• Sonuç bulunamadı

Investigating patterns of carbon convergence in an uneven economy: the case of Turkey

N/A
N/A
Protected

Academic year: 2021

Share "Investigating patterns of carbon convergence in an uneven economy: the case of Turkey"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Structural

Change

and

Economic

Dynamics

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e/ s c e d

Investigating

patterns

of

carbon

convergence

in

an

uneven

economy:

The

case

of

Turkey

Sevil

Acar

a,b,∗

,

A.

Erinc¸

Yeldan

c

aDepartmentofEconomics,Altınbas¸University,Istanbul,Turkey

bBo˘gazic¸iUniversity-CenterforClimateChangeandPolicyStudies,Turkey

cDepartmentofEconomics,IhsanDogramaciBilkentUniversity,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11August2017

Receivedinrevisedform9February2018

Accepted29April2018

Availableonline7May2018

Keywords: Carbonconvergence Climatepolicy Emissionintensity Sectoralemissions Turkey

a

b

s

t

r

a

c

t

Turkeyisknowntosufferfromseverevolatilityinitsgrowthpatterns,aswellasfromtheuneven sec-toralgrowthandemployment.Volatileratesofemissionsacrosssectorsarefurthermanifestationsof thisunevenstructure.Thepurposeofthisstudyistwo-fold:first,wecheckfordynamicpatternsof con-vergenceofcarbondioxide(CO2)emissionsacrosssectors;andsecond,usingevidencefrompaneldata

econometrics,wesearchforthedeterminantsoftheseprocessesutilizingmacroeconomicexplanatory variables.Wefindthat,basedonvariousalternatecriteria,CO2emissionsdisplayconditionalconvergence

mainlydrivenbythebusinesscycle.Furthermore,acrosssectors,hightechnologyactivitiesdisplay con-vergenceovertime;andyet,mediumtechnologysectorsthatconstitutethebulkoftheaggregatevalue addeddisplayeitherpoorlyconvergentordivergenttrends.Theseresultsrevealthatmuchofthe emis-sionsconvergenceisdrivenbythebusinesscycleratherthantheworkingsofdiscretionarymitigation policy.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Environmentalconvergenceresearchhasbeeninspiredbythe conventionaleconomicconvergenceliterature,andhasused simi-larmethodologiestoinspectcross-countrydynamicsofemissions convergenceforvarioussamplesanddifferenttimespans.Theidea stemsfromthefactthattheevolution ofincome and pollution cannotbeseparatedfromeachother.Income generation gener-allyrequiresenergyuseandenergyisusuallygeneratedviathe extractionofnaturalresourcesandtheuseoffossilfuelsthatemit pollutantsandgasesincludingcarbon.Needlesstosay,theseare alldependentontheeconomicactivitiesofhouseholds,firmsand governments;andthechoicesoftheseactorsundercertainpolicy andtechnologyconstraintsplayaroleinchangingtheamountof emissionsthatarereleasedtotheatmosphere.

Inacontemporarysetting,CO2convergenceisespecially impor-tantinthisrespectduetotheongoingdiscussionsofinternational agreementsonemissionscutsandtheimplementationofpolicy toolssuchascarbontaxesorcarbontradingschemes.Aswidely

∗ Correspondingauthorat:DepartmentofEconomics,Altınbas¸University,

Istan-bul,Turkey.

E-mailaddresses:sevil.acar@altinbas.edu.tr,sevil.acar@boun.edu.tr(S.Acar),

yeldane@bilkent.edu.tr(A.E.Yeldan).

known,theParisAgreementaimstolimitglobalwarmingtobelow 2◦C, andfurthermotivate theinternationaleffortstolimititto 1.5◦C.Consequentlyitbearscollectiveresponsibilityforall coun-tries.Themostprominentfeatureofthepost-ParisAgreementera isthatallpartiestotheAgreementpledgesomeemission reduc-tiontargetsandadoptmeasurestocurbemissionsinaccordance withtheprincipleof“commonbutdifferentiatedresponsibilities andrespectivecapabilities”asstatedontheUnitedNations Frame-workConventiononClimateChange.Withinthisframework,all countriesneedtocontributetotheglobaleffortstofightclimate changebyvariousmeasuresandpoliciesinordertotransformtheir economicsectorsintolow-carbonforms.Hence,bothdeveloped anddevelopingcountrieshaveemissionreductionresponsibilities thatentaildecliningsectoralemissionsatdifferentiatedrates.

Put differently, a low-carbon economic development path acrosstheglobe requiresthat greenhousegas(GHG)emissions needtoconvergetolowerlevelsglobally,regionally,and secto-rially.Ifthereisweakevidenceofcarbonconvergenceinpercapita emissionsatthegloballevel,“globalagreementsthatimpose con-vergencemaygeneratelargere-distributionalimpacts,significant transfersofwealth,andthusaburdenoflargeadjustmentcosts” (Acaretal.,2018:7).Therefore,policymakersneedtooverreach singleallocationrulesandextendthepolicysphereacrossraising knowledgeabouttheimpactsofcombinedscenarios,and develop-ingnewapproachestoclimatechangeadaptationandmitigation. https://doi.org/10.1016/j.strueco.2018.04.006

(2)

Whatis more,“evenin thepossiblepresenceofcarbondioxide convergence, globalclimate policymust also consider whether countriesthentendtoconvergetohigherorlowerpercapita lev-els”(Acaretal.,2018:7).Giventhebroadconsensusthatthemain instrumentofclimatechangemitigationshouldfundamentallybe accompaniedwithincreasedefficiencyofenergyutilizationaswell astechnologicalandinstitutionalchangethatallowfordecoupling ofeconomicactivityfromenvironmentalpollution,thequestionof sectoralpatternsofcarbonemissionsbecomeofdueimportance.

Turkey is grappling withthe challenges of ensuring a cost-competitive energy supply for its growing population and the industrialsectors,ensuringenergysecurity,andreducingitsGHG emissions.Akeyhypothesisofthisstudyisthattheprojectedlackof decouplingbetweengrowthandGHGemissionsismostlydrivenby theunevenpatternsofgrowthandindustrializationacrossTurkey. Yeldanet al.(2013)suggestthat oneofthemaincausesofthe productivityslowdownofthe Turkisheconomy over the2010s isthedivergingpatternsofregionaldevelopmentandthe widen-inggapacrosshighversuslowincomeregions,aswellasmodern versustraditionalsectoralproduction(andconsumption)patterns. Besides,high-pollutionindustrieshavebeenrelocatingfromthe moredevelopedcitiesofthecountrytotheless-developedcentral andeasternregions.

On the other hand, across sectors Turkey is suffering from patterns of heterogeneity that are characteristic of many late-industrializing nations. Transfer of the rural labor surplus to modernsectorsoccursatanunevenpace,labormarketsremain fragmentedandheterogenoussimplybecausecapitalinmostcases remainsheterogenous.Underconditionsofdifferentiatedratesof growthsectorially,emissionstend tofollowdivergentpatterns, strainingpolicyeffectiveness.Webelievethatsuchrelocationof industriesthatbeardifferentenvironmentalpressurescouldalso playaroleininterregionalandintersectoraleconomicconvergence and/ordivergence.

Theanalysisofthecurrentstudydepartsfromindividual sec-torsinTurkey.Tothisend,wecheckforevidenceonconvergence ofCO2emissionsacrosssectorsutilizingvariousmethodsincluding paneldataeconometricsoversectoraldata.Theseexamplesare,of course,notgeneralizations,butshowhowcertainsectoral expe-rienceswouldfitthebigpictureofglobalcarbonconvergence(or divergence).Incontinuationofevidenceonconvergence,ifany, wesearch for theleadingindicators oftheseprocesses byway ofdifferentiatingtheproductionsectorsaccordingtotheirlevel oftechnologyandenergyutilization.Wedistinguishbetween pri-mary(low)technology,mediumtechnology,andhightechnology sectors.Besides,themainresultsaregivenaninterpretationfrom theperspectiveofthesectorswhichexperiencedthehighest trans-formationpressuresowingtohighoilpricesovertheinvestigated period(especiallyinthe2000s),e.g.coke,refinedpetroleumand nuclearfuel;chemicals andchemical products;and rubberand plastics.Hence,thisstudycontributestotheliteratureintwomain aspects.First,tothebestofourknowledge,thisisthefirststudy toundertakeananalysisofsectoralcarbonconvergenceinTurkey. Second,itemphasizestheneedtodistinguishbetweendifferent economicsectorswithrespecttotheirtechnologicalsophistication. Consequently,suchcategorizationhelpstotrackdiffering conver-genceand/ordivergencepatternsinCO2emissionsduetothefact thatsectorsmighthavevaryinglevelsoftechnologicalopennessor easeofaccesstoenergysavingtechnologiesthatmayhelpthem adoptexternaleconomiesofscaleandreducepollutionintensities. Thepaperisorganizedasfollows:Inthefollowingsection,we summarizetheGHGstatisticsofTurkeythroughthelens of cli-matechangebycastingcomparativefiguresfromtherestofthe world.We providea briefsurveyonthetheoreticalbackground andpertinentliteratureinsectionthree.Next,weintroduceour methodologyand data sources insection four.We study

alter-Fig.1.CO2emissions(metrictonspercapita).

Source:WorldDevelopmentIndicators(2018).

nativeconfigurationsofsectoralconvergenceinsectionfive.We summarizetheresultsandconcludeinsectionsix.

2. AglanceatTurkey’sgaseousemissionsthroughthelens

ofclimatechangeandeconomicgrowth

Turkey’s economy is known to display wide swings in its patternsofgrowthbothinaggregateandalsoinitssectoral compo-sition.Thestop-and-gopatternsofoutputgrowtharemanifested not onlyin terms of mini-businesscyclesof economic activity, butalsointermsofgaseousemissionsacrosssectors.Asof2015, Turkey’s totalemissions ofgaseous pollutants(in termsof car-bondioxideequivalent(CO2 eq.)is estimatedtobe475million tons (mtons). About three quarters of this is reported to arise fromenergy-relatedactivities,while61 mtonsareattributedto industrialprocesses.AccordingtodatafromtheTurkishStatistical Institute(2015),withtotalemissionsof6tonsofCO2eq.percapita in2015,Turkeydisplaysalowerfigureinemissionsinbothtotal andpercapitaaccountsthanmanycountries.TheWorldBank’s WorldDevelopmentIndicators(2018)revealthatCO2 emissions reached9.5,6.4,5metrictonspercapitafortheOECD,European Union(EU)andtheworldrespectivelyin2014,whereasTurkey’s percapitaCO2emissionswereat4.5metrictonspercapitainthe sameyear(seeFig.1).

However,Turkeyisalsoknowntodisplayoneofthehighest ratesofgrowthinCO2eq.emissionsamongtheemergingmarket economies.Turkey’saggregateCO2eq.emissionsincreasedfrom 214milliontonsin1990,to475milliontonsin2015,corresponding toacumulativeincreaseof122%duringtheperiod.Severalstudies projectthatthecountry’sGHGemissionswillkeepacceleratingin thenearfuture,climbing,forinstance,upto675milliontonsby 2030(AcarandYeldan,2016).ThissuggeststhatTurkeywillbeon adivergenttrendagainstmanyoftheemergingmarketdeveloping economiesaswellastheworldaveragesoverthenextdecades.

TheseassessmentsaresuccinctlynarratedinFig.2aandbbelow, wherewedisplaytherateofchangeinaggregateCO2eq.emissions againstchangesinrealGDPoverthepost-1990era.Theclose asso-ciationbetweentherealrateofchangeinCO2emissionsandthe realbusinesscyclesoverthisperiodisclearlyvisibleforTurkey, suggestingthatthemuchdesireddecouplingofgaseousemissions fromrealeconomicactivityhasnotyettakenplace.This obser-vationfurtherrevealsthelow elasticityofgaseous emissionsin responsetorealgrowth,andthatthereturnstoabatementpolicies hadratherbeendismal.ThisfactcontrastswiththeAsianemerging economies,whereasubstantialdecouplingofgaseousemissions fromrealGDPgrowthisobservable(seeFig.2aandb).

Besides,althoughCO2emissionsfromelectricityandheat pro-duction(asapercentageoftotalfuelcombustion)makethebulkof

(3)

Fig.2. aandb.CO2andGDPgrowthratesinTurkeyversusAsiancountries.

theemissionsinTurkeyaswellasintheOECD,EUandtheworld, thedistributionofemissionsacrossothersectorsshows variabil-ity.Forinstance,theshareofemissionsfromresidentialbuildings andcommercialandpublicservicesisfoundtobemuchhigherin TurkeythantheOECD,EUandtheworldaveragesin2012. Sim-ilarly,theshareofCO2emissionsfrommanufacturingindustries andconstructioniswellabovetheOECDandEUaverageswhereas itremainsbelowtheworldaveragein2012.Morestrikingly,while Turkey’semissionsfrommanufacturingdeclinedsharplyfollowing theglobaleconomicturmoil,thoseemissionsdidnotexperience seculardeclinesintheOECDortheEUonaverage.Emissionsfrom transportasashareoftotalfuelcombustion,ontheotherhand,are lowerthanthecorrespondingaverages(seeFig.3).Thedeclining trendoftransport-relatedemissionsinTurkeyfrom1960to2012

contrastswithincliningtrendsofsuchemissionsintheOECDand EU(WorldDevelopmentIndicators,2016).

Akeyhypothesisinthispaperisthattheprojectedlackof decou-plingbetweengrowthandemissionsmitigationismostlydriven bytheunevenpatternsofgrowthandindustrializationacross sec-torsinTurkey.Yeldanetal.(2013)suggestthatoneofthemain causesoftheproductivityslowdownoftheTurkisheconomyover the2010sisduetothedivergingpatternsofregionalandsectoral developmentandthewideninggapacrosshighversuslowincome regions,aswellasmodernversustraditionalsectoralproduction (andconsumption)patterns.Wearguethatthelackofmitigationat theaggregatenationallevelfindsitsmanifestationinthiswidening gapacrossregionalandsectoralstratificationofincome,production capacities,aswellastheconsequentcarbonandgaseousemissions.

(4)

Fig.3.SectoralCO2emissionsintheworld,EU,OECD,andTurkeyin2012(%oftotalfuelcombustion).

Source:WorldDevelopmentIndicators(2016).

3. Backgroundtheoryandliterature

Itis widelyknownthatconvergencein percapitaincome is rootedintheSolowmodel(Solow,1956), whichstipulatesthat countries(orregions)atlowerpercapitaincome levelstendto experiencehigher growth rates thanthe richerones. Thisidea isduetothetraditional(mainstream)assumptionofdiminishing marginalreturnstocapital.Theimplicationsofthishypothesishave beentestedfrequentlyintheempiricsofgrowthliterature.

Convergenceintermsofenvironmentalquality,asarecent con-cept,hasbeenstudiedinseveralrecentarticlesandreports.As pointed outby Brännlundet al. (2015),animportant aspectof this literature hasbeento analyzetheconditions under which aneconomycanachieve economicgrowthcombinedwith non-deterioratingenvironmentalquality.Onegeneralcondition,which emanatesfromtheoptimalityconditionsinadynamic neoclassi-calgrowthmodel,ispollution(ˇ)convergence,implyingthat,in thelong-run,pollutionshouldbeboundedaswellasapproacha steady-stateleveleveninthepresenceofpositivegrowthinper capitaGDP.

Inspiredbypreviouseconomicconvergenceresearch, environ-mentalconvergenceliteraturedevotesitselftoinvestigatewhether convergence acrossenvironmental indicators or theamount of pollutants(particularly,emissions) existsacrossvariousregions and time periods(e.g.List, 1999;Strazicich and List,2003; Lee andList,2004;Nguyen-Van,2005;Aldy,2006,2007;Bulteetal., 2007;Ezcurra,2007;WesterlundandBasher,2008;Camareroetal., 2008;PanopoulouandPantelidis,2009;BrockandTaylor,2010; andCamareroetal.,2013).Thebulkofthisresearchhasfocused oncarbonconvergence;byutilizingeithercross-countrydataor paneldatacomprisingofcountries(seePetterssonetal.(2014)for acomprehensivereview).Attheexpenseofover-generalization, themainfindingofthisresearchisthatconvergenceinpercapita carbondioxideemissionsisrealizedtosomeextentbetweenthe developed (OECD)countries,while evidencing relatively persis-tentgapsordivergenceatthegloballevel.Inaddition,studieson regionalconvergencehavealsoinvestigatedpatternsofpollutants acrossregions.Forinstance,List(1999)testsforconvergenceof SO2andNOxfor10USregionsduringtheperiod1929–1994and findslimitedevidenceofconvergence.Similarly,LeeandList(2004) conductunitroottestsforNOx inUS statesfrom1900to1994 demonstratingthatNOxemissionsarenot convergingsincethe seriesarenon-stationaryandcontainaunitroot.Aldy(2007)and

Bulteetal.(2007)arealsoamongthosewhoconcentrateonUS regionalemissions.

Researchonsectoralconvergence,however,remainsrelatively limited.Somestudiesfocus on“environmentalperformance”in search for environmentalconvergence. For instance,Brännlund etal.(2015)investigatetheconvergenceofCO2performanceacross the14Swedishmanufacturingsectorsfrom1990to2008.Theyfirst calculateanenvironmentalperformanceindexderivedfrom pro-ductionofboththegoodandbadoutputs.Thentheyestimatethe growthofthisindex(i.e.therateofchangeintheratiooftheinverse emissionintensity)basedontheinitialvalueoftheindexandother factorssuchassectoralcapitalintensity,fossilfueluse,fossilfuel price,valueaddedandEUETSparticipation.Theydetectconditional ˇ-convergenceinCO2performancetogetherwiththecontribution ofhigherfossilfuelpricestoimprovedCO2 performancein the Swedishindustrialsectorswhereastheyfindnosignificanteffect ofEUETSparticipation.Similarly,MorleoandGilli(2016)analyze theenvironmentalperformancesof14 manufacturingsectorsin theEU(excludingCrotia),using theratiobetweenvalueadded andcarbondioxideemissions(i.e.environmentalproductivity)as theperformanceindicatorfortheperiod1995–2009.Usingdata fromtheWorldInput-OutputDatabase(WIOD),theauthorsfind thatthereisevidenceforˇ-convergenceconditionalontherole ofvariablesliketradeopennessandpolicyforsectorial environ-mentalperformance.Thisimpliesthatsectorswithlowerinitial levelsofenvironmentalproductivitydemonstratehighergrowth ratesofenvironmentalproductivitythanthosethathavealready experiencedgoodenvironmentalperformances.Besides,theyfind thattradeopennessfostersenvironmentalproductivity,whereas technology,proxiedbythecompoundgrowthrateofthe knowl-edgestock(measuredthroughpatentapplications),appearstobe insignificant.Ontheotherhand,theydonotdetectanyevidence of␴-convergenceforthesamesample.

Recently, more studies have started to concentrate on sec-toralGHGemissionsinsearchforconvergence.WangandZhang (2014)studypercapitaCO2emissionsin28provincesandsix sec-torsinChina.Theyevidenceconvergenceinallthesectorsfrom 1996to 2010,and report differentfactorsthat lead to conver-gence.Forinstance,GDPpercapitaandpopulationdensityarethe determinantsofconvergenceintheindustrysectoraswellasin thetransportation,storage,postal,andtelecommunications ser-vicessector.ApartfromGDPpercapitaandpopulationdensity, tradeopennessalsoinfluencesconvergenceinthewholesale,retail,

(5)

trade,andcateringservices.Finally,convergenceofemissionsdue toresidentialconsumptionismainlyshapedbypopulationdensity. Anotherstudythatquestsforsectoralemissionsconvergence isMoutinhoetal.(2014),whichanalyzesCO2intensityofthe Por-tugueseindustry.Theauthorsfindsigmaconvergenceforallsectors aswellasprovideevidenceforthesignificantrolesoffossilfueluse andenergyconsumption indeterminingsectoralCO2 emissions andemissionsintensity.Withafocusonasinglesector,Moutinho (2015) divides thetourism sector into various subsectorswith respecttotheirenergyuseandinvestigatesthecarbonconvergence (anddivergence)patternsinthesesectors.Hedetectssigma con-vergencegenerallyinaccommodationandfoodservices,transport andwholesaleandretailtradesub-sectorswhenthedispersionof theiremissionintensitiesbetween1996and2003isconsidered; howeverhefindsdivergenceinthecorrespondingsectorsbetween 2003and2006.

IntheirsearchofwhetherthemeasurestakenwithintheEUto meetitscommitmentsforclimatechangemitigationhavehadthe desirableimpacts,Morales-Lageetal.(2017)questionif conver-genceoccurredovertheperiod1960–2012insectoralpercapita CO2emissionsintheEU.ByutilizingtimeseriestechniquestoCO2 dataforthe28membercountries,theauthorstestforstochastic andclubconvergence.Asaresult,theydetectmeagerevidenceof clubconvergenceduetothefactthatwhileseveralEUcountries keepincreasingtheiremissions,theothersdobetteratlimiting emissionsconsiderably.Yet,theauthorsobservemajordifferences amongthesectorsandsub-sectorsconsidered.For instance,the transportsector(asasub-sectorofenergy)isfoundtwodisplaytwo convergenceclubswithnineandsevenmembercountries respec-tively,whereasthereareeightnon-convergingcountriesinterms ofemissionsfromtransport.Similarly,twoconvergenceclubsofsix membercountrieseacharedetectedforthemanufacturingsector (again,asasub-sectorofenergy),whiletwodivergingclubswith twoandninecountriesrespectivelyareidentified.Finally, diver-genceforfifteen countriesisdetectedinemissionsfrompower generationandheating,which,ingeneral,isasignificantsource ofemissionsthroughouttheEU.

ApergisandPayne (2017)conducta similaranalysisfor fifty USstates(includingtheDistrictofColumbia)utilizingthe Phillips-Sulclub convergenceapproachfor theperiod1980–2013.Their findingsevidencethattherearemultipleconvergenceclubs“inthe aggregate,bysector(residential,commercial,industrial,transport, andelectricpower),and fortwoofthethreefossilfuelsources (naturalgasandcoal)withfullpanelclubconvergenceinthecaseof petroleum”(ApergisandPayne,2017:365).Theauthorsinterpret theseresultsasawaytorecognizetheneedtodesigndifferential environmentalpoliciesthatwouldidentifythedifferencesinthe convergencepathsofvarioussectors.

Oliveira and Bourscheidt (2017) investigate per capita GHG emissionsconvergence for a multi-sectorial panelof countries. Theymake useof random and fixedeffects panel datamodels aswellasArellanoandBond’s(1991)GMMestimator.Theyfind strongandrobustevidenceof“percapitaconvergenceinCH4 emis-sionsintheagriculture,food,andservicessectors”,whereas“the evidenceofconvergenceinCO2 emissionswasmoderateinthe followingsectors:agriculture,food,non-durablegoods manufac-turing,andservices”(OliveiraandBourscheidt,2017:402).

Tothebestofourknowledge,thecurrentstudyisthefirstof itstypeintheanalysisofsectoralcarbonconvergenceinTurkey. Despitenotsearchingforconvergence,Kumbaro˘glu(2011) con-ductsasectordecompositionanalysisofTurkey’sCO2emissions duringtheperiod1990–2007,andhighlightsthescaleeffectasthe majorsourceofemissiongrowthintheelectricity, manufactur-ing,and transportsectors.Heattributesemissiongrowthinthe householdandagriculturesectorstoenergyintensity.Comparing theleadinggrowthenginesoftheTurkisheconomyfortheperiods

1995–2002and 2003-2009,As¸ıcı(2015)alsoillustratesthatthe latterperiodischaracterizedbygrowthinmoreenergyintensive sectorsand“thecompositionoftheeconomicactivityis concen-tratedinmoreCO2andNOxintensivesectors”(As¸ıcı,2015:1738).

4. Methodology,dataandsources

Thenotionofconvergencecanbeinvestigatedthroughthree concepts:sigma()convergence,stochasticconvergence,andbeta (ˇ)convergence.

Tobeginwith, sigma()convergencetakesintoaccountthe dynamicsandtheintra-distributionalbehaviorofaselected emis-sionseries.BarroandSala-i-Martin(1992)describe-convergence asthedecreaseinthecross-sectionvarianceofemissionsovertime. Uptothisaim,cross-sectional varianceorstandarddeviationis simplyplottedtodetectconvergence.Otherstudieshaveexamined thebehaviorofrelativeemissions(REit),whererelativeemissions aremeasuredasthelogofonecountry’sorsector’semissions(y) attimetdividedbytheyearlysampleaverage ¯yt,asnotatedby CarlinoandMills(1993)asfollows:

REit=ln(yit/yt) (1)

Second, stochastic convergence focuses on the time series characteristicsoftheemissionseries.Usingtimeseriesanalysis, stochasticconvergencecanbeexploredtodetectwhethershocks toemissionsforcountryorsectorirelativetoanothercountryor sectorj(ortheaverageofthesample)aretemporary(seePettersson etal.(2014)forfurtherdetails).Ifthetimeseriesofinterestdoesnot containaunitrootandisproventobetrendstationary,theseries isfoundtobestochasticallyconverging.Manystudiesincluding StrazicichandList(2003);LanneandLinski(2004);McKitrickand Strazicich(2005);Romero-Ávila(2008); Westerlundand Basher (2008); Lee and Chang (2009); Nourry (2009), and Yavuz and Yilanci(2013)makeuseofvariousunitrootteststotrace stochas-ticconvergenceofemissionsindifferentsamplesofcountries.This methodcanalsobeimplementedforpaneldatabyusingpanelunit roottechniques,whichwillbeemployedinthenextsectionofthe currentstudy.

Third,beta(ˇ)convergenceoccurs“whentheemissionsofa poorercountry,withlowerinitialslevelsofemissionspercapita, tendtogrowfasterthantheonesfromarichcountryandthereisa catching-upeffectwiththemorepollutingcountries”(Pettersson etal., 2014:149). ˇ-convergencecanbe investigatedboth in a cross-sectionandpaneldatasetting.Thecross-sectionalapproach implies thatconvergence is examinedbyregressing thelogged periodgrowthrateofemissionsln(yit/yi0)(forthewholesample) ontheinitialloggedemissionlevels,lnyi0,andanerrortermεifor country,region,orsectoriasinbelow(Petterssonetal.,2014:150): ln(yit/yi0)=˛+ˇln(yi0)+εi (2) where εi is theerrortermfor countryorregioni. Accordingly, ˇ<0impliesconvergence.Similarly,panelˇ-convergencecanbe analyzedasinthefollowingequation(Petterssonetal.,2014:151): ln(yit/yi,t−)=˛+ˇln(yi,t−)+ıi+t+εit (3) whereln(yit/yi,t−)isthegrowthrateofemissionsbetweent− and t, and ı demonstrates sector-specific effects, and  repre-sentsperiod-specificeffects.Thismodelspecificationhelpstotest whetheremissiongrowthratesconvergeacrosscross-sectionunits bytime;i.e.whethertheyareeagertoslowdowninthelong-run astheyapproachtheirownlong-rungrowthpath.

Intheirmeta-analysisofthecarbonconvergenceliterature,Acar et al.(2018) detectthat the choiceof differentcarbon conver-genceapproachesmayendupwithdifferentresults.Forinstance, thechoice of theˇ-convergence concepttends toincrease the

(6)

Table1

Variablesusedintheanalysis.

Abbr. Definitionofthevariable Unit Datasource CO2 CO2emissions Gg(kt) WIOD VA SectoralValue-added TLs(million) WIOD KSTOCK Capitalstock TLs(million) WIOD EN Emissionrelevantenergyuse TJ WIOD

likelihoodofconvergence,whereasthechoiceofthestochastic con-vergenceconceptoftentendstoprovecarbondivergence.Besides, resultsmayvaryalotevenamongthestudiesthatfocuson stochas-ticconvergence,becauseutilizingdifferentunitroottestsinsearch forstationarityinemissionsseriesusuallyimpliesthatdifferent assumptionsprevail.AnoteworthyexamplefromPetterssonetal. (2014)isthat“accountingforstructuralbreaksandcross-sectional dependenciestendstofavourthestochasticconvergence hypoth-esisinstudiesbasedonpaneldata”(Acaretal.,2018).

Inourinvestigationofˇ-convergence,weutilizetwoseparate emissionsindicators,onebeingthegrowthrateofsectoral emis-sions(CO2)andtheotherbeingthegrowthofsectoralemission intensitydefinedastheratioofCO2 emissionstosectoralvalue added (CO2/VA).Themotivation behindstudying theformer is highlylinkedtotheabsoluteemissionreductiontargetsinregards totheglobalclimatechangeconcerns.Scientistshavewarnedthat lifeonEarthwillfaceunforeseeableadverseconsequencesandbe seriouslythreatenediftheincreaseinsurfacetemperatureexceeds 2◦C;thus,thescientificcommunitysetanultimatetargettolimit theriseinglobaltemperaturebythisamount(2◦C).Bringingthis aimtothesectorallevel, ideally,thetotal allowableCO2 emis-sionsshouldbeloweredsignificantly.Hence,sectoral“absolute” emissionsneedtoconvergetolowerlevelsinlinewiththeglobal climatechangeconcerns.Whiletheuseoftotalsectoralemissions issimpleandintuitive,ithassomeshortcomings.Forinstance,it doesnotrecognizeemissionreductionactionsimplementedbefore 1995,whichisthestartingyearforoursampleperiod,anditdoes noteasilyaccommodatechangesinasector’scircumstances.That’s whywealsomakeuseofrelativeemissions.Thereasonofthechoice ofsectoralvalueaddedasthedenominatorinthelatteristhatwe investigateaheterogeneoussampleofsectorsinouranalysis,and hencevalueaddedisusedasaproxyforeachsector’scontribution toGDP.

Alongside, we focus on the coefficient (ˇ) of the previous emissionsandemissionintensitiesrespectivelyinsearchfor con-vergence,wherethenullhypothesisofdivergenceisH0:ˇ=0forall i;andthealternativehypothesisofconvergenceisHa:ˇ<0forall i.AnegativesignforˇimpliesunconditionalconvergenceinCO2 emissions.Addingcontrolvariablessuchassectoralvalueadded (VA)measuredin fixed prices, realcapital stock (KSTOCK) and energyuse(EN)toEq.(3)entailstestingconditionalconvergence. Ourmodelsareestimatedviapanelfixed-effectsanddynamic panel(Arellano-Bond)specifications.Panelconvergencehas fre-quentlybeenaddressedbyeitherfixedorrandomeffects inthe literature.However,itisplausibletoincludesomedynamiceffects intothestandardpanelmodelsincegrowthofemissions accom-modatesdynamic effects withrespecttothepreviousemission growthrates.Ineconometrictheory,thesedynamiceffectscanbe integratedintothemodelviatheinclusionofalaggeddependent variableamongtheregressors.Whiledoingso,thelagged depen-dentvariablemightbecorrelatedwiththeerrortermespecially insmallsamples,whichcomesoutasaproblem.Aninstrumental variablespecificationispreferredtotacklethisproblemand,more specifically,theGeneralisedMethodofMoments(GMM)modelcan beemployedusingthelaggedvaluesofthevariablesintheoriginal modelasinstruments.Amongseveralapproachestodynamicpanel datamodels,Arellano-Bondspecificationis themostcommonly

Table2

Valueaddedsharesofsectorsaccordingtotechnologyutilization.

Value-addedshares

1995 2013

Primary/LowTechnologySectors 0.18 0.11 MediumTechnologySectors 0.74 0.81 HighTechnologySectors 0.08 0.08 Source:WIODdatabasedontheOECDclassificationoftechnologyadoption.

usedone.Itaccountsforindividualorfixedeffectsbydifferencing thedata.Besides,itisthemorefavourableapproachandresults inconsistentestimateswhenthenumberofcross-sections,N,is higherthanthenumberoftimeperiods,T(Baltagi,2005:136).

ThesectoralvariablesusedinthemodelsaredescribedinTable1 below:

AllourdataareadaptedfromtheWorldInput-OutputDatabase (WIOD)1,andarefurthersupplementedbytheTurkstatdataonCO

2 emissionsincludingemissionsfromenergy,industrialprocesses andproductuse,agriculture,andwaste.Thenamesandthe clas-sificationofthesectorsthatareunderconsiderationareprovided inAppendixA2.Thesummaryofdescriptivestatisticsforthe vari-ablesofinterestisprovidedinAppendixA3.Wefurtherclassify oursectorsintermsoftheirtechnologylevels,asprimary(low), mediumandhightechnology-drivenactivities.Thiscategorization isbasedontheOECDclassificationoftechnologyadoption.WIOD datarevealsthat,thebulkofthemanufacturingsectorsdisplay mediumtechnologycharacteristicsandtheshareofmedium tech-nologysectorsaccountfor81%oftotalvalueaddedin2013(see Table2).

Fig.4furtherdisplaysthedistributionofsectoralCO2emissions inTurkeyoverthesampleperiod.Inabsoluteemissions, Electric-ity,GasandWaterSupply(no.17)andTransport(no.21)standout astheprominentsectors,whereasLeatherandFootwear(no.5)is theleastemittingsector.Thetimedispersionoftheemissionsis thewidestforHotelsandRestaurants(no.20)aswellasWoodand ProductsofWoodandCork(no.6)asillustratedintheboxplot. Theboxesareboundedbythefirstandthirdquartilesofthedata, enclosingthemiddle50%ofthesample.Thedotsillustratethe out-liers;thelinesacrosseachboxshowthemedians;andthe“+”signs indicatethe“mean”observationsforeachsector.Itisrevealedthat thesectorsunderconsiderationbehavequitedifferentlyintheir meanandmedianemissionsduringthe1995–2013period.When wecomparesectoralemissionswithrespecttosectoralvalueadded amounts,Coke,Refined Petroleumand NuclearFuel(no.8)and Electricity,GasandWaterSupply(no.17)arenoticeablythe sec-torswhichareperformingbadly.Othereconomy2(no.22)releases thelowestamountofCO2pervalueaddedamongothersectors.

5. Empiricalresultsonpatternsofconvergenceofsectoral

gaseousemissions

5.1. -convergence

Inordertoperformadistributionalanalysisofemissionsinthe Turkishsectors,weplotthenaturallogarithmoftheratioofCO2 ineachsectordividedbyaverageCO2 emissionsinallsectorsin thatyear,i.e. logrelativeemissions.Tothatend, Fig.5

demon-1SeeTimmeretal.(2015)andthewebsitehttp://www.wiod.org/newsite/home.

htmforthedetailsoftheWIOD.

2Othereconomyiscomprisedofthefollowingsectors:Postand

Telecommu-nications;FinancialIntermediation;RealEstateActivities;RentingofMachinery

andEquipmentandOtherBusinessActivities;PublicAdministrationandDefence;

CompulsorySocialSecurity;Education,HealthandSocialWork;OtherCommunity,

(7)

Fig.4.SectoralCO2emissionsdistributionfor1995–2013. Note:Thenamesofthesectorsfrom1to22correspondingtothex-axisareprovidedinAppendixA2.

Fig.5. EvolutionoflogrelativeCO2emissionsineachsector,1995–2013.

stratessignsofconvergencetosomeextent,especiallyaccelerating followingtherecentglobalcrisis.Ithastobenoted,inthis junc-ture,thatthe2008/09crisishadaprofoundimpactonthenatureof thisconvergence.Fig.6isadirectillustratorofthisphenomenon, whereaveragelogrelativeCO2emissionsforallsectorsincrease initially,makeapeakin2003,declinesubstantiallyafterwards,and hitthebottomin2008.Therehasbeenarecoveryinmeansectoral emissionsfollowingtheglobalturmoil.

Finally,assuggestedbyBarroandSala-i-Martin(1992),Table3 displays-convergenceformulatedby“standarddeviation”,which servesasameasureofcross-sectionalvariationofemissionsover time.Apparently,thestandarddeviationofemissionsdecreased by7%from1995to2013,documentingsigmaconvergenceinthe sectors.

5.2. Stochasticconvergence

Inordertotestforstochasticconvergence,wefirsttestfor cross-sectionaldependenceforthethreerelevantvariablesderivedfrom thesample:naturallogofCO2emissions(LNCO2),CO2emissions asashareofsectoralvalueadded(CO2/VA),andlogrelativeCO2 emissions(LNRELCO2).Theresultsaredisplayedin A4. Accord-ingly,werunfirstgenerationpanelunitroottestsforCO2/VAas wecannotrejectcross-sectionindependence,whereaswerun sec-ondgenerationpanelunitroottestsforLNCO2andLNRELCO2as thecross-sectionsforthesevariablesexhibitcross-section depen-dence.

Amongseveralfirstgenerationpanelunitroottests,Imetal. (2003)andBreitung(2000)tests,whicharethetwowidelyused

(8)

Fig.6.MeanlogrelativeCO2emissionsforallsectorsbyyear.

Table3

Standarddeviationofcross-sectoralCO2emissionsfrom1995to2013.

1995 2013 %Changebetween1995and2013 Standarddeviationofcross-sectoral(log)CO2emissionsfrom1995to2013 1,66 1,55 −7%

panelunitroottests,areemployedhere.Themethodologyisas follows.ConsideringanAR(1)processforpaneldata,yitismodeled as:

yit=iyit-1+Xit␦i+εit (4)

wheretandistandfortimeandcross-sectionunits,respectively. IndividualunitroottestssuchasIPS, Fisher-ADF,andFisher-PP allowdifferingiacrosscross-sections,whereascommonunitroot testssuchasLLC,BreitungandHadriassumeacommonunitroot process,therebytakingidenticali=acrosscross-sections,i.e.for alli.IPStestprovidesindividualtestsforeachseries.Thenulland alternativehypothesesoftheIPStestareasfollows:Ho:Allpanels containunitroots.Ha:Somepanelsarestationary.Inotherwords,IPS assumesthatatleastoneoftheseriesisstationaryunderthe alter-nativehypothesis.Ontheotherhandthecorrespondinghypotheses fortheBreitungunit-roottestarestatedasfollows:Ho:Panels con-tainunitroots.Ha:Panelsarestationary.Breitungillustratesthatthe IPStestssuffersfromasignificantlossofpowerwhen individual-specifictrends are includedtothe test and hisalternative test statistic“doesnotemployabiasadjustment”(Baltagi,2005:243). Assuch,theBreitungtestimpliesstrongerresultsthantheIPS.In bothtests,therejectionofaunitrootandthepresenceof station-arityimplyconvergence,whereasthenon-rejectionofaunitroot impliesdivergence.

For LNCO2 and LNRELCO2, we employ Pesaran’s CADF test (2007), which is a second generationpanel unit root test. The testallowstheindividualautoregressiverootstodifferacrossthe cross-sectional unitsandis normallydistributed underthenull hypothesisofnon-stationarity.

According to Table 4, the IPS and Breitung test results for CO2/VAsuggestthatunitrootscannotberejectedinthemajority ofthespecifications,implyingnon-stationarityandhence, stochas-ticdivergence.Howeverbothtestsimplyconvergencewhenthe seriesarede-trended.Pesaran’sCADFtestalsoshowsthatsectoral emissionsandrelativeemissionsinlogarithmsdonotconvergeas

thenull hypothesisofunitrootscannotberejected.Tosumup, theseresultsprovidestrongsupportforadivergingpatternin sec-toralemissionlevelsandpoorevidenceforconvergenceinemission intensity.

5.3. ˇ-convergence

Asdescribedinsectionfour,ˇ-convergenceisanalyzedviapanel dataregressiontechniqueshere.Table5demonstratestheresults oftheanalyseswhichareundertakenforthewholesample.Models 1FEand1ABrepresentFixedEffectsandDynamicGMM (Arellano-Bond)modelsrespectivelywiththegrowthrateoflogsectoralCO2 emissionsasthedependentvariable;whereas2FEand2AB repre-sentthecorrespondingmodelswithgrowthrateofCO2/VAasthe dependentvariable.Accordingly,theindependentvariablesarein naturallogarithmsinmodels1FEand1AB,whiletheyare trans-formedintosharesinvalueaddedofeachsectorinmodels2FEand 2AB.

Theresultsimplyconditionalˇ-convergenceinallcases,with theexceptionof1FE,withslightdifferencesregardingtheeffects oftheexplanatoryvariables.It appearsthatsectoralenergyuse increasestheemissionsgrowthratesignificantlywhereas indus-trialvalueaddeddecreasesemissionsgrowthratecontributingto convergenceinmodel1AB.Thismightstemfromtheexistenceof economiesofscaleastheindustryproduceshighervalueadded. Thatistosay,whenthesectorshavealoweroutputlevel,they wouldproducesomeamountofthe“bads”,i.e.emissions.As sec-torsgrow,theydonotnecessarilyincrease theiramountofCO2 proportionallytotheiroutputgrowthsincetheywouldrequire rel-ativelylessenergyorotherinputsperoutputastheproduction scaleincreases.Besides,sectoralcapitalstockhasaslightly signifi-cantpositiveimpactonthegrowthofemissionsinonlyoneofthe models(1AB).

Finally,Table6displaystheresultsoftheconvergenceanalysis inthreesectorsclassifiedaccordingtotheirtechnologylevels:

(9)

pri-Table4

Panelunitroottests.

LNCO2 CO2/VA LNRELCO2

IPSteststatistic Withadriftandtrend −0.7533(0.2256) Withoutadrift,withtrend −2.3591(0.0092)

Withadrift,withouttrend −1.7694(0.0384)

Withoutadriftandtrend 2.8945(0.9981) Breitungteststatistic Withadriftandtrend 0.4861(0.6866) Withoutadrift,withtrend 0.2554(0.6008) Withadrift,withouttrend −1.8267(0.0339)

Withoutadriftandtrend 1.2558(0.8954)

Pesaran’sCADFteststatistic Constant −0.426(0.335) −1.247(0.106) Constantandtrend −0.0667(0.252) −0.942(0.173) p-valueinparentheses.

Table5

Fixedeffectsanddynamicpaneldataestimation(Arellano-Bond)resultsforthewholesample.

(1FE) (1AB) (2FE) (2AB)

GrowthofCO2 GrowthofCO2 GrowthofCO2/VA GrowthofCO2/VA

CO21 −0.190*** −0.222*** −0.012*** −0.006** (−2.73) (−3.98) (−4.35) (−2.41) VA 1 −0.049 −0.053* (−1.08) (−1.94) KSTOCK1 0.009 0.053* 0.00001 −0.0002 (0.19) (1.91) (0.03) (−0.84) EN1 −0.112 0.197*** 0.0009*** 0.0006** (−1.23) (3.20) (3.14) (2.40) Constant 3.059*** −0.469** 0.126*** 0.053** (4.89) (−2.03) (2.77) (2.11) Observations 396 396 396 396 F 21.26 12.90 P>F 0.000 0.000 r2o 0.017 0.006 chi2 20.95 7.19 P>chi2 0.000 0.066 Sargan 315.24 316.37 sarganp 0.847 0.795 ar1 −1.97 −11.06 ar1p 0.049 0.000 ar2 0.68 0.55 ar2p 0.495 0.585

tstatisticsinparentheses.Denotations(F:F-Value,r2o:OverallR-Square,chi2:Chi-Square,p:P-Value).

* p<0.1.

** p<0.05.

***p<0.01.

Table6

Fixedeffectsestimationresultsforsectorsclassifiedwithrespecttotechnology.

LOWTEC Growthof CO2 MEDTEC Growthof CO2 HITEC Growthof CO2 LOWTEC Growthof CO2/VA MEDTEC Growthof CO2/VA HITEC Growthof CO2/VA CO21 −0.426* −0.124 −0.694*** −0.050 −0.009** −0.021** (−1.71) (−1.54) (−2.94) (−1.66) (−2.52) (−2.46) VA1 −0.363 −0.014 −0.054 (−0.90) (−0.18) (−0.87) KSTOCK1 0.287 −0.025 −0.131 0.001 −0.001 0.006** (1.30) (−0.38) (−0.92) (0.31) (−1.12) (2.55) EN1 0.218 −0.183 0.376 0.003 0.000 0.001 (0.82) (−1.65) (1.33) (1.03) (0.56) (1.55) Constant 0.499 3.416*** 3.319** 0.189 0.289*** −0.055 (0.33) (4.20) (2.62) (0.54) (3.41) (−0.48) Observations 54 270 72 54 270 72 F 1.813 13.199 8.074 2.236 11.565 4.584 p>F 0.117 0.000 0.000 0.066 0.000 0.001 r2o 0.000 0.013 0.075 0.098 0.005 0.015

tstatisticsinparentheses.Denotations(F:F-Value,chi2:Chi-Square,p:P-Value,r2o:OverallR-Square).

* p<0.1.

** p<0.05.

(10)

mary(low)technology(LOWTEC),mediumtechnology(MEDTEC) andhightechnology(HITEC).Asthenumberofobservationsdoes not satisfy model assumptions, we are not able to conduct a dynamicanalysisforthespecifiedsectors.Henceweproceedwith panelfixedeffects.

Theresultsimplythatthesampleofmedium-techsectorsdoes notsupportˇ-convergenceinCO2emissionlevels,whereas low-andhigh-techsectorsexperienceabsoluteconvergence(although low-techsectors donot havea highlysignificantcoefficientfor theirpastemissions,implyingweakerconvergence).Thelackof support for convergence in the absolute level of emissions of mediumtechnologysectors,whichconsistofthebulkofthe Turk-ishmanufacturingindustries,isclearlythemaindrivingfactorin therelativelylow degreeof convergenceat theaggregatelevel (observedviathecorrespondingbetacoefficientsabove).

Whenwedealwithemissionintensities(CO2/VA)instead,we findthatthemedium-techandhigh-techsectorsprovideevidence forconvergencewhilelow-techsectorsdonot.Itcanbearguedthat theconvergenceasobservedwithinthehightechnologysectorscan beattributedtotheirdynamicandopencharacter.Opennessand relativeeaseinaccesstoadvancedtechnologywouldhavehelped thesesectorstointernalizetheexternaleconomies ofscaleand therebyreducetheirpollutionintensities.Besides,owingtohigh oilpricesover theinvestigated period(especiallyinthe2000s), high-techsectors,whichareatthesametimeoil-intensive sec-torssuchascoke,refinedpetroleumandnuclearfuel;chemicals andchemicalproducts;andrubberandplastics,experiencedhigh transformationpressures.Ontheotherhand,capitalstocksinthe high-techsectorsplayapositiverolesoastoacceleratethegrowth rateofCO2/VA.

6. Conclusion

Inthispaperwesearchedfortheexistenceandnatureof conver-genceofcarbondioxideemissionsfortheTurkisheconomyunder conditionsofunevengrowth.Weappliedaseriesof economet-ricteststodeducepatternsofconvergence,bothattheaggregate –economy-widelevel,aswellasacrosssectors.

Thesimplestmetricweutilizedwasthemeasureofstandard deviationsfromthemean,i.e.,the“-convergence”.Thismeasure wasfoundtoindicateconvergenceintheaggregate.Acloser inves-tigationrevealsthatthemaindrivingfactorbehindthisresulthad beenthebusinesscycle.Inparticular,therepercussionsofthe2009 globalcrisisareobservedtohaveaprofoundimpacton accelerat-ingtheconvergenceoftheCO2emissionsbywayofeveningout thefluctuationsoftheaggregateeconomicactivity.

Second,wefocusedonthedynamicsofstochasticconvergence. ThisanalysiswascarriedbothonthelevelofCO2emissions,and alsoonCO2intensity,i.e.,CO2pervalueadded(CO2/VA).Wefound thatsectoralCO2emissionsperunitofvalueaddeddepict stochas-ticconvergence(whende-trended)corroboratingourfindingthat theCO2emissionsfollowthebusinesscycle.Attheaggregatelevel ofCO2emissions,however,patternsofconvergencearedissipated andgivewaytoadivergingtrend.Wethensearchedforevidence onˇ-convergencetestedinconditionalterms.Hereweregressedthe rateofgrowthofthelevelofCO2emissionsontheoneperiodlagged valueof thefollowing explanatoryvariables:CO2, valueadded, physicalcapitalstock,andenergyutilization.Inasecondvariantof thismodel,therateofchangeofCO2/VAintensitieswereregressed againsttheperunitvalueaddedratiosofthesamevariables,K/VA andEN/VA.Ourresultsimpliedconditionalconvergenceinmost ofthecasesspecified.Energyuseappearedtobethemost promi-nentindicatorthatdroveemissionsgrowthandemissionintensity growthinthewholesample.

Finally,wedistinguishedtheaggregateeconomyundera three-tiersectoralspecificationbasedontheirtechnologycharacteristics: low,medium,andhigh.Wefindthatwhilethehightechnology sec-torsdisplaystrongconvergence,themediumtechnologysectors –thebulkofTurkey’seconomyaccountingfor80%ofthe aggre-gatevalueadded,doesnotsupportˇ-convergenceinCO2emission levels.Ourresultsfurtherrevealedthatthephysicalcapitalstock failstogenerateastatisticallysignificantimpactonCO2emissions (exceptitspositiveroleonthehigh-techsectors’emission inten-sitygrowth).Thisisanunexpectedresultgiventheratherstrong capitalintensityoftheTurkishgrowthpath,especiallyover the 2000s.Weinterprettheseobservationsasaresultofthelackof anyviablede-couplingduetothepersistentstructuralrelianceon energyresourceswithheavycoalandotherfossilfuelintensities. Nevertheless,ourresultsregardingphysicalcapitalareconsistent withBrännlundetal.(2015),whostudycarbondioxide conver-genceacrossSwedishindustrialsectorsandfindthathighercapital intensityintheselectedindustriesgivesrisetosloweremissions convergence.Theyexplainthisfindingbythefactthatthe replace-mentofindustrialequipment,buildings,andinfrastructurewith lowcarbononesisusuallycostlyandtime-consuming,leadingto slowerornocarbonconvergenceforthecapital-intensivesectors. To sumup,ourfindings do not supportanyconclusive evi-denceonthepatternsofconvergence.Testsofunitrootsindicate thatCO2/VAshowsdivergence,withevidenceofconvergenceonly whentheseriesarede-trended.Yet,wefinddiverging patterns acrosssectorsonthebasisof“aggregate”emissions.If,ontheother hand,weintroduceanalysesof“conditional”beta-convergence,we findconvergence.Thediversityoftheseresultsleadustosuggest thatsectoralemissionsfollowingeneralthebusinesscyclerather thanindicatingde-couplingofsectoralemissionsfrom correspond-ingvalueaddedincreases.

Still,thereareimportantaspectstoconsiderthatmayfurther advancesuchanalyses.Thefirstimportantpointisthatcarbon con-vergenceisahistoricalprocess.Inotherwords,carbonconvergence evolvesovertime.Thisimplies,inturn,thattherelevant histori-calcontextoftheprocessofsectoralcarbonconvergenceislikely tochange.However,itisdifficulttodeterminewhattherelevant historicalcontextexactlyis.Worldenergypricesareonesuch fac-tor,butalsoglobalpowerpoliticsandenergysecurityissuesare certainlyprimecandidatesespeciallywhenemissionsemanating fromoilcombustionareconsidered.Thisbringsus toasecond importantpointwhencarbondioxideconvergenceisconsidered; namelythattheprimaryenergysourcesthatgiverisetocarbon emissions(oil,coalorothersources)arerelatedtopartlydifferent technologies,andhence,sectorsthatutilizetheafore-mentioned sourcesofenergyastheirinputsareexpectedtoexperience dif-ferent transformations.Forinstance,highoilpricesconstitutea powerful transformation pressure and an incentive for techno-logical changein theoil-consumingsectors. Aresponsetosuch transformationpressureswouldbeconsistentwithclearevidence forˇ-convergenceinhigh-techandmedium-techoil-consuming sectors.

Severalpolicyimplicationscouldbederivedfromtheseresults inrelationtothemeasuresappliedtocurbemissionsinhigh emit-tingsectors.First,asectoralfocusshouldbethemaincentreof emissionreductiontargetsiftheaimsof‘greening’aretaken seri-ously.Inouranalyses,mostlythelow andmediumtechsectors provetobeexperiencing non-convergingpatternsin emissions. Highemittersliketransport,electricity,gasandwatersupply sec-torsneedtobethemainsectorsifthecountryintendstoimplement effectivepoliciestomitigateCO2emissions.Second,asthe emis-siongrowthratesaremostlyattributabletotheenergyintensities inthesectors,itappearsnecessarytoreconsiderthepatternsof energyusetakingintoaccountthefactthatfossilfuelsarecurrently themostdominantenergysourcesforthesesectors.Third,as

(11)

tech-nologylevelmakesadifferenceintheconvergencecharacteristics, the countrycould try to transform or diversify its technologi-cal sophistication towards cleaner options. Repetto (1990: 38) suggeststhat “technologiesthatreduceenvironmentaldamages contributeto economic productivity,even though theyare not costlesstoinstallortooperate”.Demotivatingordisincentivizing technologicalchangesthattriggerthereleaseofharmfulemissions intotheenvironmentorthatfacilitatetheintensiveuseofnatural resourceinputsmightbeadesirablepolicyoption.

Lastbutnottheleast,thereisaclearneedforfurther environ-mentalpoliciesandregulationstocopewithfuturecarbondioxide emissionsacrossthesectors.AsectoralCO2convergenceanalysis ofthiskindmightprovideinsightsabouttheimpactsofrelevant energyandclimatepoliciesonindustrieswithdiffering characteris-ticswithrespecttotechnology,capitalcompositionandenergyuse. Weproposethattheefficacyofenvironmental(andenergy)policy ultimatelyrestswiththerateofconvergenceofsectoralemissions alongwithawarranteddownwardtrendinemissionsperunitof output.

Acknowledgements

Theauthorsgratefullyacknowledgetheresearchsupport pro-videdbyTUBITAK, undergrantno114K941.Apreviousversion ofthepaperwaspresentedattheMiddleEastEconomic Associ-ation(MEEA)meetingsinconjunctionwiththeASSAConference, SanFrancisco,inJanuary2016.WearegratefultoMineC¸ınarand theparticipantsoftheMEEAfortheirinvaluablecommentsand toYasinKütükforhisinvaluableassistancewiththeeconometric analysis.Needlestostate,noneofthembearsanyresponsibilityfor theresultsandviewsexpressedinthepaper.

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, intheonlineversion,atdoi:https://doi.org/10.1016/j.strueco.2018. 04.006.

References

Acar,S.,Söderholm,P.,Brännlund,R.,2018.Convergenceofpercapitacarbon

dioxideemissions:implicationsandmeta-analysis.Clim.Policy18(4),

512–525https://doi.org/10.1080/14693062.2017.1314244.

Acar,S.,Yeldan,A.E.,2016.EnvironmentalimpactsofcoalsubsidiesinTurkey:a

generalequilibriumanalysis.EnergyPolicy90,1–15,http://dx.doi.org/10.

1016/j.enpol.2015.12.003.

Aldy,J.E.,2006.Percapitacarbondioxideemissions:convergenceordivergence?

Environ.Resour.Econ.33(4),533–555.

Aldy,J.E.,2007.Divergenceinstate-levelpercapitacarbondioxideemissions.Land

Econ.83(3),353–369.

Apergis,N.,Payne,J.E.,2017.PercapitacarbondioxideemissionsacrossU.S.states

bysectorandfossilfuelsource:evidencefromclubconvergencetests.Energy Econ.63,365–372.

Arellano,M.,Bond,S.,1991.Sometestsofspecificationforpaneldata:MonteCarlo

evidenceandanapplicationtoemploymentequations.Rev.Econ.Stud.58, 277–297.

As¸ıcı,A.A.,2015.OnthesustainabilityoftheeconomicgrowthpathofTurkey:

1995–2009.Renew.Sustain.EnergyRev.52,1731–1741.

Baltagi,B.H.,2005.EconometricAnalysisofPanelData,3rdedition.John

Wiley&SonsLtd.,WestSussex.

Barro,R.J.,Sala-I-Martin,X.,1992.Convergence.J.Polit.Econ.100(2),223–251.

Brännlund,R.,Lundgren,T.,Söderholm,P.,2015.Convergenceofcarbondioxide

performanceacrossSwedishindustrialsectors:anenvironmentalindex approach.EnergyEcon.51,227–235.

Breitung,J.,2000.Thelocalpowerofsomeunitroottestsforpaneldata.In:Baltagi,

B.(Ed.),NonstationaryPanels,PanelCointegration,andDynamicPanels, AdvancesinEconometrics,vol.15.JAI,Amsterdam.

Brock,W.A.,Taylor,M.S.,2010.Thegreensolowmodel.J.Econ.Growth15,

127–153.

Bulte,E.,List,J.A.,Strazicich,M.C.,2007.Regulatoryfederalismandthedistribution

ofairpollutantemissions.J.Reg.Sci.47(1),155–178.

Camarero,M.,Picazo-Tadeo,A.J.,Tamarit,C.,2013.ArethedeterminantsofCO2

emissionsconvergingamongOECDcountries?Econ.Lett.118,159–162.

Camarero,M.,Picazo-Tadeo,A.J.,Tamarit,C.,2008.Istheenvironmental

performanceofindustrializedcountriesconverging?A‘SURE’approachto testingforconvergence.Ecol.Econ.66(4),653–661.

Carlino,G.A.,Mills,L.O.,1993.AreU.S.regionalincomesconverging?J.Monet.

Econ.32,335–346.

Ezcurra,R.,2007.Istherecross-countryconvergenceincarbondioxideemissions?

EnergyPolicy35(2),1363–1372.

Im,K.S.,Pesaran,M.H.,Shin,Y.,2003.Testingforunitrootsinheterogeneous

panels.J.Econometr.115,53–74.

Kumbaro˘glu,G.,2011.AsectoraldecompositionanalysisofTurkishCO2emissions

over1990-2007.Energy36,2419–2433.

Lanne,M.,Linski,M.,2004.Trendsandbreaksinper-capitacarbondioxide

emissions,1870-2028.EnergyJ.25(4),41–65.

Lee,C.C.,Chang,C.P.,2009.Stochasticconvergenceofpercapitacarbondioxide

emissionsandmultiplestructuralbreaksinOECDcountries.Econ.Model.26, 1375–1381.

Lee,J.,List,J.A.,2004.Examiningtrendsofcriteriaairpollutants:aretheeffectsof

governmentalinterventiontransitory?Environ.Resour.Econ.29(1),21–37.

List,J.A.,1999.HaveairpollutantemissionsconvergedamongU.S.Regions?

Evidencefromunitroottest.South.Econ.J.66(1),144–155.

McKitrick,R.,Strazicich,M.C.,2005.Stationarityofglobalpercapitacarbondioxide

emissions:implicationsforglobalwarmingscenarios.In:WorkingPapers 0503.UniversityofGuelph,DepartmentofEconomicsandFinance,Ontario, Canada.

Morales-Lage,R.,Bengochea-Morancho,A.,Camarero,M.,Martínez-Zarzoso,I.,

2017.StochasticandclubconvergenceofsectoralCO2emissionsinthe

EuropeanUnion.In:UniversitatJaumeIWorkingPapers,No:2017/1.

Morleo,G.,Gilli,M.,2016.EmissionidiCO2neiPaesieuropei:un’analisiempirica

sullaconvergenzatrasettorimanifatturieri.CO2EmissionsinEurope:An

EmpiricalAnalysisontheConvergenceamongManufacturingSectors]Rivista dieconomia,culturaericercasociale5,77–103.

Moutinho,V.,2015.Isthereconvergenceandcausalitybetweenthedriversof

energy-relatedcarbondioxideemissionsamongthePortuguesetourism industry?Int.J.EnergyEcon.Policy5(3),828–840.

Moutinho,V.,Robaina-Alves,M.,Mota,J.,2014.Carbondioxideemissionsintensity

ofPortugueseindustryandenergysectors:aconvergenceanalysisand econometricapproach.Renew.Sustain.EnergyRev.40,438–449.

Nguyen-Van,P.,2005.DistributiondynamicsofCO2emissions.Environ.Resour.

Econ.32(4),495–508.

Nourry,M.,2009.Re-examiningtheempiricalevidenceforstochasticconvergence

oftwoairpollutantswithapair-wiseapproach.Environ.Resour.Econ.44(4), 555–570.

Oliveira,G.,Bourscheidt,D.M.,2017.Multi-sectorialconvergenceingreenhouse

gasemissions.J.Environ.Manage.196,402–410.

Panopoulou,E.,Pantelidis,T.,2009.Clubconvergenceincarbondioxideemissions.

Environ.Resour.Econ.44(1),47–70.

Pesaran,2007.Asimplepanelunitroottestinthepresenceofcross-section

dependence.J.Appl.Econ.22(2),265–312.

Pettersson,F.,Maddison,D.,Acar,S.,Söderholm,P.,2014.Convergenceofcarbon

dioxideemissions:areviewoftheliterature.Int.Rev.Environ.Resour.Econ.7 (2),141–178.

Romero-Ávila,D.,2008.Convergenceincarbondioxideemissionsamong

industrialisedcountriesrevisited.EnergyEcon.30(5),2265–2282.

Repetto,R.,1990.Environmentalproductivityandwhyitissoimportant.

Challenge33,35–38.

Solow,R.,1956.Acontributiontothetheoryofeconomicgrowth.Q.J.Econ.70(1),

65–94.

Strazicich,M.C.,List,J.A.,2003.AreCO2emissionlevelsconvergingamong

industrialcountries?Environ.Resour.Econ.24(3),263–271.

Timmer,M.P.,Dietzenbacher,E.,Los,B.,Stehrer,R.,deVries,G.J.,2015.An

illustrateduserguidetotheworldinput–outputdatabase:thecaseofglobal automotiveproduction.Rev.Int.Econ.23,575–605.

TurkishStatisticalInstitute(TurkStat),Availableat2015.GreenhouseGas

EmissionsInventory,2013.http://www.turkstat.gov.tr/PreHaberBultenleri.

do?id=18744.

Wang,J.,Zhang,K.,2014.Convergenceofcarbondioxideemissionsindifferent

sectorsinChina.Energy65,605–611.

Westerlund,J.,Basher,S.A.,2008.Testingforconvergenceincarbondioxide

emissionsusingacenturyofpaneldata.Environ.Resour.Econ.40(1),109–120.

WorldDevelopmentIndicators,2018.Dataaccessedon2ndFebruary,2018.

Retrievedfromhttp://data.worldbank.org/indicator.

WorldDevelopmentIndicators,2016.Dataaccessedon28thFebruary,2016.

Retrievedfromhttp://data.worldbank.org/indicator.

WorldInput-OutputDatabase(WIOD),2015.WorldInput-OutputTables.Available

athttp://www.wiod.org/newsite/home.htm.

Yavuz,N.C.,Yilanci,V.,2013.Convergenceinpercapitacarbondioxideemissions

amongG7countries:aTARpanelunitrootapproach.Environ.Resour.Econ.54 (2),283–291.

Yeldan,A.E.,Tas¸c¸ı,K.,Voyvoda,E.,Özsan,E.,2013.Escapefromthemiddleincome

Şekil

Fig. 1. CO 2 emissions (metric tons per capita).
Fig. 2. a and b. CO 2 and GDP growth rates in Turkey versus Asian countries.
Fig. 3. Sectoral CO 2 emissions in the world, EU, OECD, and Turkey in 2012 (% of total fuel combustion).
Fig. 5. Evolution of log relative CO 2 emissions in each sector, 1995–2013.
+2

Referanslar

Benzer Belgeler

In a magnetic particle imaging (MPI) scanner, utilizing a tunable gradiometer receive coil can aid in achieving greater degree of decoupling of direct feedthrough signal.. However,

Türk halk Ģiirinde vezin karĢılığı ölçü, daha seyrek olarak da tartı terimi kullanılır. Türk Ģiirinin ölçüsü, hece ölçüsü‟dür; çağlar boyunca

Birincisi kadar, belki on­ dan da daha çok yürekler acısı olan ikinci görünüş de şudur:. Mahmut Yasarinin, fikir ve duygularını üzerine harca­ dığı koca

Memleketimizin dikkate lâyık elmalarından Celâl Y aln ız’ın (Sa­ kallı Celâl) çarşamba günü ânl bir kriz neticesinde vefat ettiğini derin bir teessürle

The methodology included analyses at two different scales (Fig.5): the first is the city scale spatial analysis; and the second,analysis at the local scale consisting of

Bu araştırma ilköğretim matematik öğretmen adaylarının özel dörtgenler (kare, dikdörtgen, paralelkenar ve eşkenar dörtgen) ve aralarındaki aile ilişkilerine

Bu çalışma; Hatay bölgesinde yer alan Kırıkhan sulama alanında faaliyet gösteren sulama birliğinin su kullanım etkinliğini, mali yeterlilik düzeyini ve üretim