• Sonuç bulunamadı

Multidirectional insights into the biochemical and toxicological properties of Bougainvillea glabra (Choisy.) aerial parts: A functional approach for bioactive compounds

N/A
N/A
Protected

Academic year: 2021

Share "Multidirectional insights into the biochemical and toxicological properties of Bougainvillea glabra (Choisy.) aerial parts: A functional approach for bioactive compounds"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / j p b a

Multidirectional

insights

into

the

biochemical

and

toxicological

properties

of

Bougainvillea

glabra

(Choisy.)

aerial

parts:

A

functional

approach

for

bioactive

compounds

Hammad

Saleem

a,b

,

Gokhan

Zengin

c

,

Irshad

Ahmad

d

,

Joash

Tan

Ban

Lee

e

,

Thet

Thet

Htar

a

,

Fawzi

M.

Mahomoodally

f

,

Rakesh

Naidu

g

,

Nafees

Ahemad

a,h,i,∗

aSchoolofPharmacy,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,Malaysia bInstituteofPharmaceuticalSciences(IPS),UniversityofVeterinary&AnimalSciences(UVAS),Lahore,54000,Pakistan cDepartmentofBiology,FacultyofScience,SelcukUniversity,Campus/Konya,Turkey

dDepartmentofPharmacy,TheIslamiaUniversityofBahawalpur,Pakistan

eSchoolofScience,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,Malaysia fDepartmentofHealthSciences,FacultyofScience,UniversityofMauritius,Mauritius

gJeffreyCheahSchoolofMedicineandHealthSciences,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,

Malaysia

hTropicalMedicineandBiologyMultidisciplinaryPlatform,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarul

Ehsan,Malaysia

iGlobalAsiainThe21stCentury(GA21)MultidisciplinaryResearchPlatform,MonashUniversity,Malaysia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11January2019

Receivedinrevisedform12March2019 Accepted13March2019

Availableonline16March2019

Keywords: Carcinomacelllines Antioxidant Cytotoxicity Enzymeinhibitor Bioactivecompounds

a

b

s

t

r

a

c

t

Thecurrentresearchworkwasconductedinordertoprobeintothebiochemicalandtoxicological

char-acterisationofmethanolanddichloromethane(DCM)extractsofBougainvilleaglabra(Choisy.)aerial

parts.Biologicalfingerprintswereassessedforinvitroantioxidant,keyenzymeinhibitoryand

cyto-toxicitypotential.Totalbioactivecontentsweredeterminedspectrophotometricallyandthesecondary

metabolitecomponentsofmethanolextractwasassessedbyUHPLCmassspectrometricanalysis.The

antioxidantcapabilitieswereevaluatedviasixdifferentinvitroantioxidantassaysnamelyDPPH,ABTS

(freeradicalscavenging),FRAP,CUPRAC (reducingantioxidantpower),phosphomolybdenum(total

antioxidantcapacity)andferrouschelatingactivity.Inhibitionpotentialagainstkeyenzymesurease,

␣-glucosidaseandcholinesteraseswerealsodetermined.Methanolextractexhibitedhigherphenolic

(24.01mgGAE/gextract)aswellasflavonoid(41.51mgQE/gextract)contents.Phytochemical

profil-ingofmethanolextractidentifiedatotaloftwentysecondarymetabolitesandthemajorcompounds

belongedtoflavonoids,phenolicsandalkaloidderivatives.Thefindingsofantioxidantassaysrevealedthe

methanolextracttoexhibitstrongerantioxidant(exceptphosphomolybdenum)activities.Similarly,the

methanolextractshowedhighestbutyrylcholinesteraseandureaseinhibition.TheDCMextractwasmost

activeforphosphomolybdenumand␣-glucosidaseinhibitionassays.Moreover,bothextractsexhibited

significantcytotoxicpotentialagainstfive(MCF-7,MDA-MB-231,CaSki,DU-145,andSW-480)human

carcinomacelllineswithhalfmaximalinhibitoryconcentrationvaluesof22.09to257.2␮g/mL.Results

fromthepresentstudyhighlightedthepotentialofB.glabraaerialextractstobefurtherexploredinan

endeavourtodiscovernovelphytotherapeuticsaswellasfunctionalingredients.

©2019ElsevierB.V.Allrightsreserved.

1. Introduction

Cancer,cardiovasculardiseases,chronicrespiratory disorders anddiabetes,categorizedasnoncontagiousdiseases(NCD’s),are

∗ Correspondingauthorat:SchoolofPharmacy,MonashUniversityMalaysia,Jalan LagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,Malaysia

E-mailaddress:nafees.ahemad@monash.edu(N.Ahemad).

theprimarycauseofdeathsglobally.Thesedisordersare account-ableforapproximately40milliondeathsperyearwhichisabout 70%ofalldeathsworldwide[1].NCD’saremostlylinkedto ele-vatedlevelsofoxidativestress,whichinturnisduetoanimbalance betweenexcessivefreeradicalproductionandtheantioxidant lev-elsinthebody.Asapartofnormalbodyfunction,thefreeradicals areproducedallthetimesinthecellsandarebalancedbyeither internalantioxidantdefencesystemorbyexternallyintheform offood.Thesefreeradicalscanbeeitheroxygenderivedor nitro-https://doi.org/10.1016/j.jpba.2019.03.027

(2)

orbioactivephytochemicalsareregardedasprospective materi-als.

Bougainvillea glabra (Nyctaginaceae), commonly known as “Glory of the Garden”, is native to Southern America and has been used traditionally for various medicinal purposes such asinsecticidal,anti-inflammatory[5],anti-diarrhoeal,anti-ulcer, anti-microbial[6]and anti-hyperglycaemicagent[7].Inspiteof the considerable traditional importance, there have been only limited attempts to explore the chemical and pharmacological propertiesofthisspeciesinrelationwithitsmedicinaluses.Thus, we aimed to evaluate, in this paper, B. glabra aerial parts for their chemical composition (total phenolic and flavonoid con-tentsandUHPLC-MSsecondarymetabolitesprofile),antioxidant capabilities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum andmetalchelation)andkeyenzymeinhibitionpotentialagainst urease,␣-glucosidase, acetylcholinesterase (AChE) and butyryl-cholinesterase (BChE). Moreover, cytotoxic activities were also evaluatedusingMTTassayagainsthumanbreast,cervix,prostate andcoloncarcinomacelllines.Theobservedfindingwouldprovide newintuitionsforB.glabraplantspecies.

2. Materialandmethods 2.1. Plantmaterialsandextraction

Aerial parts of B. glabra plant were collected from district, MuzaffarGarh(Punjab),PakistanandidentifiedbyDr.Abdul Mun-sif,DepartmentofBotany,S.E.College,Bahawalpur.Furthermore, a voucher representative number (BG-AP-01-16-111) was also depositedintheherbariumofDepartmentofPharmacyand Alter-nativeMedicine,TheIslamiaUniversityofBahawalpur,Pakistan.

Aftershade drying and grindingofthe aerialparts ofplant, itspowderwasextractedbymaceration(72h)successivelywith dichloromethane(DCM)andmethanol.Thepooledextractswere thenfilteredanddriedundervacuumat40◦C.Theextractswere abbreviatedas;BM(B.glabraaerialmethanolextract)andBD(B. glabraaerialDCMextract).

2.2. Totalbioactivecontentsandsecondarymetaboliteprofiling Totalphenolic contents were determined using well-known standardFolin–Ciocalteumethod[8]usinggallicacidasastandard. Theamountoftotal phenolicswasdeterminedasmilligramsof gallicacidequivalentspergram(mgGAE/gextract).Moreover,the amountofflavonoidsinalltheextractswereassessedutilizing stan-dardaluminiumchloridecalorimetricmethod[8].Totalflavonoids werenotedasmgQE/gextract(milligrams ofquercetin equiva-lents)usingquercetinasstandard.Similarly,thephytochemical composition of the methanol extract was evaluated by UHPLC Accurate-MassQ-TOF(Agilent1290InfinityLCsystemcoupledto Agilent6520)massspectrometerwithdualESIsourceasdescribed previously[8].

asgallicacidequivalent(mgGAE/gextract).TheresultsofABTS andCUPRACassayswereexpressedastroloxequivalents,whilefor metalchelatingassay,EDTAwasusedasreferencestandard. 2.4. Enzymeinhibitionassays

Cholinesterases(AChE:acetylcholinesteraseandBChE: butyryl-cholinesterase), ␣-glucosidase and urease inhibitory potential wasevaluatedutilizingpreviouslyreportedstandardmethodsas reportedpreviously[8].EserinewasusedascontrolforAChEand BChE,acarbosefor␣-glucosidaseandkojicacidforurease. Inhi-bitionpercentageoftheplantextractsatdifferentconcentrations wascalculatedas:

Inhibition(%)=ControlControl−Test×100

2.5. Cytotoxicityassay

ThecytotoxicitywastestedusingMTTassayasreportedearlier [8] againstfive differenthumancarcinomacell linesi.e., MDA-MB-231,MCF-7(breastcancer),CaSki (cervicalcancer),DU-145 (prostatecancer),andSW-480(coloncancer).Thepercentagecell viability(%)wasdeterminedbyfollowingformula:

Cellviability(%)=Abss–Absc×100

2.6. Statisticalanalysis

All the assays were performed in triplicates in order to determine the means and these values are reported as the mean±standarddeviation(SD).Moreover,theresultswere ana-lysedviaOnewayanalysisofvariance(ANOVA)followedbyTukey’s testfortheposthoctreatmentusingStatisticalPackageforSocial Science(SPSS24.0forwindows).TheIC50valuesweredetermined

utilizingGraphPadPrismsoftware. 3. Resultsanddiscussion 3.1. Phytochemicalcomposition

MethanolandDCMsolventswereusedfortheextractionofB. glabraaerialparts,andthepercentageextractionyieldwasalso calculated.Boththeextractswerescreenedfortotalbioactive com-positiontodeterminetheirtotalphenolicandflavonoidcontents andthevaluesarepresentedinTable1.Totalphenoliccontentsof methanolextractwassignificantlyhigherthanDCM.Similarly,the highestflavonoidcontentswerealsoobtainedfromthemethanol extract.

Secondary metabolites profiling of the methanol extract was determined using UHPLC-MS in negative ionization mode and its total ion chromatogram (TIC) is shown in Fig. 1. The base peak analysis of the UHPLC–MS chromatogram identified 20 different secondary metabolite compounds and

(3)

Fig.1.Totalionchromatograms(TIC)ofB.glabraaerialmethanolextract.

Table1

ExtractionyieldandtotalbioactivecontentsofB.glabraaerialextracts. PlantCode Yield(%) Totalphenolic

content(mgGAE/g)

Totalflavonoid content(mgQE/g) BM 6.4 24.01±2.09a 41.51±0.80a

BD 2.8 15.49±2.26b 18.68±0.74b

Datafromthreerepetitions,withmean±standarddeviation;meanswithdifferent superscriptlettersinthesamecolumnaresignificantly(p<0.05)different.GAE: gal-licacidequivalent;QE:quercetinequivalent;BM:B.glabraaerialmethanolextract, BD:B.glabraaerialDCMextract.

are presented in Table 2. Most of these compounds were

flavonoidsderivativesincludingneoeriocitri,robinin,isorhamnetin 3-glucosyl-(1->6)-galactoside,kaempferol 3-neohesperidoside-7-(2”-ferulylglucoside), quercetin 3-(2”’-feruloylsophoroside) and isovitexin 7-(6”’-sinapoylglucoside) 4’-glucoside. Polyphenolics presentwere3,4-dihydroxybenzoicacidandp-salicylicacid.Two terpenoids(oleosidedimethylesterandgoyaglycosideh)andone alkaloid(calysteginB2)werealsoidentified.Overall,theB.glabra methanolextractwasobservedtohavemoreflavonoidsandthis greateramountofflavonoidcompoundsinthisextractisin accor-dancetoitshighertotalflavonoidcontentsaspresentedinTable1. 3.2. Antioxidantproperties

3.2.1. Radicalscavengingandtotalantioxidantcapacity

ThefreeradicalscavengingactivityofB.glabraextractswere determined using DPPH and ABTS assays and the results are

assembled in Table 3. The DPPH assay demonstrated that, BM exhibited the highest activity with IC50 values of 0.15mg/mL.

Similarly, in the ABTS assay, BM (111.29mg TE/g extract) had the highest radical scavenging activity. It is noted that, the totalbioactivecontentsofthetestedextractsfollowedthesame pattern as the radicals scavenging capacities. As phenolic and flavonoid compounds are excellent electron donors [10], they mightbeaccountablefortheobservedDPPHandABTSscavenging potential.

Total antioxidant activitywas determined via the phospho-molybenum assay based on reduction of molybdenum (VI) to molybdenum(V)bythecompoundshavingantioxidantcapacity andtheresultantformationofmolybdenum(V)complex(green incolor) [11]and theresultsare depictedin Table3.TheDCM extract(40.26mgGAE/gextract)exhibitedthehighertotal antiox-idantpotential compared tomethanol extract (29.14mg GAE/g extract).Thisassayalsoknownastotalantioxidantcapacityassay, measures the antioxidant potential of both phenolic and non-phenolic compounds presentin the plantextracts.The present findingsfortheDCMextractbythismethodmightbecorrelated totheexistenceofsomenon-phenoliccompounds,asvitaminC ortocopherolasexamples.Thisisalsoinlinewiththeprevious researches[12] whichhad presented theDCMextractstohave highertotalantioxidantcapacities.Moreover,ourresultsare fur-thersupportedbysomeotherreportspresentingaweakcorrelation betweenphosphomolybdenumassayandtotalbioactivecontents [8].

Table2

UHPLC-MSanalysisofB.glabraaerialmethanolextract(negativeionizationmode).

S.No Rt(min) B.peak(m/z) Proposedcompounds Compoundclass Mol.formula Mol.mass DiffDB(ppm)

1 1.109 174.07 CalysteginB2 Alkaloid C7H13NO4 175.08 0.13

2 3.839 417.14 3,4-Dihydroxybenzoicacid Phenol C7H6O4 154.02 −3.14

3 7.511 417.14 Oleosidedimethylester Terpene C18H26O11 418.14 −2.35

4 7.841 595.16 Neoeriocitrin Flavonoid C27H32O15 596.17 −1.49

5 8.389 755.20 Kaempferol3-(2G-glucosylrutinoside) Flavonoid C33H40O20 756.21 0.48 6 8.429 785.21 Isorhamnetin3-glucosyl-(1->2)-[rhamnosyl-(1->6)-galactoside] Flavonoid C34H42O21 786.22 −3.57

7 8.614 739.20 Robinin Flavonoid C33H40O19 740.21 0.89

8 8.655 769.219 Kaempferol4’-methylether3-(2Glc-glucosylrutinoside) Flavonoid C34H42O20 770.22 0.29 9 8.655 609.14 Robinetin3-rutinoside Flavonoid C27H30O16 610.15 −2.06 10 8.689 639.15 Isorhamnetin3-glucosyl-(1->6)-galactoside Flavonoid C28H32O17 640.16 −4.81 11 9.752 931.253 Kaempferol3-neohesperidoside-7-(2”-ferulylglucoside) Flavonoid C43H48O23 932.26 −2.42 12 9.808 801.18 Quercetin3-(2”’-feruloylsophoroside) Flavonoid C37H38O20 802.19 −2.68 13 9.901 901.24 Isovitexin2”-O-(6”’-(E)-p-coumaroyl)glucoside4’-O-glucoside Flavonoid C42H46O22 902.25 −4.43 14 9.904 931.25 Kaempferol3-[2Gal-(6”’-feruloylglucosyl)-robinobioside] Flavonoid C43H48O23 932.26 −2.96

15 9.96 961.26 p-Salicylicacid Phenol C7H6O3 138.03 −4.43

16 9.99 901.24 Isovitexin7-(6”’-sinapoylglucoside)4’-glucoside Flavonoid C44H50O24 962.27 −2.95 17 10.10 915.25 Kaempferol3-rhamnoside-7-[6”’-ferulyglucosyl-(1->3)-rhamnoside] Flavonoid C43H48O22 916.26 −3.75 18 10.19 785.19 Kaempferol3-(6”-(E)-feruloylglucosyl)-(1->2)-galactoside Flavonoid C37H38O19 786.20 −4.36

19 11.47 813.46 Goyaglycosideh Terpenoid C42H70O15 814.47 −1.73

20 13.48 723.39 AlliospirosideC Steroid C38H60O13 724.40 0.24

(4)

3.2.2. Reducingpowerandmetalchelatingactivity

Ferricreducingantioxidantpower(FRAP)andcupricreducing

antioxidantcapacity(CUPRAC)methodswereutilizedtomeasure

thereductioncapabilityofthestudiedplantsamplesandtheresults

are shown in Table 3. Both assays measure the plant extracts

potentialforreducingferrictoferrousandcuprictocuprousions, respectively[13]. Themethanol extract(FRAP: 52.13mgGAE/g extract and CUPRAC: 130.41mg TE/g extract) exhibited higher reducingpowercapacityascomparedtoDCMextract.Similarto radicalscavengingresults,phenolicandflavonoidrichBMextract wasthemostactivecompoundsinbothreducingpowerassays. Phenolicandflavonoidsareregardedtobethemostactive anti-oxidativeplantcomponentsbecauseoftheirabilitytoquenchfree radicalsandreactiveoxygenspecies[14].Someresearchershave alreadyreportedastrongpositiveassociationbetweenradical scav-engingpotential,reducingcapacitiesandtotalbioactivecontents ofdifferentplantextracts[15].Moreover,theferrousion chelat-ingcapacityofbothextractsweredeterminedbymetalchelating ferrozineassay(Table4).Interestingly,asobservedinother antiox-idantassayresults,BMwasfoundtobeactiveforferrouschelating activitywithvalueof20.48mgEDTA/gextract,whiletheBDextract wasinactive.

3.3. Enzymeinhibitionactivities

There is an extravagant progress in the prevalence of Alzheimer’sdiseaseanddiabetesmellitusandaccordinglythese aretheburningchallengesforpublichealth.Likewise,according torecentreports,Alzheimer’sdiseasehadaffectedmorethan50 millionpopulations,anduntil2050,thisstatisticsispresumedto beincreasedbyaboutthreetimesmore[16,17].Similarly,urease isone ofthemajorresponsible enzymefor killingHelicobacter pyloriwhich exist in stomachand is the maincause for many gastrointestinaldiseases,e.g.,gastriccancer,peptic,duodenaland gastritis ulcer, amongst others [18]. Accordingly, new effective treatmentstrategiestomanagetheseimportanthealthproblems haveesteemedattentions[19].Amidofthemostefficaciousoptions toovercomethesedisorders,thetheorytoinhibitthekeyenzymes involvedinthesepathologiesistheone,wellrecognizedapproach [20].Takingintoconsiderationtheabovestatedparameters,the enzymeinhibitoryabilityofB.glabraaerialextractsweretested againstAChE,BChE,␣-glucosidaseandurease,andthefindingsof theseassaysareillustratedinTable4.Moreover,comparisonof per-centageenzymeinhibitionofbothextractsascomparedtostandard drugsispresentedinFig.2.

Bothtested extractsshowedleastactivityagainstAChE with IC50 of above 5mg/mL. Although, a considerable BChE

inhibi-tionactivitywasrecordedforBMwithIC50valueof0.28mg/mL

(Table 4). According to the photometric and chromatographic analyses, methanol extract was foundto have higher phenolic and flavonoids. Therefore, it can be argued that these bioac-tivemoleculesmayjustifytheobservedBChEinhibitoryactivity. Indeed,previousstudieshavereportedthatphytochemicals, par-ticularlyphenolicand flavonoids,mayexertpowerfuleffects on

Fig.2.Comparisonofpercentageenzymeinhibition(0.5mg/mL)ofB.glabraaerial extracts.EserinewascontrolforAChEandBChE,Acarbosefor␣-glucosidaseand Kojicacidforurease.

cognitivefunctions[21].Ourresultsarealsoconsistentwiththe findings of somepreviousreports [22], which alsopresented a linearassociationamongbioactivecontents andcholinesterases inhibition.

For␣-glucosidaseinhibition,BDpresentedthestrongest inhibi-tionpotentialhavingIC50valueof0.042␮g/mL.Ontheotherhand,

BMwasleastactive(Table4).Thishigher␣-glucosidaseactivity ofDCMextractmightbeduetoitssignificant phosphomolybde-numactivityandtheexistenceofsomenon-phenoliccompounds like ascorbic acid or tocopherols. Similarly, the observed ␣-glucosidase inhibition ofB. glabraextractscan becorrelated to itshigherflavonoidcontentsaspreviously,ithasbeenreported thatdisaccharidesaretargetsofflavonoidsintheregulationof glu-coseabsorptionandconsequentlyglucosehomeostasisandsome flavonoids,suchasluteolinandkampferolhavepreviouslybeen reportedfor␣-glucosidaseinhibitorypotentials[23].

The urease percentage inhibition of the studied extracts as showninTable4indicatethatBM(IC50;0.24mg/mL)extract

dis-playedthehigheranti-ureaseactivity.Thisobservedanti-urease activitymightbecorrelatedtohigheramountsofflavonoidsinthis extractaspreviously,Awlliaetal.[24]alsoreportedtheactivityof flavonoidsasnaturalinhibitorsofureaseenzyme.Thisworkisthe foremosttoinvestigateonsuchkeyenzymeinhibitionpotentialsof aerialpartsofB.glabra.Takentogether,thefindingsfromthe cur-rentstudycanbeastimulustodevelopnaturalenzymeinhibitors fromthisplantspeciesandcouldopennewhorizonstodesignnovel pharmaceuticals.

3.4. Cytotoxicity

In thepresent work, thecytotoxicity of methanoland DCM extractsofB.glabraaerialpartswereassessedagainstfivedifferent humancancercelllinesi.e.,MCF-7,MDA-MB-231(breastcancer),

(5)

Fig.3.CytotoxicityofmethanolandDCMextractsofB.glabraaerialextracts.

(6)

Table5

Cytotoxicity(IC50;␮g/mL)ofB.glabraaerialextracts.

Celllines IC50(␮g/mL) BM BD MCF-7 109.1 22.09 MDA-MB-231 257.2 127.8 CaSki 176.7 91.88 DU-145 >500** 195.3 SW-480 65.59 214.7

IC50valuerepresentsconcentrationthatreducescellviabilityto50%.**TheIC50

valuewashigherthan500␮g/mL.

CaSki(cervixcancer),DU-145(prostatecancer),andSW-480(colon

cancer).Thepercentagecellviabilityattheconcentrationsranging

from500-15.625␮g/mLisdepictedinFig.3.Moreover,theIC50

val-ueswerealsodeterminedandexpressedasmeanoftriplicatesas giveninTable5.

Both theextracts exhibited considerable toxicity against all cell lines with IC50 values ranging from 22.09to 257.2␮g/mL.

BDwasmostactiveagainstMCF-7(IC50;22.09␮g/mL)andCaSki

(IC50; 91.88␮g/mL), whereas, BM extract showed high

anti-proliferativeactivityforSW-480(IC50;65.59␮g/mL)andMCF-7

(IC50; 109.1␮g/mL)celllines. Previously,theethanolextract of

B. glabra leaveshas been reported for cytotoxic effects in HT-29,AGS, and BL-13celllines [25].Anotherstudyconducted on differentextractsfrom B.glabra stemsand leavesreportedthe anti-proliferativeactivityagainstU373cells[26].Similarly,Joshny reportedtheanticancer activityofhydro-alcoholic extract ofB. glabraonHelacellswithIC50valueof47.11ug/mL[27].Arecent

studyreportedtheisolatedflavonesfromstembarkofB.spectabilis toshowcytotoxicityagainstfivecancercelllines(KB,HeLaS-3, MCF-7,HT-29,andHepG2)[28].Theobservedcytotoxicactivityof B.glabraextractsmightbelinkedtotheflavonoidsandterpenoids asidentifiedbytheUHPLC-MSanalysis(Table2),asthese com-poundsclassesarealreadyreportedforanticancerandapoptosis inducingcapabilities[29,30].Astoearlierreportscomparison,B. glabrarevealedstrongtomoderatetoxicitypotentialandasfaras literaturesearch,thisistheforemostoutlineregardingcytotoxicity ofB.glabraaerialextractsagainstthesecelllines.

4. Conclusion

In thepresent research,we have presented thebiochemical profilesand cell-toxicitypotentialsof B.glabraaerialparts.Our findingsdemonstratedthemethanolextracttoberichin bioac-tivecompoundsand haveconsiderableantioxidantandenzyme inhibitorypotential.TheDCMextractshowedpotentactivityfor phosphomolybdenumand␣-glucosidaseinhibitionassays. More-over, both extracts showed varying cytotoxic potential against breast,cervical,prostateandcoloncancers.FromtheUHPLC-MS analysis,wefoundthat B.glabra containedmaximumnumbers offlavonoidcompounds.Thesesecondarymetabolitesmayjustify

theobservedbiologicalpotentials.Toconclude,thisplantcontain bioactiveantioxidantandenzymeinhibitorswhichcouldbefurther utilizedindrugdesigning,cosmeticapplicationsandasfood sup-plements.Nevertheless,isolationofpotentialbioactivemolecules fromthisplantsandtheirinvivostudiesarerequired.

Conflictofintereststatement Noconflictofinterest. References

[1]G.Zengin,A.Mollica,M.Z.Aumeeruddy,K.R.Rengasamy,M.F.Mahomoodally, PhenolicprofileandpharmacologicalpropensitiesofGynandririssisyrinchium throughinvitroandinsilicoperspectives,Ind.CropsProd.121(2018) 328–337.

[2]J.PatelChirag,S.Tyagi,N.Halligudi,J.Yadav,S.Pathak,S.P.Singh,A.Pandey, D.Singh,P.S.Kamboj,Antioxidantactivityofherbalplants:arecentreview,J. DrugDiscov.Ther.1(8)(2013)01–08.

[3]Z.R.Khan,F.Moni,S.Sharmin,M.A.Al-Mansur,A.Gafur,O.Rahman,F.Afroz, Isolationofbulkamountofpiperineasactivepharmaceuticalingredient(API) fromblackpepperandwhitepepper(PipernigrumL.),Pharmacol.Pharm.8 (07)(2017)253.

[4]G.Zengin,R.Ceylan,J.Katani ´c,A.Mollica,A.Aktumsek,T.Boroja,S.Mati ´c,V. Mihailovi ´c,S.Stani ´c,Z.Aumeeruddy-Elalfi,M.A.Yilmaz,M.F.Mahomoodally, Combininginvitro,invivoandinsilicoapproachestoevaluatenutraceutical potentialsandchemicalfingerprintsofMoltkiaaureaandMoltkiacoerulea, FoodChem.Toxicol.107(2017)540–553.

[5]S.Markandan,A.Abdullah,K.H.Musa,V.Subramaniam,K.Stockham, Determinationofantioxidantactivities,totalphenolicandflavanoidcontents inBougainvilleaglabrabractsatvariousmethanolconcentrationsin:AIP ConferenceProceedings,AIPPublishing,2016,030038.

[6]E.Edwin,E.Sheeja,E.Toppo,V.Tiwari,K.Dutt,Efectoantimicrobiano, antiulcerosoyantidiarreicodelashojasdebuganvilla(Bougainvilleaglabra Choisy),ArsPharm.48(2)(2007)135–144.

[7]E.Edwin,S.Edwin,A.Amalraj,R.Soni,G.Smita,V.Gupta,Antihyperglycemic activityofBougainvilleaglabra,Choisy,PlantaIndica2(3)(2006)25–26.

[8]H.Saleem,T.T.Htar,R.Naidu,N.S.Nawawi,I.Ahmad,M.Ashraf,N.Ahemad, Biological,chemicalandtoxicologicalperspectivesonaerialandrootsof Filagogermanica(L.)huds:Functionalapproachesfornovel

phyto-pharmaceuticals,FoodChem.Toxicol.123(2019)363–373.

[9]D.M.Grochowski,S.Uysal,A.Aktumsek,S.Granica,G.Zengin,R.Ceylan,M. Locatelli,M.Tomczyk,Invitroenzymeinhibitoryproperties,antioxidant activities,andphytochemicalprofileofPotentillathuringiaca,Phytochem.Lett. 20(2017)365–372.

[10]E.Bendary,R.Francis,H.Ali,M.Sarwat,S.ElHady,Antioxidantand structure–activityrelationships(SARs)ofsomephenolicandanilines compounds,Ann.Agric.Sci.58(2)(2013)173–181.

[11]P.Prieto,M.Pineda,M.Aguilar,Spectrophotometricquantitationof antioxidantcapacitythroughtheformationofaphosphomolybdenum complex:specificapplicationtothedeterminationofvitaminE,Anal. Biochem.269(2)(1999)337–341.

[12]E.J.Llorent-Martínez,G.Zengin,M.L.Fernández-deCórdova,O.Bender,A. Atalay,R.Ceylan,A.Mollica,A.Mocan,S.Uysal,G.O.Guler,Traditionallyused Lathyrusspecies:phytochemicalcomposition,antioxidantactivity,enzyme inhibitoryproperties,cytotoxiceffects,andinsilicostudiesofL.czeczottianus andL.nissolia,Front.Pharmacol.8(2017)83.

[13]G.Zengin,A.Mollica,A.Aktumsek,C.M.N.Picot,M.F.Mahomoodally,Invitro andinsilicoinsightsofCupressussempervirens,Artemisiaabsinthiumand Lippiatriphylla:bridgingtraditionalknowledgeandscientificvalidation,Eur. J.Integr.Med.12(2017)135–141.

[14]S.Itagaki,T.Kurokawa,C.Nakata,Y.Saito,S.Oikawa,M.Kobayashi,T.Hirano, K.Iseki,Invitroandinvivoantioxidantpropertiesofferulicacid:a

comparativestudywithothernaturaloxidationinhibitors,FoodChem.114 (2)(2009)466–471.

(7)

[15]G.Zengin,M.Mahomoodally,C.Picot-Allain,Y.Cakmak,S.Uysal,A. Aktumsek,Invitrotyrosinaseinhibitoryandantioxidantpotentialof Consolidaorientalis,OnosmaisauricumandSpartiumjunceumfromTurkey,S. Afr.J.Bot.120(2018)119–123.

[16]M.J.Prince,WorldAlzheimerReport2015:theglobalimpactofdementia:an analysisofprevalence,incidence,costandtrends,Alzheimer’sDis.Int.(2015).

[17]M.C.Picot,G.Zengin,A.Mollica,A.Stefanucci,S.Carradori,M.Mahomoodally, InvitroandinsilicostudiesofmangiferinfromAphloiatheiformisonkey enzymeslinkedtodiabetestype2andassociatedcomplications,Med.Chem. (LosAngeles)13(7)(2017)633–640.

[18]S.Mahernia,K.Bagherzadeh,F.Mojab,M.Amanlou,Ureaseinhibitory activitiesofsomecommonlyconsumedherbalmedicines,Iran.J.Pharm.Res. 14(3)(2015)943.

[19]F.Mao,J.Li,H.Wei,L.Huang,X.Li,Tacrine–propargylaminederivativeswith improvedacetylcholinesteraseinhibitoryactivityandlowerhepatotoxicityas apotentialleadcompoundforthetreatmentofAlzheimer’sdisease,J. EenzymeInhib.Med.Chem.30(6)(2015)995–1001.

[20]A.Mocan,G.Zengin,G.Cris¸an,A.Mollica,Enzymaticassaysandmolecular modelingstudiesofSchisandrachinensislignansandphenolicsfromfruitand leafextracts,J.EenzymeInhib.Med.Chem.31(sup4)(2016)200–210.

[21]D.Vauzour,Effectofflavonoidsonlearning,memoryandneurocognitive performance:relevanceandpotentialimplicationsforAlzheimer’sdisease pathophysiology,J.Sci.FoodAgric.94(6)(2014)1042–1056.

[22]N.A.Mazlan,A.Mediani,F.Abas,S.Ahmad,K.Shaari,S.Khamis,N.Lajis, Antioxidant,antityrosinase,anticholinesterase,andnitricoxideinhibition activitiesofthreeMalaysianMacarangaspecies,Transfus.Apher.Sci.(2013).

[23]B.Na,P.-H.Nguyen,B.-T.Zhao,Q.-H.Vo,B.S.Min,M.H.Woo,Proteintyrosine phosphatase1B(PTP1B)inhibitoryactivityandglucosidaseinhibitoryactivity ofcompoundsisolatedfromAgrimoniapilosa,Pharm.Biol.54(3)(2016) 474–480.

[24]J.A.J.Awllia,M.Al-Ghamdi,E.Huwait,S.Javaid,S.Rasheed,M.Iqbal Choudhary,Flavonoidsasnaturalinhibitorsofjackbeanureaseenzyme,Lett. DrugDes.Discov.13(3)(2016)243–249.

[25]O.Kaisoon,I.Konczak,S.Siriamornpun,Potentialhealthenhancingproperties ofedibleflowersfromThailand,FoodRes.Int.46(2)(2012)563–571.

[26]A.Lamien-Meda,C.E.Lamien,M.M.Compaoré,R.N.Meda,M.Kiendrebeogo,B. Zeba,J.F.Millogo,O.G.Nacoulma,Polyphenolcontentandantioxidantactivity offourteenwildediblefruitsfromBurkinaFaso,Molecules13(3)(2008) 581–594.

[27]J.Joshny,R.Devi,V.Hari,Anti-cancerandAnti-microbialactivityofhydro alcoholicextractofBougainvilleaglabra,Int.J.Curr.Pharm.Rev.Res.3(4) (2013)79–85.

[28]L.T.Do,T.Aree,P.Siripong,N.T.Vo,T.T.Nguyen,P.K.Nguyen,S.Tip-pyang, CytotoxicflavonesfromthestembarkofBougainvilleaspectabilisWilld, PlantaMed.84(02)(2018)129–134.

[29]F.Kirollos,S.Elhawary,O.Salama,Y.Elkhawas,LC-ESI-MS/MSandcytotoxic activityofthreePistaciaspecies,Nat.Prod.Res.(2018)1–4.

[30]A.Choudhary,A.K.Mittal,M.Radhika,D.Tripathy,A.Chatterjee,U.C. Banerjee,I.P.Singh,Twonewstereoisomericantioxidanttriterpenesfrom Potentillafulgens,Fitoterapia91(2013)290–297.

Şekil

Fig. 1. Total ion chromatograms (TIC) of B. glabra aerial methanol extract.
Fig. 2. Comparison of percentage enzyme inhibition (0.5 mg/mL) of B. glabra aerial extracts
Fig. 3. Cytotoxicity of methanol and DCM extracts of B. glabra aerial extracts.

Referanslar

Benzer Belgeler

Bu bulgulara göre erkek ve kız öğrencilerin ““Türbe” ya da “yatır”larda yapılan dualar hakkında ne düşünürsünüz?” sorusuna verdikleri cevaplara ki- kare

The hydroalcoholic extract of Ajuga iva showed also significant analgesic effect at all dose levels compared to the reference drug acetyl salicylic acid against acetic acid

Materials and Methods: Antimicrobial activities of the isolated metabolites were determined using broth microdilutions against the bacteria (Escherichia coli ATCC

albicans ATCC 24433 showed that the essential oils ontained from the aerial parts, roots and flowers were active against S. albicans ATCC 24433, however inhibition zones

The ability of the extracts to scavenge DPPH ● was determined by the method of Gyamfi et al. After 30 min incubation in darkness and at ambient temperature, the resultant

study was to analyze the plant parts for mineral composition and to determine total phenol and flavonoid contents for their possible nutritional value and antioxidant

wilhelmsii has the same amount of phenolic compounds at 50 μg/ml concentration, while antioxidant activity of methanolic extracts is markedly higher than water extract.. In

mızın ustalarından İbrahim Çallı’nın ve Çallı Atölyesi’nden yetişen sanatçıların yapıtlarının yer aldı­ ğı sergi İstanbul’da MSÜ Resim Heykel