• Sonuç bulunamadı

Characterization of Curves Whose Tangents Intersect a Straight Line in Euclidean 3-Space

N/A
N/A
Protected

Academic year: 2021

Share "Characterization of Curves Whose Tangents Intersect a Straight Line in Euclidean 3-Space"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Çümen ve Tunçer / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 80-83 2019 (2)

*Corresponding author:

E-mail: haticecumen92@gmail.com

©2019 Usak University all rights reserved.

80

Uşak Üniversitesi Fen ve Doğa

Bilimleri Dergisi

Usak University Journal of Science and Natural Sciences

http://dergipark.gov.tr/usufedbid

Araştırma Makalesi / Research Article

Characterization of Curves Whose Tangents Intersect a Straight

Line in Euclidean 3-Space

Hatice ÇÜMEN1*, Yılmaz TUNÇER2

1Uşak University, Science Instutite, Department of Mathematics, TURKEY 2 Uşak University, Science and Art Faculty, Department of Mathematics, TURKEY

Geliş: 21 Kasım 2019 Kabul: 9 Aralık 2019 / Received: 21 Kasım 2019 Accepted: 9 Aralık 2019

Abstract

In this study, we investigated the space curves in Euclidean 3-space whose tangent lines at each point intersect a given straight line passing the origin and intersect a fixed point, and we gave some characterizations in these cases.

Keywords: Frenet frame, tanget vector, space curve.

©2019 Usak University all rights reserved.

1. Introduction

The space curves whose principal normals intersecting a given straight line were first investigated by G. Pirondini, and further considered by E. Cesaro [1]. The corresponding question in affine space had been introduced by B. Su in 1929, He classified the curves and gave some remarkable results in affine 3-space by using equi-affine frame [3].

Let :E3 be unit speed curve and

T(s),N(s),B(s)

is the Frenet frame of (s).T(s), )

(s

N and B(s) are called the unit tangent, principal normal and binormal vectors respectively. Frenet formulae are given by

(2)

Çümen ve Tunçer / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 80-83 2019 (2)

81

 

 

 

 

 

 

 

                                   s B s N s T s s s s s B s N s T 0 0 0 0 0 ) ( ) ( ) (     (1)

where 

 

s and 

 

s are called the curvature and the torsion of the curve (s). A space curve 

 

s is determined by its curvature 

 

s and its torsion 

 

s , uniqely [2, 4].

2. The Space Curves Whose Tangents Intersect a Fixed Line

Let :E3 be a curve with arclength parameter and l be the line passing the origin. We assume that the tangents lines intersect the fixed l directed constant and unit vector

uat each point of the curve ,then we can write the following relation

u s s T s s) ( ) ( ) ( ). (      (2)

where (s)(s).u ve (s) are the differentiable vector depending s so since (s) is a line then we quaranteed 0. By taking the first and the second derivatives of (2),

we get u s s N s s s T s)) ( ) ( ) ( ) ( ) ( ) ( 1 (     (3)

s s s

B s su s N s s s s s s T s s s ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( ) ( ) ( ) ( 2                                 (4)

by using (2) and (4). If the tangents of the curve 

 

s intersect a fixed point on l then,

0

 

 and also (s)0 and (s)sc . In this case,  is the involute of 

 

s . Conversely, 

 

s is involute of  , then 

 

s is a line intersecting a fixed point of fixed line

l , so following corollary is concerned.

Corallary 2.1: The tangents of the curve

 

s intersect a fixed point if and only if  is the involute of  and 

 

s is a line.

If 0and 0 then from (4), we have

0 ) ( ) ( ) (  2  sss  (5) 0 ) ( ) ( ) ( ) ( 2 ) (s  ss  ss   (6) 0 ) ( ) ( ) (sss   (7)

(3)

Çümen ve Tunçer / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 80-83 2019 (2)

82

Thus, we can say that there is no solution in the case 0 for (s)0 by considering (6), so there is no curve whose tangent lines intersect a fixed line.

Let 0then from (3) and (4), we have

0 ) ( )) ( 1 ( ) ( )) ( ) ( ) ( (s  s2 s s  s s  (8) 0 ) ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( 2 ) ( ( s  ss  ss s  sss  (9) 0 ) ( ) ( ) (sss   (10) It is clear from (10) that 

 

s has to be planar, from (8), we get the solution

        ds e c c s ds s ds s s s ) ( ) ( 2 ) ( ) ( 2 1 ) (      1 . (11) Rewrite (11) in (9),

0 ) ( ) ( ) ( ) ( ) ( )) ( 1 ( ) ( ) ( ) ( ) ( 2 ) ( 2 2                  s s s s s s s s s s s c            (12) and the solution of (12) is,

             ds s i ds s i ds s i ds s i e e c c ds e ds e c s ) ( ) ( 2 1 ) ( ) ( 2 ) (    (13)

Here, (s) is the real solution iff c21,so the real solution of (12) is

) cos( 2 ) cos( 2 ) ( 1    s   dsc (14) and from (11), (s) is ds ds e c s    ( ) 1 (15) where (s)ds and

         ) ) cos( 2 )( cos( ) ( ) cos( ) ( ) ( cos ) ( 2 ) sin( ) ( 2 ) cos( ) cos( ) ( 2 ) sin( ) ( 4 1 2 1 2 2 1 2 c ds s s c s s c ds s s                (16) and c is an arbitrary constant. For any 1 c and nonzero constant 2(s)in (13), (s) is

(4)

Çümen ve Tunçer / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 80-83 2019 (2)

83

)) sin( ) cos( ( ) cos( ) sin( ) ( 2 1 2 s s c c s s c s            . (17)

Hence following corallary is concerned.

Teorem 2.1: Let

 

s be a planar curve with non-constant curvature and the tangent lines at each point of 

 

s , intersect fixed line l then

) cos( 2 ) cos( 2 ) ( 1    s   dsc and ds e c s   ds ( ) 1 where (s)ds and

         ) ) cos( 2 )( cos( ) ( ) cos( ) ( ) ( cos ) ( 2 ) sin( ) ( 2 ) cos( ) cos( ) ( 2 ) sin( ) ( 4 1 2 1 2 2 1 2 c ds s s c s s c ds s s               

Corallary 2.2: If

 

s is a planar curve with constant nonzero curveture and the tangent lines at each points of 

 

s intersect fixed line l ,then

)) sin( ) cos( ( ) cos( ) sin( ) ( 2 1 2 s s c c s s c s            and         ds e c c s ds s ds s s s ) ( ) ( 2 ) ( ) ( 2 1 ) (      1 .

References

1. Cesàro E. Lezioni di geometria intrinseca. Presso l'Autore-Editore. Napoli, Italy, 1896. 2. Blaschke W. Differential geometrie II. Verlag von Julius springer. Berlin, 1923. 3. Su B. Classes of curves in the affine space. Tohoku Mathematical Journal, 1929; 31:

283-291.

Referanslar

Benzer Belgeler

gemileri ziyaret etmekteydi. İzmirle bağlantılı transit ticaret yolu üzerinde yer alan Rodos adasına yelkenli gemiler uğrarken sanayi devriminin ardından adada ticaret giderek

Kullanımdaki Dizin (Current Folder) Penceresi; Matlab’ın herhangi bir anda aktif olarak kullandığı geçerli dizin yolunu değiştirmek, içinde bulunulan klasör içerisinde

Bu bağlamda, öğrencilerinin matematiksel anlamaları ile matematiğe yönelik tutumları arasında yüksek düzeyde pozitif ve anlamlı bir ilişkinin olduğu,

ZSD3 (0-100 sayı doğrusu) ise MÖG risk grubunu birinci sınıflarda diğer gruplardan; NB ve YB’dan ikinci, üçüncü ve dördüncü sınıflarda daha tutarlı bir biçimde

Mevcut konut piyasası dışında, hane halkı gelirleri ile konut maliyetleri arasındaki ilişkiye göre, alt gelir gruplarına yönelik konut sunumunu öngören bir kavram

Araştırma sonuçlarına gore okul yöneticilerinin karar verme stillerinin alt boyutları cinsiyet değişkenine incelendiğinde dikkatli, kaçıngan, erteleyici karar

Önce- den belirli sınırlara dayanarak kredi verebilen bankalar, kredi türev ürünlerinin çeşitlenmesiyle uygulamada verilen kredi sınırının ötesinde kredi verebilmekte-

Yıllık ısıtma periyodu boyunca güneş enerjisi kaynaklı ab- sorbsiyonlu sistem, soğutma ve sıcak kullanım suyu ihtiya- cının tamamına yakınını, ısıtma