − 2πl)

(a) ω 0 = 2πm N a k =

 1, k = m, m ± N, m ± 2N, . . . 0, otherwise

(b) ω

0

irrational ⇒ The signal is aperiodic

cos ω 0 n π

+∞ X

l=−∞

{δ(ω − ω 0 − 2πl) + δ(ω + ω 0 − 2πl)}

(a) ω 0 = 2πm N a k =

 1

2 , k = ±m, ±m ± N, ±m ± 2N, . . . 0, otherwise

(b) ω

0

irrational ⇒ The signal is aperiodic

sin ω 0 n π

j

+∞ X

l=−∞

{δ(ω − ω 0 − 2πl) − δ(ω + ω 0 − 2πl)}

(a) ω 0 = 2πr N

a k =

1

2j , k = r, r ± N, r ± 2N, . . .

2j 1 , k = −r, −r ± N, −r ± 2N, . . . 0, otherwise

(b) ω

0

irrational ⇒ The signal is aperiodic

x[n] = 1 2π

+∞ X

l=−∞

δ(ω − 2πl) a k =

 1, k = 0, ±N, ±2N, . . . 0, otherwise

Periodic square wave x[n] =

 1, |n| ≤ N 1

0, N 1 < |n| ≤ N/2 and

x[n + N ] = x[n]

+∞ X

k=−∞

a k δ



ω − 2πk N

 a k = sin[(2πk/N )(N

1

+

12

)]

N sin[2πk/2N ] , k 6= 0, ±N, ±2N, . . . a k = 2N N

1

+1 , k = 0, ±N, ±2N, . . .

+∞ X

k=−∞

δ[n − kN ] 2π

N

+∞ X

k=−∞

δ



ω − 2πk N



a k = 1

N for all k a n u[n], |a| < 1 1

1 − ae −jω

x[n]

 1, |n| ≤ N 1

0, |n| > N 1

sin[ω(N 1 + 1 2 )]

sin(ω/2) —

sin W n

πn = W π sinc W n π  0 < W < π

X(ω) =

 1, 0 ≤ |ω| ≤ W 0, W < |ω| ≤ π X(ω)periodic with period 2π

δ[n] 1 —

u[n] 1

1 − e −jω +

+∞ X

k=−∞

πδ(ω − 2πk) —

δ[n − n 0 ] e −jωn

0

(n + 1)a n u[n], |a| < 1 1

(1 − ae −jω ) 2

(n + r − 1)!

n!(r − 1)! a n u[n], |a| < 1 1

(1 − ae −jω ) r

(7)

Table 7: Properties of the Laplace Transform

Property Signal Transform ROC

x(t) X(s) R

x 1 (t) X 1 (s) R 1

x 2 (t) X 2 (s) R 2

Linearity ax 1 (t) + bx 2 (t) aX 1 (s) + bX 2 (s) At least R 1 ∩ R 2

Time shifting x(t − t 0 ) e −st

0

X(s) R

Shifting in the s-Domain e s

0

t x(t) X(s − s 0 ) Shifted version of R [i.e., s is in the ROC if (s − s 0 ) is in R]

Time scaling x(at) 1

|a| X  s a



“Scaled” ROC (i.e., s is in the ROC if (s/a) is in R)

Conjugation x (t) X (s ) R

Convolution x 1 (t) ∗ x 2 (t) X 1 (s)X 2 (s) At least R 1 ∩ R 2

Differentiation in the Time Domain d

dt x(t) sX(s) At least R

Differentiation in the s-Domain −tx(t) d

ds X(s) R

Integration in the Time Domain

Z t

−∞

x(τ )d(τ ) 1

s X(s) At least R ∩ {ℜe{s} > 0}

Initial- and Final Value Theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then x(0 + ) = lim s→∞ sX(s)

If x(t) = 0 for t < 0 and x(t) has a finite limit as t → ∞, then

lim t→∞ x(t) = lim s→0 sX(s)

(8)

Table 8: Laplace Transforms of Elementary Functions

Signal Transform ROC

1. δ(t) 1 All s

2. u(t) 1

s ℜe{s} > 0

3. −u(−t) 1

s ℜe{s} < 0 4. t n−1

(n − 1)! u(t) 1

s n ℜe{s} > 0 5. − t n−1

(n − 1)! u(−t) 1

s n ℜe{s} < 0

6. e −αt u(t) 1

s + α ℜe{s} > −α

7. −e −αt u(−t) 1

s + α ℜe{s} < −α 8. t n−1

(n − 1)! e −αt u(t) 1

(s + α) n ℜe{s} > −α 9. − t n−1

(n − 1)! e −αt u(−t) 1

(s + α) n ℜe{s} < −α

10. δ(t − T ) e −sT All s

11. [cos ω 0 t]u(t) s

s 2 + ω 0 2 ℜe{s} > 0

12. [sin ω 0 t]u(t) ω 0

s 2 + ω 0 2 ℜe{s} > 0 13. [e −αt cos ω 0 t]u(t) s + α

(s + α) 2 + ω 2 0 ℜe{s} > −α 14. [e −αt sin ω 0 t]u(t) ω 0

(s + α) 2 + ω 2 0 ℜe{s} > −α 15. u n (t) = d n δ(t)

dt n s n All s

16. u −n (t) = u(t) ∗ · · · ∗ u(t)

| {z }

n times

1

s n ℜe{s} > 0

(9)

Table 9: Properties of the z-Transform

Property Sequence Transform ROC

x[n] X(z) R

x 1 [n] X 1 (z) R 1

x 2 [n] X 2 (z) R 2

Linearity ax 1 [n] + bx 2 [n] aX 1 (z) + bX 2 (z) At least the intersection of R 1 and R 2

Time shifting x[n − n 0 ] z −n

0

X(z) R except for the possible addition or deletion of the origin Scaling in the e

0

n x[n] X(e −jω

0

z) R

z-Domain z 0 n x[n] X 

z z

0

 z 0 R

a n x[n] X(a −1 z) Scaled version of R

(i.e., |a|R = the set of points {|a|z}

for z in R)

Time reversal x[−n] X(z −1 ) Inverted R (i.e., R −1

= the set of points z −1 where z is in R) Time expansion x (k) [n] =

 x[r], n = rk

0, n 6= rk X(z k ) R 1/k

for some integer r (i.e., the set of points z 1/k where z is in R)

Conjugation x [n] X (z ) R

Convolution x 1 [n] ∗ x 2 [n] X 1 (z)X 2 (z) At least the intersection of R 1 and R 2

First difference x[n] − x[n − 1] (1 − z −1 )X(z) At least the

intersection of R and |z| > 0 Accumulation P n

k=−∞ x[k] 1−z 1

1

X(z) At least the

intersection of R and |z| > 1

Differentiation nx[n] −z dX(z) dz R

in the z-Domain

Initial Value Theorem If x[n] = 0 for n < 0, then

x[0] = lim z→∞ X(z)

(10)

Table 10: Some Common z-Transform Pairs

Signal Transform ROC

1. δ[n] 1 All z

2. u[n] 1−z 1

1

|z| > 1

3. u[−n − 1] 1−z 1

1

|z| < 1

4. δ[n − m] z −m All z except

0 (if m > 0) or

∞ (if m < 0) 5. α n u[n] 1−αz 1

1

|z| > |α|

6. −α n u[−n − 1] 1−αz 1

1

|z| < |α|

7. nα n u[n] (1−αz αz

11

)

2

|z| > |α|

8. −nα n u[−n − 1] (1−αz αz

11

)

2

|z| < |α|

9. [cos ω 0 n]u[n] 1−[2 cos ω 1−[cos ω

0

]z

1

0

]z

1

+z

2

|z| > 1

10. [sin ω 0 n]u[n] 1−[2 cos ω [sin ω

00

]z ]z

11

+z

2

|z| > 1

11. [r n cos ω 0 n]u[n] 1−[2r cos ω 1−[r cos ω

0

]z

0

]z

1

+r

12

z

2

|z| > r

12. [r n sin ω 0 n]u[n] 1−[2r cos ω [r sin ω

0

]z

0

]z

1

+r

1 2

z

2

|z| > r

Referanslar

Benzer Belgeler

Unsupervised Learning (Self Organization

In this study, levels of depression and anxiety with adult attachment style within the obese and overweight individuals are analyzed by comparing to normal weight

During a surgery the surgeon cuts through tissues to reach the required place to operate and a lot of fluids are there inside the body such as blood or lymph, so the suction machine

CHAPTER 3 HISTORICAL EVOLUTION OF THE BUILT ENVIRONMENT AND ARCHITECTURAL CHARACTER OF THE WALLED CITY.. 3.1 The historical process of the walled city

[r]

[r]

3.2.2 European Union Policy in the Caspian Region:

There was a great importance of the media exclusive coverage of Al Jazeera channel for the first Falluja battle, which took place in Iraq in April 2004,