• Sonuç bulunamadı

Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders

N/A
N/A
Protected

Academic year: 2021

Share "Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Biomedical

Signal

Processing

and

Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

Accuracy

comparison

of

dimensionality

reduction

techniques

to

determine

significant

features

from

IMU

sensor-based

data

to

diagnose

vestibular

system

disorders

Serhat ˙Ikizo˘glu

a

,

Saddam

Heydarov

b,∗

aControlandAutomationEngineeringDept.,IstanbulTechnicalUniversity,Istanbul,Turkey bElectronicsTechnologies,IstanbulGelisimUniversity,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7July2019

Receivedinrevisedform4March2020 Accepted5April2020

Availableonline29May2020 Keywords:

Diseaseidentification Gaitanalysisfeatureselection Featuretransformation

IMU(InertialMeasurementUnit)sensors Machinelearning

Vestibularsystemdisorders

a

b

s

t

r

a

c

t

ThisstudyisasignificantstepgonetodevelopMachineLearning(ML)algorithmtoapplytogait

sen-soryinformationcollectedfrompeopletoidentifyVestibularSystem(VS)disorders.AlthoughMLis

widelyusedasdiagnostictoolinmedicaldecision-making,thereisnotmuchresearchdoneon

appli-cationofMLmethodstoidentifyVSimperfections.Inthispaper,wecomparedtheaccuraciesoftwo

dimensionality-reductiontechniquestousewithSVMwithGaussianKernel:FeatureSelection(FS)and

FeatureTransformation(FT)methods.T-testandSequentialBackwardSelection(SBS)wereusedforFS

andPrincipalComponentAnalysis(PCA)andKernelPrincipalComponentAnalysis(KPCA)with

polyno-mialandGaussiankernelswereusedasFTmethod.Bothmethodswereappliedtothedatasetformedby

22featurescollectedfrom37people,ofwhom21werehealthyand16subjectshadVS-disorders.The

highestaccuracyamongFTmethodswas89.2%,whileitwas81.1%forFSmethod.SVMwithGaussian

Kernel,trainedwiththedatasetofreduceddimensionality,hadcomputationtimeoffewhundredsof

milliseconds,whichmakesreal-timedataprocessingpossible.Theimportanceofthisworkwillobviously

increasewiththeincreaseinthenumberofinitialfeatures.Asanextstep,weaimtoincreasedataset

anduseadditionalfeaturesextractedfrompressuresensorsplacedunderthefeet.Wealsoaimtouse

timedomaincharacteristicsofthefeaturestoincreaseoverallaccuracyasanextstep.

©2020ElsevierLtd.Allrightsreserved.

1. Introduction

THISworkisthecontinuationofthestudywehavedonebefore

tocomparetheaccuracyofthreeMLmethodsappliedtothe

sen-soryinformationtakenfrompeoplewithVestibularsystem(VS)

disordersandhealthyindividuals[1].

VSincludesthepartsofinnerearandbrainandprocesses

infor-mationtakenfromhumansensors.Itisaveryimportantpartof

humanbalancesystem.Todiagnosedisordersrelatedtohuman

balance systems, clinicians use mobile balance equipment and

analyserecordedbodysway[2].Thecurrentsystemhasits

draw-backsintermsofconsumedtimeandfeasibility.Automateddisease

classificationcan,ontheotherhand,reducetimedramaticallyand

resultinfastandreliablediagnosisofVSdisorders.

MLiswidelybeingusedin thefield ofdiseaseidentification

wherefasterandreliableresultsarerequired.JayminP.etal.[3]

∗ Correspondingauthor.

E-mailaddresses:ikizoglus@itu.edu.tr(S. ˙Ikizo˘glu),sheydarov@gelisim.edu.tr

(S.Heydarov).

usedMLforheartdiseasepredictionsandappliedDecisionTree

methodwith10-foldcrossvalidationusingWEKAtool.Theyalso

madecomparisonbetweendifferentDecisionTreealgorithmsand

reportedtheiraccuracies.In[4],SrivatsaS.andParthibanG.applied

MLtodatasetformedbyinformation takenfromdiabetic

peo-pleinordertopredictheartdisease.TheyfirstusedNaiveBayes

methodfordataminingpurposetofindoutthosewhosufferfrom

heartrelatedproblems.TheyfurtherusedSupportVectorMachines

(SVM)withGaussianKernelwith10-foldcrossvalidationas

classi-ficationmodel.MehmetK.and TolgaE.[5]usedand Multilayer

Perceptron (MLP)for diabetes identification.They appliedSVM

linear, SVM withpolynomial kernel and SVM withradial basis

functionandMLPtothefeaturesextractedfromthedataobtained

fromUCIwebpage.Theycomparedaccuracyofthesealgorithms

andreportedSVMlineartobethemostaccurateoneamongthe

comparedalgorithms.SubhaR.etal.[6]gavebriefreviewabout

MLtechniquesappliedtocardiovasculardiseaseidentificationand

statedtheimportanceoftheclassifierandthefeatureschosenfor

trainingmodelinordertoreachaccurateidentificationofthe

dis-ease. Lalaantikaetal. [7] developed and tested MLmethodfor

predictionofglobalhypokinesia,heartrelateddisease,throughMRI

https://doi.org/10.1016/j.bspc.2020.101963

(2)

images.Theyextractedalloftheirfeaturestotraintheirmodel

fromMRIimagesandreportedthattheirmodelperformedwith

highestaccuracyonindependenttestset.Trambaiolli,L.Retal.

[8]usedMLalgorithmforAlzheimer-Disease(AD)identification.

TheymadeuseofSVMalgorithmandextractedfeaturesfromlarge

datasetformedbyEEGsignals.Theyalsocomparedtheaccuracy

ofSVMalgorithmfordifferentfeaturecombinations.KhanA.and

MuhammedU[9]gavea reviewaboutMLapproachesfor

diag-nosisofAD.Intheirreview,theycompareddifferentapproaches

andstatedthe4-stepmodel-aspre-processing,featureselection,

classificationandclassthreshold-tobeusedasreferenceforAD

diagnosis.

Machinelearninghasalsoanapplicationareainthefieldofgait

analysis.MüllerH.etal.[10]appliedMLtogaitanalysisdatataken

fromhospitalsparticipatinginMD-PAEDIGREEtoclassifydatato

threecategories:healthy,peoplewithNeurologicaland

Neuromus-cularDiseases(NND)orpeoplewithJuvenileIdiopathicArthritis.

TheycomparedtheaccuraciesofRandomForest,Boosting,

Mul-tilayerPerceptronandSVMclassifiersandreportedtheaccuracy

ofRandomForest,SVMandMultilayerPerceptrontobe100%and

96.4%forBoostingclassifier.Theyalsostatedthatthetrainingand

testingtimeofallmodelswereofmillisecondsproviding

oppor-tunitiesforreal-timeapplication.In[11],NuttakiC.investigated

theuseofMLfordistinctlyidentifyinggender-specific

character-istics.Theyusedmobilesmartphoneswithbuilt-inaccelerometers

aswearablesensorswornonsubject’sshoulder,elbow,wrist,hip,

kneeandankletocollectgaitdata.Theyextractedstridelengthand

width,steplengthandwidth,andtorqueofeachjointasfeatures

andappliedNaïveBayes,J48treeandSVMasMLclassifierstothe

datasetformedbythesefeatures.ThereportedaccuraciesforNaïve

Bayes,J48andSVMwere99%,58%and99.2%,respectively.Theyalso

pointedoutthatthestudycanbeextendedtoidentifykey

biomark-ersfornormalanddiseasedconditions.WuJ.[12]usedthemanifold

learningalgorithmappliedtogaitdatatoimprovegait

classifica-tionperformance.HeusedIsometricFeatureMappingalgorithmas

nonlinearfeatureextractionmethodtodecreasethesizeofthe

fea-turematrixformedbygaitdatathatwascollectedfromthestrain

gaugeforceplatformembeddedin10mlongwalkwaypath.After

that,heappliedSVMasMLmodeltotesttheaccuracy.He

ana-lysedgaitdataofyoungandelderlypeopleandreportedthatSVM

combinedwithnonlinearfeatureextractionmodelperformed

bet-terwhencomparedtolinearSVM.Hestatedthatmanifoldlearning

algorithmcanbeusedtofindlow-dimensionalgaitdatainsidehigh

dimensionalfeaturematrixthatcanimprovemodelaccuracyand

ithaspotentialforfutureclinicalapplications.Anotherresearch

donebyLeMoyne.R,etal.[13],usesMLtoclassifylegsaffectedby

hemiplegicdisparity.TheyappliedMLmodeltothegaitdatathat

wasextractedthroughforceplatemeasurements.Theground

reac-tionforceparametersfromforceplatemeasurementswereused

toderivefeaturesandLogisticregressionwasappliedtothe

fea-turematrixtoidentifyaffectedandunaffectedleg.Thereported

accuracywas100%.

Featureextractionmethodis alsowidely usedtodetermine

relevant features and toremove redundant ones,sothat

over-allaccuracyisimprovedandwrongclassificationrateisreduced.

RuedaA.andKrishnanS.[14]usedmachinelearningtodiagnose

Parkinson’sdiseaseinearlystage.Theyidentifiedprominentsetof

parametersthatcanbestrepresentthedisease.Byusingsustained

vowelrecordings,theyfoundMel-FrequencyCepstralCoefficients

andusedthemasdiscriminativefeatures.AichS.etal.[15]

com-paredaccuracyofmachinelearningalgorithmappliedtodifferent

setoffeatures.TheycomparedRandomForestclassification

algo-rithmwithoriginalfeaturesetextractedfromvoicerecordingsand

withtransformedsetof featuresby usingPrincipalComponent

Analysis(PCA).Theyfoundthat RandomForest withPCAbased

featurereduction methodshowed betteraccuracy with96.83%

comparedtooriginaldataset.Theyfurthermorestatedthat

Intrin-sicModeFunctionswerediscriminativefeatures.In[16],VipaniR.

etal.employedMLalgorithmtodevelopanautomaticclassifierfor

Parkinsondisease(PD)andHuntington’s(HD)diseases.Theyused

gaitdataextractedfrom63subjectsandappliedHilberttransform

forfeatureextraction.UsingLogisticRegression,theyclassifiedthe

subjects.Theytested theclassifier accuracy using MATLABand

foundtheaccuracyofthemodeltoidentifyPDandHDas85.22%.

Theaccuracyofthealgorithmtodetecthealthysubjectswasfound

tobe87.79%.BabyM.etal.[17]proposedamethodtodistinguish

healthypeoplefromtheonesdiagnosedwithPDbasedon

statisti-calfeaturesextractedfrompre-processedgaitanalysisdatausing

WaveletTransform.Afterthat,ArtificialNeuralNetwork(ANN)was

usedasclassificationalgorithmanditsperformancewascompared

withSVMandNaiveBayesclassifier.

MLtogetherwithfeaturetransformation(FT)andfeature

selec-tion (FS) techniques is also used as classification method for

diabetes,kidneydiseaseandheartdiseases.In[18],Vaishali,R.etal.

madeuseofMLtoincreasetheaccuracyofmodelsusedtopredict

Type-2Diabetes.ByusingGoldberg’sGeneticalgorithmappliedto

pre-processedfeatures,theydecreasedthenumberoffeaturesby

50%andusedMultiObjectiveEvolutionaryFuzzyClassifieronthe

newdataset.Theyfoundtheaccuracyaround83%byseparating

thedatasetas70%trainingand30%testsets.WibawaM.etal.[19]

developedmachinelearningbaseddiseaseidentificationtoolfor

earlydiagnosingofchronickidneydisease(CKD).Theyused

cor-relationbasedfeatureselectionmethodtoidentifydiscriminative

featuresamong24parametersincludingsigns,symptomsandrisk

factorsthatmightberelatedtoCKD.TheyusedUCIMLrepository

containing400instances.TheycomparedthreedifferentML

mod-els,namely,SVM,k-NearestNeighbour(kNN)andNaiveBayesand

foundthatkNNwithfeatureselectionmethodshowedthehighest

accuracywith98.1%.ZhaoT.T.etal.[20]appliedmachine

learn-ingtoclassifyheartdisease,whichisoneofthemostimportant

researchareasinclinicaldecisionsupportsystems.Theyproposed

discriminantminimumclasslocalitypreservingcanonical

correla-tionanalysis(DMPCCA)toextractdiscriminativefeaturesfromthe

datasetformedby1579patients.Theycomparedthreedifferent

featureextractiontechniques,namely,PCA,DMPCCAand

Canon-icalCorrelation Analysis(CCA). They appliedSVM toprocessed

featuresetsandfoundDMPCCAtogivethebestresult.YekkalaI.

etal.[21]alsousedMLforheartdiseaseprediction.Theyanalysed

threedifferentmodels:BaggedTree,RandomForestandAdaBoost

withParticleSwarmOptimization(PSO)asfeaturesubset-selection

methodtopredictwithhighaccuracy. Theyfoundthat Bagged

Tree,whenusedwithPSO,gavethebestexperimentalresult.

Sub-anyaB.andRajalaxmiR.R.[22]studiedmetaheuristicalgorithm

todeterminetheoptimalfeaturesubsetthatimproves

classifica-tionaccuracyandremovesredundantparameterscausingwrong

classifications.TheyusedSwarmIntelligencebasedArtificialBee

Colony(ABC)tofinddiscriminativefeaturesandfoundthatSVM,

usedtogetherwithABC,showedhighaccuracywithjustonlyseven

features.

Althoughthereislotsofworkdoneondiseaseidentification

usingML,almostnostudyhasbeencarriedoutonMLapplication

toVSdisorders.OneoftheveryfewstudiesistheonefromYehS.C.

etal.[23],wheretheauthorsusedSVMasMLtooltoanalyse

quanti-fiedbalanceindicesofthepatientswhohadgonethroughdesigned

interactivevirtualrealityrehabilitationprogram.Thefocusofthe

studywastoseetheeffectofvirtualrealityasrehabilitation

pro-gramonquantifiedbalanceindicesparameter.Machinelearning

wasnotusedasadiseaseidentificationtoolinthatstudy.

Table1showstherelevanceoftheresearchitemsusedinthe

LiteratureReviewparttoourcurrentresearch.

Inthewholeofourproject,wearedevelopingaMLalgorithm

(3)

Fig.1.Avisualforascensionmadebyfootduringwalking.

wesearchedforthemethodtogivethehighestaccuracywherewe

examinedthreeMLmethods[1].SVMwithGaussianKernelwas

foundtoperformbestwithanaccuracyof83.3%.Whenapplying

thelearningmodel,oneofthemostimportantstepstoimprove

thedatasetqualityisthedimensionalityreductionprocess.Inthis

paper,wecomparetheaccuraciesoftwodifferent

dimensionality-reductiontechniques,theFeatureSelection(FS)andtheFeature

Transformation(FT)methods andsearchfor theonetopresent

thehighestaccuracyasdimensionalityreductiontool.Inthis

con-text,therestofthepaperisarrangedasfollows:InSection2,we

describethedatasetformationandfeaturesusedtotrainthe

mod-els.InSection3,wegivebriefbackgroundinformationaboutthe

featurereductiontechniques.Thissectionisfollowedby

introduc-tionofexperimentalresultsandtheset-updescription.Finally,we

submitconclusionandstatethefutureworkweplantodo.

2. Backgroundinformatıon

2.1. Datasetformation

Datasetwasformedbyusingsensoryinformationtakenfrom37

people,outofwhich21werehealthyand16peoplewerediagnosed

tohaveVSimperfections.Amongallthesubjects,11peoplefromVS

groupand10peoplefromhealthygroupwerefemale.Themeanage

ofhealthyparticipantsandpeoplewithVSimperfectionswas48.4

and55.6,respectively.PeoplewithVSimperfectionsweresuffering

fromdifferenttypesofbalancedisorderssuchasBenign

Paroxys-malPositionalVertigo(BPPV),MultipleSclerosis(MS),Vestibular

Neuritis(VN) etc.The patientswere primarilydiagnosed using

DynamicPosturography.ComputerizedDynamicPosturographyis

aclinicalmethodtodeterminetheproblembehindthebalance

disorderofthepatientthatdifferentiatesbetweensensory,motor

andcentraladaptivefunctionalimpairments[24].Itmakesuseofa

movableplatformonwhichthepatienttriestocontrolthebalance

usinginformationfromthevestibular,visualandproprioceptive

systems.Sensorswereplaced onsubjects’feet,kneeandwaist,

consistentwithliteratureaboutmotiontrackingandgaitanalysis

[25,26].Weaskedpeopletowalkan11.5mlongstraightpathand

duringthisperiod,sensorydatawerecollectedforfurtherdata

pro-cessingandfeatureextraction.The22featuresweusedtotrainour

modelswerehighlyconsistentwiththeoneswidelyusedin

litera-tureaboutgaitanalysis[27–30].Asdatasetdimensionwasnottoo

bigandtherewerenotenoughsamplesforeachVS-disordergroup,

onlybinaryclassificationwasperformed,wheresubjectswere

clas-sifiedasbelongingeitherto‘healthy’orto‘VS-disorder’group.The

22featuresusedtotrainthelearningmodelsanddefinitionsfor

someofthemaregiveninTables2and3,respectively.Figs.1–3

visualizesomeofthefeaturesused.

2.2. Dimensionalityreduction

Dimensionality reduction is a pre-processing tool for high

dimensionaldataanalysis,especially forthedatasetwithsmall

numberofsamplesandlargenumberoffeatures.Inthecasewhere

Table1

SummaryoftheLiteratureReviewpart.

Literaturereview Therelevancetothecurrentresearch

[1] Herewepresentedourpreviousstudy.Theresultof thisstudy(SVMwithGaussiankernel)wasusedto comparetheeffectivenessoffeatureextraction methods.

[2] GeneraloverviewonhowVSdisordersarenormally diagnosedispresented.

[3–9] Thesepapersshowsomefields(heartdisease,PD,AD, diabetes)whereMLiswidelyusedasdisease identificationtool.Weshowedwhatmethodsthey usedandwhatweretheresults.Ouraimwastogive someoverviewtothereaderaboutMLapplicationin medicaldecisionmaking.

[10–13] HerewepresentedMLapplicationinthegaitanalysis field.Weinvestigatedwhichsensoryinformationare used(IMU,forceplates,mobilephonesaswearable sensorsetc.),howthemodelaccuraciesareincreased. Inourresearch,weanalysedgaitparametersto diagnoseVSimperfection,soweaimedtomakethe readerfamiliarwithcurrentgaitanalysismethods. [14–17] Aimofthispaperistofindfeatureextractionmethod

thatcanincreaseaccuracyanddecreasecomputation timewhichwillbeevenmoreimportantasdataset dimensionincreases.Therefore,inthesereviews,we showedwhyfeatureextractionisused,whatwerethe MLmodelaccuraciesappliedtooriginaldatasetandto thedatasetformedbyfeatureextractionmethods. [18–22] HerewepresentedgeneralpipelineonhowFTandFS

areusedtoincreaseaccuracyofthemodel.The pipelinecanbesummarizedas;

• applydifferentFTandFSmethodstoformnew featureset

• applytheMLmodeltothefeatureset • iftheaccuracyisincreased,usethatmethodto

extractdiscriminativefeatures. Weusedsimilarpipelineinourresearch. [24] Hereweshowedoneofthefewresearchesthatwe

wereabletofindwhereMLwasappliedinVSfield. OuraimwastoshowthatMLisrarelyusedinVSfield, andalso,inthesestudiesMLisnotusedasdisease identificationtool,ratheritisusedfordifferent purposes.

Table2

Featuresusedtotraınmlmodels.

Featureno Featuredefinition

1 Rightfootaveragesteplength 2 Leftfootaveragesteplength

3 Averagespeed

4 Totaltravelleddistance-leftfoot 5 Totaltravelleddistance-rightfoot

6 Stepsymmetry1(totaltravelleddistance-rightfoot/total travelleddistance-leftfoot)

7 Stepsymmetry2(totaltravellingtime-rightfoot/total travellingtime-leftfoot)

8 Leftkneebendingangle 9 Averagebendingangle-leftknee 10 Rightkneebendingangle 11 Averagebendingangle-rightknee 12 Maximumlateralwaistswingtoleft 13 Maximumlateralwaistswingtoright 14 Leftkneemaximumswing

15 Rightkneemaximumswing 16 Averageswing-rightknee 17 Averageswing-leftknee 18 Averageascension-rightfoot 19 Averageascension-leftfoot 20 Waist-maximumposteriorswing 21 Waist-maximumanteriorswing 22 Waistinclinationangleduringwalking

(4)

Fig.2.Avisualforsteplength.

Fig.3.Asampleillustrationforwaistinclinationangleduringwalking.

datasetis small,usingmanyfeatures mayleadtothelearning

algorithmtoover-fitthedata;also,itmaycausehighalgorithm

complexity.Therearetwomajorkindsofdimensionality

reduc-tionmethods,FSandFT,wheretheformerchoosessmallestfeature

subsetfromoriginalfeaturesleadingtohighestlearningalgorithm

accuracy;thelattertransformsfeaturestoanewreducedspace

bypreservingmostoftherelevantinformationrelatedto

previ-oussubset[31].Featureselectionmethodselectsthesubsetfrom

theinitialfeaturesettohaveleastnumberoffeaturesbyremoving

redundant,irrelevantornoisydataandthusimprovingthedata

setquality[32].Ontheotherhand,FTperformssome

transforma-tiondependingonthelearningmodelandtransformscorrelated

featurestoanewsubspace[33].

2.2.1. Featureselectionmethod

Generally,highdimensionaldatacanincludefeaturesthatmay

beirrelevant,thusincreasefeature-setdimension,whichresultsin

increasingthesearchspaceandalgorithmcomputationtime.

Fea-tureselectionprocessisamethodusedtoselectsubsetoffeatures

fromoriginalspacethatcontainsleastnumberoffeaturesgiving

highestaccuracy[34].Advantagesoffeatureselectionmethodcan

besummarizedasfollows[32]:

• Reduces featurespace dimension and decreasescomputation

time.

• Increasesdatasetqualitybyremovingirrelevantfeatures.

• Theresultingmodelhashigheraccuracy.

• Makesdatavisualizationeasierduetoreducednumberof

fea-tures.

Featureselectioncanbecategorizedintothreeclassesasfilter,

wrapperandhybridmethod.Filtermethodisthesimplestoneand

doesnotconsidertheclassificationalgorithm.Itjustperforms

sta-tisticalanalysisondatasettochoosefeaturesubsetyieldinghighest

accuracy[35].Wrappermethod,ontheotherhand,performs

selec-tionbyconsideringthelearningalgorithm,whichslowsdownthe

featureselectionprocess[36].Filtermethodshaveless

computa-tiontime comparedtowrappermethodsastheydonotinvolve

anylearningmodel,butit resultsin lessreliability[34]. Hybrid

methodusesadvantagesofboththefilterandwrappermethods.It

usesindependentmethodtochoosefeaturesubsetandevaluates

itsperformanceonmodelaccuracybyapplyingittothelearning

modelused[37].

Widelyusedfilter methodin bioinformatics istoapply

uni-variatecriteriononeachfeaturewhileassumingthereisnotany

interactionbetweenthem.Weusedthet-testandcomparedp

val-ues,thatis,absolutevalueoftstatisticstoseehoweffectiveitisin

distinguishingpeoplewithVSdisorderfromhealthyindividuals.

Thet-test,alsoknownasStudent’stest, isawidelyused

statis-ticalmethodincomparingtwogroups.It isamethodoftesting

hypothesisaboutthemeanofsamplesdrawnfromnormally

dis-tributedpopulationwhenthestandarddeviationofthepopulation

isunknown.Ithastwo types,namely, theindependentandthe

pairedt-test.Inindependentt-test,onesamplefromtwo

inde-pendentnormallydistributedpopulationsarecompared,whilein

pairedt-testthesamplesarenotrandomlyselected;thesecond

sampleisobtainedbydoingcertainchangesonthefirstsample

[38].Forthegivenbinaryclassificationproblem,tvalueofsample

canbecalculatedas[39];

t(xi)= |



i1−i2|√n1n2

n22i1+n1i22

(1)

where␮i1andi1denotesthemeanandstandarddeviationofthe

i-thfeatureofthefirstclass,while␮i2andi2arethemeanand

standarddeviationofthesecondclass.n1 andn2arenumberof

samplesofthefirstandsecondclass,respectively.

Sequential backward selection (SBS) was used as wrapper

methodtofindthefeaturesubsetthatincreasesmodelaccuracy.

Unlikethefiltermethod,in thewrappertype featureselection,

thelearningmodelisalsotakenintoaccount.SBSalgorithmstarts

trainingbyusingallfeaturesandcontinuesbyremovingfeatures

untilthereisnochangeinthemodelaccuracy.

2.2.2. Featuretransformationmethod

PCAisastatisticalmethodthatreducesdimensionalityofthe

rawmatrix.It usesanorthogonaltransformationtoconvertset

ofobservations ofvariables that mayhavecorrelation between

themtonewuncorrelatedvariables,wherethenewsubspacehas

adimensionlessthanorequaltopreviousfeaturespace.These

newvariables arecalledprinciplecomponentsandtheproblem

formulationisbasedonchoosingthepropernumberofprinciple

componentsforthedimensionalityreduction.

Before running the PCA algorithm, raw feature data set is

normalizedwithzero-meanandunit-variance[40].Thus,each

nor-malizedfeaturevectorx(i)

N willbeoftheform

x(i)N =x(i)− (2)

whereisthemeanvalueofthei-thfeaturevectorx(i)andis

thestandarddeviationofx(i).

Theproblemdefinitiontofindtheoptimalhyper-planecanbe

(5)

Fig.4.PCAalgorithmtofindtherightvalueofk.

projectionsofsamplesareminimum.PCAalgorithm,asexplained

above,reducesthedimensionoffeaturematrixfromntokandthe

maindesignparameterforthismethodinvolveschoosingtheright

kvalue.Theproceduretofindtheproperkvaluecanbesummarized

asfollows[40].

a)Calculatecovariancematrix,



,usingnormalizedfeatures

b)CalculateSmatrix(diagonalmatrix)usingsingularvalue

decom-posingappliedon



c)Setk=1

d)Using99%varianceretentionasruleofthumb,calculatetheratio

usingexpression(3);



k i=1Sii



m i=1Sii ≥0.99 (3)

whereSisdiagonalmatrixfoundbySVDandmisnumberof

fea-tures

e) Ifinequalityisviolated,stop

f)Else,increasek&gotostep(d)

Fig.4showstheflowdiagramforthePCAmethodbasedonS

matrix.

InstandardPCAmethod,thedataisassumedtobeinlow

dimen-sionallinearsubspace.Whenthedataislowdimensionalnonlinear

subspacekernelmodifiedPCA(KPCA)isused[41].Themainidea

ofKPCAistoincreasetheoriginaldatasettohigherdimensional

space,wherelinearseparationispossible.Thestepstofollowto

applyKPCAmethodcanbegivenasfollows[42];

• Transformoriginaldatasettonewhighdimensionalspaceusing

chosennonlinearkernelfunction

• ComputethecovarianceofthenewdatasetandapplySVDtofind

matrixU,whichcontainsprincipalcomponents

• ChosefirstkprincipalcomponentsfrommatrixU

• Useprincipalcomponentstofindnewtransformedfeatures

• Usenewfeaturesandapplythelearningmodeltofindthe

accu-racy

PolynomialandGaussiankernelfunctionswereusedto

trans-formtheoriginaldatasettonewhighdimensionalspace.

Fig.5. Illustrationforsensorplacementonthebody.

Table3

Someımportantfeaturesandtheırdefınıtıons.

Parameter Definition

Waistposterior oscillation[deg]

Waistangleasaresultofoscillationdone duringwalking

Lateraloscillation[deg] Oscillationdonetotherightorleftwrt stationarypositionofhumanbody Ascensionmadeby

foot[m]

Distancebetweenfootandgroundduringtoe off

Speed[cm/s] Ratiooflengthofwalkingpathtotimespent onwalking

3. Experımentalsetupandresults

3.1. Datacollection

Sensoryinformationfromhumansubjectswascollectedusing

MATLABandMTW2Wireless3DOFMotionTrackerIMUsensors

fromXsens,whichinclude3Daccelerometer,gyroscopeand

mag-netometer [43]. IMU sensorsprovide acceleration data for gait

analysis.Nevertheless,thesesensorssufferfrombiaserrorswhich

resultinhighpositionerrorsifnotcorrected.Thus,wehave

devel-opedalgorithmstocorrectpositiondataforboththefeetandthe

knees[44].Duringthedataacquisitionprocess,attentionwaspaid

thattheXsenssensorswerewithinthecommunicationrangeof

Bluetoothtoavoidpacketlossdue tothecommunication

inter-ruption.Also,XsensusesproprietaryradioprotocolcalledAwinda,

basedonlow-cost2.4GHzISMchipsets,whichdetectsandhandles

occasionalpacketlossinreal-timeprocessing.Whenthe

commu-nicationis lost, theXsens sensorsstore datain the bufferand

retransmititwhenthecommunicationisback.After

retransmis-sion,thedataisremovedfrombuffer.Thesebufferscanstoreup

to1000datapackets.Takingintoaccountthatthesamplingrateof

oursensorswas100Hz,10sofmisseddatacanberetransmitted

whenwirelesscommunicationisback[45].Thesensorsareplaced

onwaist,kneesandfeetofthesubjectsasshowninFigs.5and6

[25,26].TechnicalspecificationsofthesensorarelistedinTable4.

Byexaminingsomeofthespecificationslikeroll,pitchandstatic

accuracygiveninTable4,itcanbeseenthatthesensorsareaccurate

enoughtouseforgaitanalysis.ThedatawascollectedinCerrahpasa

MedicalSchool-Istanbulandattentionwasgiventothefactthat

IMUsensorswouldnotbeaffectedbyenvironmentalconditions

suchasmagneticfieldscreatedbynearbydevices[44].Therefore,

wecollecteddatamainlyonweekendswithelectronicdevicesin

(6)

Fig.6. Humansubjectwithwearablemotionsensors.

Fig.7.Theblockdiagramoftheoverallmethodology.

interference.Thesubjectswereaskedtomoveonaflatpathtobe

surehavingzerochangeinz-axisdata(Fig.6).Furthermore,Ethical

Committeeapprovalwastakentoconducttheexperiments.

Exper-imentalprocedurewasexplainedtosubjectsbeforethetestsand

theywereaskedtosignconsentform.

3.2. Results

TheblockdiagramoftheoverallmethodologyisgiveninFig.7.

Theinitial22features weresupposed tocorrelate moreor less

withinthemselves,sothatthenumberofdiscriminativefeatures

wouldbesignificantlylessthanthisnumber.Figs.8and9show3D

histogramplotsofsomeimportantfeaturesforVSgroup.Observing

thesefiguresprovidesthepre-understandingthat‘leftknee

bend-ingangle’issomewhatcorrelatedwith‘averagevelocity’,whereas

‘leftkneelateraloscillations’and‘stepsymmetry’areindependent

features.

WeusedMATLABClassificationAppLearnertoolboxfordata

processing,model training and testing performancesof feature

selectionandtransformationalgorithms.

Fig.8.3Dhistogramplotforleftkneebendinganglevsaveragevelocity.

Fig.9. 3Dhistogramplotforleftkneelateraloscillationsvsstepsymmetry.

Fig.10. CDFplotforp-values.

T-testfiltermethodandSBSaswrappermethodwereusedfor

featureselection,whilestandardPCAandKPCAwereappliedas

featuretransformationmethodtogetherwithSVMwithGaussian

Kerneltothetrainingdataset.Bothmethodswereappliedtothe

featuresetconsistingof37people.Inordertogetbetter

(7)

Fig.11.Recognizingthenumberofmostsignificantfeaturesthatleadtomaximum trainingaccuracy.

Table4

Technicalspecificationsofthesensorsused.

Parameter Value Unit

Roll,pitch,accuracy <0.5 degree

Staticaccuracy <1 degree

Dynamicaccuracy 2 degreeRMS

Angularresolution 0.05 degree

Internalsamplingrate 1800 Hz

Maximumacceleration 16 g

Maximumupdaterate 75 Hz

Table5

Somekeymodelparametersbeforeandaftert-test.

Parameters Beforet-test Aftert-test

Trainingtime 6.18seconds 0.75seconds

Predictionspeed 610observations/second 1200observation/second

eachfeature,CumulativeDistributionFunction(CDF)ofp-values

areplottedinFig.10.Consideringp<0.05,werecognizethatabout

65%ofthefeaturesfulfilthisnullhypothesis,inotherwords,around

14features(65%*22≈14)canbediscriminativeaccordingtot-test.

Tofindoutthediscriminativefeatures,weusedmisclassification

error(MCE)parameter,whichisdefinedastheratioofmisclassified

observationstototalobservations[46].

MATLABwasusedtoevaluateMCE.Wefoundthatfourfeatures

ledtominimumMCE.Theresultwasintuitive,asbyexamining

thegraphinFig.10,onecanrecognizethattherearefourmost

significantfeatures(Fig.11).

InFig.11,theredarrowsindicatethefeaturesthat increase

themodelaccuracyaround15–20%each.Thoughthereareeven

someotherfeaturesontheCDFplot(pointedwithblackarrows)

thatincreasetheaccuracyaround5–10%each,wecancomment

thatthosefeaturesareeffectivetorisetheaccuracy-for

example-from75%to80%,whiletheycannotincreaseitfrom60%to65%

etc.

UsingMATLAB,themostsignificantfourfeaturesfoundwere

averagevelocity,leftkneelateralswing,averageascentbyright

footandaveragesteplength’.Thesefourfeatureswereusedtoform

atrainingsetforMLandtodeterminetheaccuracyofSVMwith

GaussianKernel.Accuracywasfoundtobe72.2%.Togetherwith

theaccuracy,trainingtimeandpredictionspeedareother

impor-tantparameterstopointtooverallperformance ofthemethod.

Fig.12.ROCcurveforthelearningmodelwithSBSmethod.

Table6

SomekeymodelparametersbeforeandafterSBS.

Parameters BeforeSBS AfterSBS

Trainingtime 6.18seconds 0.85seconds

Predictionspeed 610observations/second 800observation/second

Table7

SomekeymodelparametersbeforeandafterPCA.

Parameters BeforePCA AfterPCA

Trainingtime 6.18seconds 0.9seconds

Predictionspeed 610observations/second 240observation/second

Table8

SomekeymodelparametersbeforeandafterKPCAwithpolynomialkernel. Parameters BeforeKPCAWith

PolynomialKernel

AfterKPCAWith PolynomialKernel

Trainingtime 6.18seconds 1.05seconds

Predictionspeed 610observations/second 220observation/second

Table5showsnumericalvaluesfortrainingtimeandprediction

speedparametersbeforeandaftert-testapplication.

TotesttheSBSmethod,MATLABbuilt-in“sequentialfs”

func-tionhasbeenusedandsearchandperformancecriteriawereset

as“backward”andclassifierperformance,respectively.By

apply-ingSBSmethod,16features,werefoundtobediscriminative.The

mostdiscriminative16features wereusedtotrainthelearning

model.Theaccuracywasfoundtobe81.1%.ReceiverOperating

Characteristicswasusedtovisualizetheperformanceofthe

learn-ingmodeltrained withfeaturesfoundbySBSmethod(Fig.12).

Table6showsperformancemetricofthemodelbeforeandafter

SBSmethodapplication.

On theotherside, weappliedthePCAprocedurewhere we

firstnormalizedthefeaturematrixusingzeromean-unitvariance

method.Next,SVDwasperformedusingMATLABand22×22U

andSmatriceswerefound.ThediagonalSmatrixwasusedtofind

theproperkvaluewithpredefined99%variancespecification.The

kvaluewasdeterminedtobe13;thatis,theoriginalfeaturespace

consistingof22featureswastransformedtoanewspacewith13

features.Usingthese13features,whichareinfactalinear

combi-nationoftheoriginal22features,wetrainedSVMwithGaussian

(8)

Fig.13.ROCcurveforthelearningmodelforKPCAwithpolynomialkernel.

Fig.14. ROCcurveforthelearningmodelforKPCAwithGaussiankernel.

Table9

SomekeymodelparametersbeforeandafterKPCAwithGaussıankernel.

Parameters BeforeKPCAWith GaussianKernel

AfterKPCAWith GaussianKernel

Trainingtime 6.18seconds 1.2seconds

Predictionspeed 610observations/second 170observations/second

trainingtimeandpredictionspeedparametersbeforeandafterPCA

application.

Next,weappliedKPCAalgorithmwherepolynomialand

Gaus-siankernel function were usedfor nonlinear transformation of

dataset to newhigh dimensional space.By applyingstandard

PCA in new space and setting k = 13, we found transformed

featuresforbothkernelfunctions.Afterthefeature

transforma-tionprocess,SVMwithGaussiankernelwasusedasthelearning

modeltotesttheaccuracy.TheaccuracyforKPCAwith

polyno-mialkernelfunctionandGaussiankernelfunctionwasfoundto

be81%and89.2%,respectively.Figs.13and14showsROCcurves

forKPCAwithpolynomialandgaussiankernelfunctions,

respec-tively.

Tables8and9showperformancevaluesintermsoftraining

timeandpredictionspeedforKPCAwithpolynomialandGaussian

kernels,respectively.

Asanextstep,weincreasedthenumberoffeaturesfoundas

aresultoffeatureselectionmethodtoequateto13,numberof

features used in PCAmethod, toseewhether themodel

accu-racywouldcapturethefeaturetransformationmethodfromthe

perspectiveof classificationresult.Thus, we added9more

fea-turestoequateto13 andfoundthelearningmodelaccuracyto

be77.8%. Theresult wasasexpected, asthefeatures foundby

FSmethods are subsets oforiginal features, while the features

foundFTmethods arelinear/nonlinearcombinationsoforiginal

features.

4. Conclusion

Thisstudyisanimportantpartofaproject,whereourgoalin

thewholeoftheprojectistodevelopaMLalgorithmtobeusedto

identifythevestibularsystemdisorderforindividualswhosuffer

fromimbalancewhenwalking.Theaimofthisstudywastoapply

dimensionalityreductiontechniquesandfindoutorobtain

dis-criminativefeaturesthatcanincreasetheaccuracyofthealgorithm

and decreasethetraining time. Weanalysed 22 initialfeatures

collectedfrom37peopleconsistingof21healthyonesand16

indi-vidualswithVSdisorders.Weappliedt-testand SBSasfeature

selectionmethodandstandardPCAandKPCAwithpolynomialand

Gaussiankernelsasfeaturetransformationmethodstodecrease

thesamplematrixdimension.Wedetermined4discriminative

fea-turesas‘ascensionofrightfoot,averagevelocity,leftkneelateral

swingandaveragesteplength’byusingt-testmethod,while16

featureswerefoundtobediscriminativebyapplyingSBSmethod.

ByusingMATLABClassificationAppLearner,wetrainedSVMwith

GaussianKernelwithamatrixformedbyfeaturesfoundwith

t-testandSBSmethodfrom37peopleandtheresultingaccuracy

was72.2%and81.1%fort-testandSBSmethods,respectivelyOn

theotherhand,applicationofPCAandKPCAmethodsdecreased

thenumberoffeaturesfrom22to13.StandardPCAmethod

pro-videdan accuracyof 82.6%,which wasslightly below thanthe

model accuracy (83.3%), while applying KPCA withpolynomial

andgaussiankernelfunctionsresultedinanaccuracyof81%and

89.2%,respectively.Thehighaccuracyresultedwithgaussian

ker-nelfunction,impliedthatthereisnonlinearcorrelationbetween

features.Besidesitsperformanceregardingtheaccuracy,theFT

methodalsodecreasedthetrainingtimedramatically,around6

times.

The importance of dimensionalityreduction process willbe

evenmoreobviouswhenthesamplematrixsizewillincrease.In

thenearfuture,weplantoincludenewfeaturesobtainedfrom

insolepressuresensors.Ontheotherhand,inthisstudywedid

notperformsub-classificationbetweendiseasesinorderto

pre-ventover-fittingofthetrainingmodel,asmostofthepatients(11

outof16)hadthesamediagnosisasBPPV.Asanextstep,wealso

aimtoincreasedatasetundereachVSdisorderlabelthatwill

obvi-ouslyraisetheoverallperformanceoftheMLalgorithmandwill

furtherhelptosub-classifybetweenreasonsofimbalance.Weare

alsosearchingfornewfeaturestoincreasetheoverallaccuracy

inthediagnosis.Inthiscontext,weconsidertoanalysethetime

domaincharacteristicsofthefeaturesusingchaoticapproach,

com-plexnetworkanalysis,fractality/multi-fractalityetc.Itisobvious

thatforthesetypesofanalysesweneedlargerdatasets,sothatthe

statisticalfeatureextractionwillbemeaningful.

CRediTauthorshipcontributionstatement

(9)

Acknowledgments

Thisresearchisapartoftheproject‘Developmentofadynamic

vestibularsystemanalysisalgorithm&Designofabalance

mon-itoringinstrument’ (ID:115E258)supported by the Scientific &

TechnologicalResearchCouncilofTurkey(TUBITAK).

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting

finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto

influencetheworkreportedinthispaper.

AppendixA. Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in

theonlineversion,athttps://doi.org/10.1016/j.bspc.2020.101963.

References

[1]S.Heydarov,S. ˙Ikizo˘glu,K.S¸ahin,E.Kara,T.C¸akar,A.Atas¸,Performance comparisonofMLmethodsappliedtomotionsensoryinformationfor identificationofvestibularsystemdisorders,in:201710thInternational ConferenceonElectricalandElectronicsEngineering(ELECO),IEEE,2017,pp. 1112–1116.

[2]D.Basta,M.Rossi-Izquierdo,A.Soto-Varela,A.Ernst,Mobileposturography: posturographicanalysisofdaily-lifemobility,Otol.Neurotol.34(2)(2013) 288–297.

[3]K.N.R.Challa,V.S.Pagolu,G.Panda,B.Majhi,Animprovedapproachfor predictionofParkinson’sdiseaseusingmachinelearningtechniques,arXiv preprint(2016),arXiv:1610.08250.

[4]G.Parthiban,S.K.Srivatsa,Applyingmachine-learningmethodsindiagnosing heartdiseasefordiabeticpatients,Int.J.Appl.Inf.Syst.(IJAIS)3(2012), 2249-0868.

[5]M.S.Kurt,T.Ensarı,Diabetdiagnosiswithsupportvectormachinesand multi-layerperceptron,in:ElectricElectronics,ComputerScience,Biomedical Engineerings’Meeting(EBBT),2017,IEEE,2017,pp.1–4.

[6]R.Subha,K.Anandakumar,A.Bharathi,Studyoncardiovasculardisease classificationusingmachinelearningapproaches,Int.J.Appl.Eng.Res.11(6) (2016)4377–4380.

[7]L.Sharma,G.Gupta,V.Jaiswal,Classificationanddevelopmentoftoolfor heartdiseases(MRIimages)usingmachinelearning,in:Parallel,Distributed andGridComputing(PDGC),2016FourthInternationalConference,IEEE, 2016,pp.219–224.

[8]L.R.Trambaiolli,A.C.Lorena,F.J.Fraga,P.A.Kanda,R.Anghinah,R.Nitrini, ImprovingAlzheimer’sdiseasediagnosiswithmachinelearningtechniques, Clin.EEGNeurosci.42(3)(2011)160–165.

[9]A.Khan,M.Usman,Earlydiagnosisofalzheimer’sdiseaseusing machine-learningtechniques:areviewpaperKnowledgeDiscovery, KnowledgeEngineeringandKnowledgeManagement(IC3K),20157th InternationalJointConference,vol.1,IEEE,2015,pp.380–387.

[10]R.Joyseeree,R.A.Sabha,H.Müller,ApplyingMachineLearningtoGait AnalysisDataforDiseaseIdentification,MIE,2015,pp.850–854.

[11]C.Nutakki,H.Edakkepravan,S.Gunasekaran,L.P.Ramachandran,V.Sasi,B. Nair,S.Diwakar,Torqueanalysisofmale-femalegaitandidentificationusing machinelearning,in:2018InternationalConferenceonAdvancesin Computing,CommunicationsandInformatics(ICACCI),IEEE,2018,pp. 2103–2106.

[12]J.Wu,Automatedrecognitionofhumangaitpatternusingmanifoldlearning algorithm,in:20128thInternationalConferenceonNaturalComputation, IEEE,2012,pp.199–202.

[13]R.LeMoyne,W.Kerr,T.Mastroianni,A.Hessel,Implementationofmachine learningforclassifyinghemiplegicgaitdisparitythroughuseofaforceplate, in:201413thInternationalConferenceonMachineLearningand

Applications,IEEE,2014,pp.379–382.

[14]A.Rueda,S.Krishnan,Featureanalysisofdysphoniaspeechformonitoring parkinson’sdisease,in:EngineeringinMedicineandBiologySociety(EMBC), 201739thAnnualInternationalConferenceoftheIEEE,IEEE,2017,pp. 2308–2311.

[15]S.Aich,K.Younga,K.L.Hui,A.A.Al-Absi,M.Sain,Anonlineardecisiontree basedclassificationapproachtopredicttheParkinson’sdiseaseusing differentfeaturesetsofvoicedata,in:AdvancedCommunicationTechnology (ICACT),201820thInternationalConference,IEEE,2018,pp.638–642.

[16]R.Vipani,S.Hore,S.Basak,S.Dutta,Gaitsignalclassificationtoolutilizing hilberttransformbasedfeatureextractionandlogisticregressionbased classification,in:ResearchinComputationalIntelligenceandCommunication Networks(ICRCICN),2017ThirdInternationalConference,IEEE,2017,pp. 57–61.

[17]M.S.Baby,A.J.Saji,C.S.Kumar,Parkinson’sdiseaseclassificationusing wavelettransformbasedfeatureextractionofgaitdata,in:Circuit,Powerand

ComputingTechnologies(ICCPCT),2017InternationalConference,IEEE,2017, pp.1–6.

[18]R.Vaishali,R.Sasikala,S.Ramasubbareddy,S.Remya,S.Nalluri,Genetic algorithmbasedfeatureselectionandMOEfuzzyclassificationalgorithmon pimaindiansdiabetesdataset,in:ComputingNetworkingandInformatics (ICCNI),2017InternationalConference,IEEE,2017,pp.1–5.

[19]M.S.Wibawa,I.M.D.Maysanjaya,I.M.A.W.Putra,Boostedclassifierand featuresselectionforenhancingchronickidneydiseasediagnose,in:Cyber andITServiceManagement(CITSM),20175thInternationalConference,IEEE, 2017,pp.1–6.

[20]T.T.Zhao,Y.B.Yuan,Y.J.Wang,J.Gao,P.He,Heartdiseaseclassificationbased onfeaturefusionMachineLearningandCybernetics(ICMLC),2017 InternationalConference,vol.1,IEEE,2017,pp.111–117.

[21]I.Yekkala,S.Dixit,M.A.Jabbar,Predictionofheartdiseaseusingensemble learningandparticleswarmoptimization,in:SmartTechnologiesForSmart Nation(SmartTechCon),2017InternationalConference,IEEE,2017,pp. 691–698.

[22]B.Subanya,R.R.Rajalaxmi,Artificialbeecolonybasedfeatureselectionfor effectivecardiovasculardiseasediagnosis,Int.J.Sci.Eng.Res.5(5)(2014) 606–612.

[23]S.C.Yeh,M.C.Huang,P.C.Wang,T.Y.Fang,M.C.Su,P.Y.Tsai,A.Rizzo,Machine learning-basedassessmenttoolforimbalanceandvestibulardysfunction withvirtualrealityrehabilitationsystem,Comput.MethodsPrograms Biomed.116(3)(2014)311–318.

[24]M.S.P.A.EricMiller,M.Hall,ComputerizedDynamicPosturography:Clinical Application&ContributioninThreeCases,2001.

[25]D.Roetenberg,H.Luinge,P.Slycke,XsensMVN:Full6DOFHumanMotion TrackingUsingMiniatureInertialSensors,XsensMotionTechnologiesBV, Tech.Rep.,2009.

[26]A.R.Anwary,H.Yu,M.Vassallo,Optimalfootlocationforplacingwearable IMUsensorsandautomaticfeatureextractionforgaitanalysis,IEEESens.J.18 (6)(2018)2555–2567.

[27]R.Takeda,S.Tadano,A.Natorigawa,M.Todoh,S.Yoshinari,Gaitposture estimationusingwearableaccelerationandgyrosensors,J.Biomech.42(15) (2009)2486–2494.

[28]S.Tadano,R.Takeda,K.Sasaki,T.Fujisawa,H.Tohyama,Gaitcharacterization forosteoarthritispatientsusingwearablegaitsensors(H-Gaitsystems),J. Biomech.49(5)(2016)684–690.

[29]S.Qiu,Z.Wang,H.Zhao,H.Hu,Usingdistributedwearablesensorsto measureandevaluatehumanlowerlimbmotions,IEEETrans.Instrum.Meas. 65(4)(2016)939–950.

[30]A.Ng,SupportVectorMachines.MachineAscensionLearning,2008.

[31]N.Chumerin,M.M.VanHulle,Comparisonoftwofeatureextractionmethods basedonmaximizationofmutualinformation,in:200616thIEEESignal ProcessingSocietyWorkshoponMachineLearningforSignalProcessing, IEEE,2006,pp.343–348.

[32]L.Ladha,T.Deepa,Featureselectionmethodsandalgorithms,Int.J.Comput. Sci.Eng.3(5)(2011)1787–1797.

[33]S.Keller,A.C.Braun,S.Hinz,M.Weinmann,Investigationoftheimpactof dimensionalityreductionandfeatureselectionontheclassificationof hyperspectralEnMAPdata,in:20168thWorkshoponHyperspectralImage andSignalProcessing:EvolutioninRemoteSensing(WHISPERS),IEEE,2016, pp.1–5.

[34]S.Khalid,T.Khalil,S.Nasreen,Asurveyoffeatureselectionandfeature extractiontechniquesinmachinelearning,in:2014ScienceandInformation Conference,IEEE,2014,pp.372–378.

[35]R.Kohavi,G.H.John,Wrappersforfeaturesubsetselection,Artif.Intell.97 (1-2)(1997)273–324.

[36]L.Yu,H.Liu,Featureselectionforhigh-dimensionaldata:afast correlation-basedfiltersolution,Proceedingsofthe20thInternational ConferenceonMachineLearning(ICML-03)(2003)856–863.

[37]L.Rangarajan,Bi-leveldimensionalityreductionmethodsusingfeature selectionandfeatureextraction,Int.J.Comput.Appl.975

(2010)8887.

[38]P.Crepel,S.E.Fienberg,J.Gani,StatisticiansoftheCenturies,SpringerScience &BusinessMedia,2013.

[39]B.Chandra,M.Gupta,Anefficientstatisticalfeatureselectionapproachfor classificationofgeneexpressiondata,J.Biomed.Inform.44(4)(2011) 529–535.

[40]A.Ng,PrincipalComponentAnalysis.MachineLearning,2008.

[41]I.K.Timotius,I.Setyawan,A.A.Febrianto,Facerecognitionbetweentwo personusingkernelprincipalcomponentanalysisandsupportvector machines,Int.J.Electr.Eng.Inform.2(1)(2010)55–63.

[42]H.M.Ebied,FeatureextractionusingPCAandKernel-PCAforfacerecognition, in:20128thInternationalConferenceonInformaticsandSystems(INFOS) (Pp.MM-72),IEEE,2012.

[43]Xsenswebsite:https://www.xsens.com/products/mtw-awinda/. [44]S.Ikizoglu,K.S¸ahin,A.Atas¸,E.Kara,T.C¸akar,IMUAccelerationDrift

CompensationforPositionTrackinginAmbulatoryGaitAnalysis,ICINCO 2017-2,Madrid,2017.

[45]M.Paulich,M.Schepers,N.Rudigkeit,G.Bellusci,XsensMTwAwinda: MiniatureWirelessInertial-magneticMotionTrackerforHighlyAccurate3D KinematicApplications,Xsens,Enschede,TheNetherlands,2018.

[46]J.H.Kim,Estimatingclassificationerrorrate:repeatedcross-validation, repeatedhold-outandbootstrap,Comput.Stat.DataAnal.53(11)(2009) 3735–3745.

(10)

S. ˙Ikizo˘glu graduated from Istanbul Technical Uni-versity (ITU)- Control and Computer Engineering. He completedhisdoctorateatthesameinstitutein1992. HeiscurrentlyAssociateProfessor atITU-Controland Automation Engineering Dept. His area of interest mainly covers:Measurement, Instrumentation, Control andMechatronics.

S.HeydarovgraduatedfromElectricalandElectronics EngineeringDepartmentwithControlEngineering con-centrationfromMiddleEastTechnicalUniversity-Turkey. Heis currentlyPh.D studentinControl and Automa-tion Eng.Dept.atIstanbulTechnical University.Heis alsolectureratIstanbulGelisimUniversity,Electronics Technologies department. His research areaof inter-estincludesdataanalysis,modelingandsimulationof biomedicalsystems.

Şekil

Fig. 1. A visual for ascension made by foot during walking.
Fig. 2. A visual for step length.
Fig. 4 shows the flow diagram for the PCA method based on S
Fig. 7. The block diagram of the overall methodology.
+2

Referanslar

Benzer Belgeler

Arkasından söyliyecek çok iyi sözler bulunabilen Vâlâ’nm ölü­ mü son senelerin klâsik ve iyi tah­ silli, ansiktonedik malûmatı geniş, Tiirkçesi fasih ve

BÜYÜK ASKER — Mareşal Çakmak, za­ ferden önce, Ankara'daki karargâhında (yukarıda)... Erkânı Harbiyei Umumiye Reisi Müşir Fevzi Paşa

EĞER bugün Attila İlhan ın musalla taşı önünde saf tutacak olsaydım, imam efendi.. “nasıl bilirdiniz” sorusunu sorduğunda, şüphesiz ki “iyi bilirdik”

İnci Enginün'ün “Loti'nin Türklere Bakışı ve Edebiyatçılarımızın Yorumlan ”nı, Zeynep Mennan'ın “Bazı Türk Yazarlanna Göre Oryantalizm Bağlamında Pierre L

Alevî bir kişinin yola ikrar verme, musahiplik kavline girme ve musahip bağlanma olarak üç aşamada tamamlanan musahipliği Alevî yol ve erkânındaki önemli durak

O ki kutsal olan emaneti yani velâyet nurunu taşıyan, dünyanın kutbu-merkezi yada Âdem-i Merkez olan Kutb ul Aktab´dır.. Bu kutup kişiyi tadından yenmeye doyulmayan bir

Karpuz ve Eravşar 2008 tarihli Erzurum Çifte Minareli Medrese Mimarlık Tarihi raporunda restorasyon sonrasında yapıya verilmesi gereken işlevin yapının mimari ve

İşbirliğini sağlamak adına büyük gruplarla çalışılmalıdır (Y3, Y9) 2 İşbirliğini sağlamak adına küçük gruplarla çalışılmalıdır (Y1, Y2, Y6, Y12) 4