• Sonuç bulunamadı

Başlık: Some approximation properties of Kantorovich variant of Chlodowsky operators based on q-integerYazar(lar):KARAISA, Ali; ARAL, AliCilt: 65 Sayı: 2 Sayfa: 097-119 DOI: 10.1501/Commua1_0000000763 Yayın Tarihi: 2016 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Some approximation properties of Kantorovich variant of Chlodowsky operators based on q-integerYazar(lar):KARAISA, Ali; ARAL, AliCilt: 65 Sayı: 2 Sayfa: 097-119 DOI: 10.1501/Commua1_0000000763 Yayın Tarihi: 2016 PDF"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vo lu m e 6 5 , N u m b e r 2 , P a g e s 9 7 –1 1 9 (2 0 1 6 ) D O I: 1 0 .1 5 0 1 / C o m m u a 1 _ 0 0 0 0 0 0 0 7 6 3 IS S N 1 3 0 3 –5 9 9 1

SOME APPROXIMATION PROPERTIES OF KANTOROVICH VARIANT OF CHLODOWSKY OPERATORS BASED ON

q INTEGER

AL·I KARA·ISA AND AL·I ARAL

Abstract. In this paper, we introduce two di¤erent Kantorovich type gener-alization of the q Chlodowsky operators. For the …rst operators we give some weighted approximation theorems and a Voronovskaja type theorem. Also, we present the local approximation properties and the order of convergence for unbounded functions of these operators . For second operators, we obtain a weighted statistical approximation property.

1. Introduction

In 1997, G. Phillips [21] introduced the generalization of Bernstein polynomials based on q integers. The author estimated the rate of convergence and obtained a Voronovskaja-type theorem for the generalization of Bernstein operators. Recently, generalizations of positive linear operators based on q integers were de…ned and studied by several authors. For example; Karsli and Gupta [3] introduced the following q Chlodowsky polynomials de…ned as:

(Cn;qf ) (x) = n X k=0 f [k]q [n]qbn ! n k q x bn k n kY1 i=0 1 qi x bn n k ; 06 x 6 bn;

where bnis a positive increasing sequence with bn! 1. They investigated the rate

of convergence and the monotonicity property of these operators. For more works, see references [4, 5, 6, 7, 8, 9, 10].

In this study, we de…ne Kantorovich type generalization of q Chlodowsky op-erators. We examine the statical approximation properties of our new operator by the help of Korovkin-type theorem in weighted space. Further, we present the local approximation properties and the order of convergence for unbounded functions of

Received by the editors: March 21, 2016, Accepted: May 25, 2016.

2010 Mathematics Subject Classi…cation. Primary 41A36; Secondary 41A25.

Key words and phrases. q Chlodowsky operators, modulus of continuity, local approximation, Peetre’s K-functional, statistical convergence.

c 2 0 1 6 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis tic s .

(2)

these operators. Furthermore, we prove and state a Voronovskaja type theorem for our new operators.

The Kantorovich type generalization of q Chlodowsky operators as follows:

Cnq(f ; x) = [n]q n X k=0 q k n k qP q n;k(x) [k+1]q [n]q Z [k]q [n]q f (bnt)dqt; (1.1) where n> 1, q 2 (0; 1] and Pn;kq (x) = bx n k 1 bx n n k q :

Assume that f is a monotone increasing function on [0; bn], then using (1.2) one

can easily veri…ed that Cq

n(f ; x) are linear and positive operators for 0 < q6 1.

Let us recall some de…nitions and notations regarding the concept of q calculus. For any …xed real number q > 0 and non-negative integer, the q integer of the number n is de…ned by

[n]q := (1 q

n)=(1 q),

q 6= 1

1; q = 0 :

The q factorial [n]q! is de…ned as following

[n]q! := [n]q[n 1]q [1]q; n 2 N

1; n = 0 :

The q binomial coe¢ cients are also de…ned as n

k

q

= [n]q!

[k]q! [n k]q!; 06 k 6 n:

The q analogue of the integration in the interval [0; b] is de…ned as (see [11])

b Z 0 f (t)dqt = (1 q)b 1 X j=0 f (qjb)qj; 0 < q < 1: Over a general interval [a; b], one can write

b Z a f (t)dqt = b Z 0 f (t)dqt a Z 0 f (t)dqt: (1.2)

Further results related to q calculus can be found in [1, 2]. 2. Some Basic Results

(3)

Lemma 2.1. By the de…nition of q integral, we have [k+1]q [n]q Z [k]q [n]q dqt = qk [n]q ; [k+1]q [n]q Z [k]q [n]q bntdqt = bnqk [n]2 q[2]q ([2]q[k]q+ 1) ; [k+1]q [n]q Z [k]q [n]q b2nt2dqt = b2 nqk [n]3q[3]q [3]q[k] 2 q+ (2q + 1) [k]q+ 1 ; [k+1]q [n]q Z [k]q [n]q b3nt3dqt = b3 nqk [n]4q[4]q [4]q[k] 3 q+ 3q 2+ 2q + 1 [k]2 q+ (3q + 1) [k]q+ 1 ; [k+1]q [n]q Z [k]q [n]q b4nt4dqt = b4 nqk [n]5q[5]q n [5]q[k]4q+ 4q3+ 3q2+ 2q + 1 [k]3q + 6q2+ 3q + 1 [k]2q+ (4q + 1) [k]q+ 1o: Lemma 2.2. The following equalities hold.

n X k=0 bn [k]q [n]q n k qP q n;k(x) = x; n X k=0 b2n[k] 2 q [n]2q n k qP q n;k(x) = q [n 1]q [n]q x 2+ bn [n]qx; n X k=0 b3n[k] 3 q [n]3q n k qP q n;k(x) = q3[n 1]q[n 2]q [n]2q x 3+ q 2+ 2q [n 1] qbn [n]2q x 2 + b 2 n [n]2qx;

(4)

n X k=0 b4n[k] 4 q [n]4q n k qP q n;k(x) = q6[n 1] q[n 2]q[n 3]q [n]3q x 4 +q 3 q2+ 2q + 3 [n 1] q[n 2]qbn [n]3q x 3 +q q 2+ 3q + 3 [n 1] qb2n [n]3q x 2+ b3n [n]3qx: Proof. Using the equality

[n]q = [j]q+ qj[n j]q; 06 j 6 n; (2.1) we have n X k=0 bn [k]q [n]q n k q Pn;kq (x) = x; n X k=0 b2n[k] 2 q [n]2q n k qP q n;k(x) = n X k=1 b2n[k]q [n]q n 1 k 1 qP q n;k(x) = n X k=1 b2nq [k 1]q+ 1 [n]q n 1 k 1 qP q n;k(x) = qb 2 n [n]q n X k=1 [k 1]q n 1 k 1 qP q n;k(x) + bn [n]qx = qb 2 n[n 1]q [n]q n X k=2 n 2 k 2 qP q n;k(x) + bn [n]qx = qb 2 n[n 1]q [n]q n X k=0 n 2 k qP q n;k+2(x) + bn [n]qx = q [n 1]q [n]q x 2+ bn [n]qx and n X k=0 b3n[k] 3 q [n]3q n k qP q n;k(x) = n X k=1 b3n[k] 2 q [n]2q n 1 k 1 qP q n;k(x) = b 3 nq2 [n]2q n X k=1 [k 1]2q n 1 k 1 qP q n;k(x) +b 3 n2q [n]2q n X k=1 [k 1]q n 1 k 1 q Pn;kq (x) + b 3 n [n]2q n X k=1 n 1 k 1 q Pn;kq (x)

(5)

= q 2b3 n[n 1]q [n]2q n X k=2 [k 1]q n 2 k 2 qP q n;k(x) +2qb 3 n[n 1]q [n]2q n X k=2 n 2 k 2 qP q n;k(x) + b2 n [n]2qx = q 3b3 n[n 1]q [n]2q n X k=2 [k 2]q n 2 k 2 q Pn;kq (x) +q 2b3 n[n 1]q [n]2q n X k=2 n 2 k 2 q Pn;kq (x) +2qbn[n 1]q [n]2q x 2+ b2n [n]2qx = q 3[n 1] q[n 2]q [n]2q x 3+ q 2+ 2q b n[n 1]q [n]2q x 2+ b2n [n]2qx: Finally, we have n X k=0 b4n[k] 4 q [n]4q n k qP q n;k(x) = n X k=1 b4n[k] 3 q [n]3q n 1 k 1 qP q n;k(x) = q 3b4 n [n]3q n X k=1 [k 1]3q n 1 k 1 qP q n;k(x) +3q 2b4 n [n]3q n X k=1 [k 1]2q n 1 k 1 qP q n;k(x) +3qb 4 n [n]3q n X k=1 [k 1]q n 1 k 1 qP q n;k(x) + b3 n [n]3qx = q 3b4 n[n 1]q [n]3q n X k=2 [k 1]2q n 2 k 2 q Pn;kq (x) +3q 2b4 n[n 1]q [n]3q n X k=2 [k 1]q n 2 k 2 q Pn;kq (x) +3qb 2 n[n 1]q [n]3q x 2+ b3n [n]3qx = q 5b4 n[n 1]q [n]3q n X k=2 [k 2]2q n 2 k 2 qP q n;k(x) +2q 4b4 n[n 1]q [n]3q n X k=2 [k 2]q n 2 k 2 q Pn;kq (x)

(6)

+q 3b2 n[n 1]q [n]3q x 2+3q 3[n 1] q[n 2]qbn [n]3q x 3 +3q 2[n 1] qb2n [n]3q x 2+3q [n 1]qb2n [n]3q x 2+ b3n [n]3qx = q 5[n 1] q[n 2]qb4n [n]3q n X k=3 [k 2]q n 3 k 3 q Pn;kq (x) + 2q 4+ 3q3 b n[n 1]q[n 2]q [n]3q x 3+ 3q 2+ 3q b2 n[n 1]q [n]3q x 2+ b3n [n]3qx = q 6[n 1] q[n 2]q[n 3]q [n]3q x 4+q 3 q2+ 2q + 3 [n 1] q[n 2]qbn [n]3q x 3 +q q 2+ 3q + 3 [n 1] qb2n [n]3q x 2+ b3n [n]3qx:

Lemma 2.3. The operators de…ned by (1.1) satisfy the following properties: Cnq(1; x) = 1; Cnq(t; x) = x + K0bn [n]q ; (2.2) Cnq t2; x = q [n 1]q [n]q x 2+K1bn [n]q x + K2b2n [n]2q ; (2.3) Cnq t3; x = q 3[n 1] q[n 2]q [n]2q x 3+qK3[n 1]qbn [n]2q x 2+K4b2n [n]2q x + b3 n [4]q[n]3q; Cnq t4; x = q 6[n 1] q[n 2]q[n 2]q [n]3q x 4+q 3K 5[n 1]q[n 2]qbn [n]3q x 3 +qK6[n 1]qb 2 n [n]3q x 2+K7b3n [n]3q x + b4 n [5]q[n]4q; for all x 2 [0; bn], where

K0 = 1 [2]q; K1= q2+ 3q + 2 [3]q ; K2= 1 [3]q; K4 = q3+ 4q2+ 6q + 2 [4]q ; K3= q4+ 3q3+ 6q2+ 5q + 3 [4]q ; K5 = q6+ 3q5+ 6q4+ 10q3+ 9q2+ 7q + 4 [5]q ;

(7)

K6 = q6+ 4q5+ 11q4+ 18q3+ 15q2+ 11q + 5 [5]q ; K7 = q4+ 5q3+ 10q2+ 10q + 4 [5]q :

Proof. By using de…nition of Cnq(f; x), Lemma 2.1 and Lemma 2.2, we get

Cnq(1; x) = [n]q n X k=0 q k n k qP q n;k(x) qk [n]q = 1; Cnq(t; x) = [n]q n X k=0 q k n k qP q n;k(x) qkb n [2]q[n]2q [2]q[k]q+ 1 = n X k=0 bn [k]q [n]q n k qP q n;k(x) + bn [2]q[n]q = x +K0bn [n]q ; Cnq t2; x = [n]q n X k=0 q k n k q Pn;kq (x) q kb2 n [3]q[n]3q [3]q[k] 2 q+ (2q + 1) [k]q+ 1 = b2n n X k=0 n k qP q n;k(x) + (2q + 1) b2n [3]q[n]3q n X k=0 [k]q [n]q n k qP q n;k(x) + b2n [3]q[n]2q = q [n 1]q [n]q x 2+K1bn [n]q x + K2b2n [n]2q : For t3, we get Cnq t3; x = [n]q n X k=0 q k n k qP q n;k(x) qkb3n [4]q[n]4q n [4]q[k]3q+ 3q2+ 2q + 1 [k]2q + (3q + 1) [k]q+ 1o = b3n n X k=0 [k]3q [n]3q n k q Pn;kq (x) + 3q 2+ 2q + 1 b3 n [4]q[n]4q n X k=0 [k]2q [n]2q n k q Pn;kq (x) +(3q + 1) b 3 n [4]q[n]2q n X k=0 [k]q [n]q n k qP q n;k(x) + b3n [4]q[n]3q = q 3[n 1] q[n 2]q [n]2q x 3+qK3[n 1]qbn [n]2q x 2+K4b2n [n]2q x + b3n [4]q[n]3q

(8)

and …nally Cnq t4; x = [n]q n X k=0 q k n k qP q n;k(x) qkb4 n [5]q[n]5q([5]q[k] 4 q + 4q3+ 3q2+ 2q + 1 [k]3q + 6q2+ 3q + 1 [k]2q + (4q + 1) [k]q+ 1) = b4n n X k=0 [k]4q [n]4q n k q Pn;kq (x) +b 4 n 4q3+ 3q2+ 2q + 1 [5]q[n]4q n X k=0 [k]3q [n]3q n k q Pn;kq (x) +b 4 n 6q2+ 3q + 1 [5]q[n]2q n X k=0 [k]2q [n]2q n k q Pn;kq (x) +b 4 n(4q + 1) [5]q[n]3q n X k=0 [k]q [n]q n k q Pn;kq (x) + b 4 n [5]q[n]4q = q 6[n 1] q[n 2]q[n 2]q [n]3q x 4+q 3K 5[n 1]q[n 2]qbn [n]3q x 3 +qK6[n 1]qb 2 n [n]3q x 2+K7b3n [n]3q x + b4 n [5]q[n]4q: 3. Weighted approximation We consider the following class of functions:

Let Hx2[0; 1) be the set of all functions f de…ned on [0; 1) satisfying the condition jf (x)j 6 Mf 1 + x2 ; where Mf is a constant depending only on f:

By Cx2[0; 1), we denote the subspace of all continuous functions belonging to Hx2[0; 1) : Also, let C

x2[0; 1) be the subspace of all functions f 2 Cx2[0; 1) ; for which lim

x!1 f (x)

1+x2 is …nite. The norm on Cx2[0; 1) is kfkx2= supx2[0; 1)jf (x)j1+x2: Now, we shall discuss the weighted approximation theorem, where the approxi-mation formula holds true on the interval [0; 1) :

Theorem 3.1. Let q = qn satisfy 0 < qn 6 1 and for n su¢ ciently large qn ! 1

and bn

[n]qn ! 0 with bn ! 1 : Let f 2 Cx2[0; 1) and f be a monotone increasing function on [0; 1) : Then we have

lim

n!106x6bsupn jCqn

n (f ; x) f (x)j

(9)

Proof. Setting the operators Cqn n (f ; x) = Cqn n (f ; x) if 06 x 6 bn f (x) if x > bn

and using the theorem in [15] for the operators Cqn

n ; we see that it is su¢ cient to

verify the following three conditions

lim n!1k C qn n (t ; x) x kx2 = lim n!106x6bsupn jCqn n (t ; x) x j 1 + x2 = 0; 1; 2: (3.1) Since Cqn

n (1; x) = 1 the …rst condition of (3.1) is ful…lled for = 0 :

Using Lemma 2.3, we can write sup 06x6bn jCqn n (t; x) xj 1 + x2 = 1 1 + qn bn [n]qn and sup 06x6bn Cqn n t2; x x2 1 + x2 6 06x6bsup n x2 1 + x2 bn [n]qn + sup 06x6bn x 1 + x2 qn2+ 3qn+ 2 q2 n+ qn+ 1 bn [n]qn + sup 06x6bn 1 1 + x2 1 q2 n+ qn+ 1 b2 n [n]2 qn : which implies that

lim n!106x6bsupn jCqn n (t; x) xj 1 + x2 = 0 and lim n!106x6bsupn Cqn n t2; x x2 1 + x2 = 0:

Thus the proof is completed.

We know that for f 2 Cx2[0; 1) Theorem 3.1 is not true (see [15]). But we can give following property of Cnq:

Theorem 3.2. Let q = qn satisfy 0 < qn 6 1 and for n su¢ ciently large qn ! 1

and bn

[n]qn ! 0 with bn ! 1 : Let f 2 Cx2[0; 1) and f be a monotone increasing function on [0; 1) : Then we have

lim n!1 1 p bn sup 06x6bn jCqn n (f ; x) f (x)j 1 + x2 = 0

Proof. f is continuous function we can write jf (t) f (x)j < " if jt xj < and jt xj > we have

(10)

Thus we can write

jf (t) f (x)j < " + Cf( ) (t x)2+ 1 + x2 jt xj :

for x 2 [0; bn] and t 2 [0; 1) : Since Cnqn linear and positive operator we have

jCqn n (f ; x) f (x)j 6 " + Cf( ) Cnqn (t x) 2 ; x +Cf( ) 1 + x2 Cnqn(jt xj ; x) 6 " + Cf( ) Cnqn (t x) 2 ; x +Cf( ) 1 + x2 r Cqn n (t x)2; x :

From Lemma 2.3, we have jCqn n (f ; x) f (x)j 1 + x2 6 " 1 + x2 + Cf( ) x (3bn x) (1 + x2) [n] qn + b 2 n [n]2 qn + s x (3bn x) [n]qn + b 2 n [n]2 qn # and sup 06x6bn jCqn n (f ; x) f (x)j 1 + x2 6 " sup 06x6bn 1 1 + x2 + Cf( ) x (3bn x) (1 + x2) [n] qn + b 2 n [n]2 qn + s x (3bn x) [n]qn + b 2 n [n]2 qn # 6 " + Cf( ) " 3bn [n]qn + b 2 n [n]2 qn + s 3b2 n [n]qn + b 2 n [n]2 qn # : Therefore 1 p bn sup 06x6bn jCqn n (f ; x) f (x)j 1 + x2 6 " p bn +Cf( ) " 3pbn [n]qn + b 3=2 n [n]2 qn + s 3bn [n]qn + bn [n]2 qn #

which proves the theorem.

4. Voronovskaja type theorem Now, we give a Voronovskaja type theorem for Cnq(f; x).

Lemma 4.1. Let q := (qn), 0 < qn6 1, be sequence such that qn ! 1 as n ! 1.

Then, we have the following limits: (i) limn!1[n]bnqnC qn n ((t x)2; x) = x (ii) limn!1 [n]2qn b2 n C qn n ((t x)4; x) = 2x2.

(11)

Proof. (i) From Lemma 2.3, we have Cqn n ((t x)2; x) = x2 [n]qn + bn [n]qn q3 n+ 2qn2+ 3qn q3 n+ 2q2n+ 2qn+ 1 x + b 2 n (q2 n+ qn+ 1)[n]2qn : (4.1) Then, we get [n]qn bn Cqn n ((t x)2; x) = x2 bn + q 3 n+ 2q2n+ 3qn q3 n+ 2q2n+ 2qn+ 1 x + bn (q2 n+ qn+ 1)[n]qn :

Let us take the limit of both sides of the above equality as n ! 1, then we have

lim n!1 [n]qn bn Cqn n ((t x)2; x) = lim n!1 x2 bn + q 3 n+ 2q2n+ 3qn q3 n+ 2q2n+ 2qn+ 1 x + bn (q2 n+ qn+ 1)[n]qn = x:

(ii) Again from Lemma 2.3 and by the linearity of the operators Cqn

n (f; x), we get Cnq((t x)4; x) = D1;nx4+ D2;nx3+ D3;nx2+ D4;nx + D5;n; where D1;n = q6 n[n 1]qn[n 2]qn[n 3]qn [n]3 qn 4q3 n[n 1]qn[n 2]qn [n]2 qn +6qn[n 1]qn [n]qn 3; D2;n = q3 n[n 1]qn[n 2]qn [n]2 qn K5;qn 4K3;qnqn[n 1]qn [n]qn + 6K2;qn 4K0;qn bn [n]qn ; D3;n = qn[n 1]qn [n]qn K6;qn+ 6K1;qn 4K4;qn b2 n [n]2 qn ; D4;n = K7;qn 4 q3 n+ qn2+ qn+ 1 b3n [n]3 qn ; D5;n = 1 q4+ q3 n+ qn2+ qn+ 1 b4 n [n]4 qn :

(12)

and K0;qn = 1 1 + qn ; K1;qn = qn2+ 3qn+ 2 q2 n+ qn+ 1 ; K2;qn = 1 q2 n+ qn+ 1 K3;qn = q4 n+ 3q3n+ 6qn2+ 5qn+ 3 q3 n+ qn2+ qn+ 1 ; K4;qn = qn3+ 4q2n+ 6qn+ 2 q3 n+ q2n+ qn+ 1 ; K5;qn = q6 n+ 3q5n+ 6qn4+ 10q3n+ 9qn2+ 7qn+ 4 q4 n+ qn3+ qn2+ qn+ 1 ; K6;qn = q6 n+ 4q5n+ 11qn4+ 18qn3+ 15qn2+ 11qn+ 5 q4 n+ qn3+ qn2+ qn+ 1 ; K7;qn = q4 n+ 5q3n+ 10qn2+ 10qn+ 4 q4 n+ qn3+ qn2+ qn+ 1 : By (2.1), we get lim n!1 [n]2 qn b2 n fD 1;ng = lim n!1 [n]2 qn b2 n ( (1 qn)2[n]2qn+ [n]qn(q 3 n+ 3q2n 1) (qn3+ qn2+ 2qn+ 1) [n]3 qn ) = lim n!1 (1 qn)2[n]qn b2 n +q 3 n+ 3q2n 1 b2 n qn3+ qn2+ 2qn+ 1 [n]qnb2n = lim n!1 (qn 1)(1 qnn) b2 n +q 3 n+ 3qn2 1 b2 n q3 n+ q2n+ 2qn+ 1 [n]qnbn = 0: (4.2) Again, by using (2.1), we have

[n]2 qn b2 n fD 2;ng = [n]qn bn ( [n]2 qn(K5;qn 4K3;qn+ 6K2;qn 4K0;qn) + [n]qn(4K3;qn qn 2)(qn+ 1)K6;qn [n]2 qn )

Taking the limit of both sides of the above equality, we get lim n!1 [n]2 qn b2 n fD2;ng = lim n!1 [n]qn(K5;qn 4K3;qn+ 6K2;qn 4K0;qn) bn +4K3;qn qn 2 bn +(qn+ 1)K6;qn [n]qnbn

(13)

Since limn!14K3;qnbnqn 2 = 0 and limn!1 (qn+1)K6;qn [n]qnbn = 0, we have lim n!1 [n]2 qn b2 n fD 2;ng = lim n!1 [n]qn(K5;qn 4K3;qn+ 6K2;qn 4K0;qn) bn = lim n!1 q2 n(1 qn)(1 qnn) (qn+ 1)(qn3+ qn2+ qn) (q8 n+ 3q7n+ 6qn6+ 9q5n+ 12q4n+ 9qn3+ 8q2n+ 7qn+ 5) (q5 n+ qn4+ q3n+ q2n+ qn+ 1)bn = 0: (4.3)

Finally, using (2.1), we get lim n!1 [n]2 qn b2 n fD3;ng = lim n!1 K6;qn [n]qn + K6;qn+ 6K1;qn 4K4;qn = K6;qn+ 6K1;qn 4K4;qn= 2: (4.4) It is clear that lim n!1 [n]2qn b2 n fD 4;nx + D5;ng = 0:

By combining (4.2)-(??), we reach the desired the result.

Theorem 4.2. Let f 2 Cx2[0; 1) such that f0; f002 Cx2[0; 1). Then, we have lim n!1 [n]qn bn (Cqn n (f; x) f (x)) = 1 2f 0(x) + x 2f 00(x):

Proof. We write Taylor’s expansion of f as follows: f (t) = f (x) + f0(x)(t x) + 1

2f

00(x)(t x)2+ "(t; x)(t x)2;

where "(t; x) ! 0 as t ! x. By linearity of the operators Cqn

n (f; x) we get Cqn n (f; x) f (x) = f0(x)Cnqn((t x); x)+ 1 2f 00(x)Cqn n ((t x)2; x)+Cnqn "(t; x)(t x)2; x :

From Lemma 2.3, we have

Cqn n (f; x) f (x) = f0(x) bn (1 + qn)[n]qn +1 2f 00(x) x2 [n]qn + bn [n]qn q3 n+ 2qn2+ 3qn q3 n+ 2qn2+ 2qn+ 1 x + b 2 n (q2 n+ qn+ 1)[n]2qn +Cqn n "(t; x)(t x)2; x

(14)

For the last term on the right hand side, using Cauchy-Schwartz inequality, we get lim n!1 [n]qn bn Cqn n "(t; x)(t x)2; x 6 q lim n!1C qn n ("2(t; x); x) s lim n!1 [n]2 qn b2 n Cqn n ((t x)4; x):

Since limn!1Cnqn "2(t; x); x = 0 and by Lemma 4.1(ii) limn!1 [n]2 qn b2 n C qn n (t x)4; x

is …nite, we have limn!1[n]bnqnC qn n "(t; x)(t x)2; x = 0. Therefore, we obtain lim n!1 [n]qn bn (Cqn n (f; x) f (x)) = 1 2f 00(x) lim n!1 x2 bn + q 3 n+ 2q2n+ 3qn q3 n+ 2q2n+ 2qn+ 1 x + bn (q2 n+ qn+ 1)[n]qn + f0(x) 1 + qn = 1 2f 0(x) + x 2f 00(x):

This step completes the proof.

5. Local approximation

In this section, we give a local approximation theorem regarding the our opera-tors. The Peetre’s K-functional is de…ned by

K2(f ; ) := inf

g2C2[0;1)fkf gk + kg 00kg ;

where C2

B[0; 1) = fg 2 CB[0; 1) : g0; g002 CB[0; 1)g, CB[0; 1) denotes the space

of all real-valued bounded and continuous functions.

By using Devore-Lorentz theorem (see[19], Thm 2.4, pp.177), for f 2 CB[0; 1)

and C > 0 we have

K2(f ; )6 C!2 f ;

p

(5.1) where !2 is the second modulus of continuity of f .

In this section, we need the following lemmas for proving our main theorem. Lemma 5.1. Let g 2 C2

B[0; 1). The following inequality holds:

~ Cnq(g; x) g (x) n(x) kg00k ; where n(x) = x(3b[n]nqx) + b2n [n]2 q + bn [n]q. Proof. Let us de…ne auxiliary operators

~ Cnq(f ; x) := Cnq(f ; x) f x + 1 1 + q bn [n]q ! + f (x) :

(15)

It is easy to see that ~Cq

n(t x; x) = 0: Let g 2 CB2[0; 1). By using Taylor expansion

of g, we obtain

g (t) g (x) = (t x) g0(x) + Z t

x

(t u) g00(u) du Applying the operator ~Cq

n to the above equality, we get

~ Cnq(g; x) g (x) = g0(x) ~Cnq(t x; x) C~nq Z t x (t u) g00(u) du; x = C~nq Z t x (t u) g00(u) du; x = Cnq Z t x (t u) g00(u) du; x Z x+ 1 1+q[n]qbn x x + 1 1 + q bn [n]q u ! g00(u) du: Thus, we have ~ Cnq(g; x) + g (x) 6 Cnq Z t x (t u) g00(u) du ; x + Z x+ 1 1+q[n]qbn x x + 1 1 + q bn [n]q u ! g00(u) du : Since Z t x (t u) g00(u) du 6 (t x)2 g00 we get Z x+ 1 1+q[n]qbn x x + 1 1 + q bn [n]q u ! g00(u) du 6 1 1 + q bn [n]q !2 g00 : We can write ~ Cnq(g; x) g (x) 6 8 < :C q n (t x) 2 ; x + 1 1 + q bn [n]q !29= ; g 00 : Then, by using Lemma 2.3, we may write

~

Cnq(g; x) g (x) 6 n(x) kg00k :

(16)

jCnq(f ; x) f (x)j 6 C!2 f; 1 2 p n(x) + ! f ; bn [n]q ! ; where C > 0 is a constant.

Proof. Assume that f 2 CB[0; 1) by using the de…nition of ~Cnq(f ; x), we get

jCnq(f ; x) f (x)j 6 C~nq(f g; x) +j(f g) (x)j + ~Cnq(g; x) g (x) + f x + 1 1 + q bn [n]q ! f (x) and ~ Cnq(f ; x) 6 kfk Cnq(1; x) + 2 kfk = 3 kfk : Thus, we obtain jCnq(f ; x) f (x)j 6 4 kf gk + ~Cnq(g; x) g (x) + ! f ; bn [n]q !

and using Lemma 5.1,

jCnq(f ; x) f (x)j 6 4 kf gk + 1 4 n(x) kg 00k + ! f ; bn [n]q ! : Taking the in…mum over all g 2 C2

B[0; 1) on the right hand side of above inequality

and using (5.1), the proof is …nished.

6. Rete of convergence in weighted space

We know that usual …rst modulus of continuity ! ( ) does not tend to zero, as ! 0; on in…nite interval. Thus we use weighted modulus of continuity (f; ) de…ned on in…nite interval R+ (see [18]). Let

(f; ) = sup

jhj< ; x2R+

jf (x + h) f (x)j

(1 + h2) (1 + x2) for each f 2Cx2[0; 1) :

Now some elementary properties of (f; ) are collected in the following Lemma. Lemma 6.1. Let f 2 Ck

x2[0; 1) : Then,

i) (f; ) is a monotonically increasing function of ; > 0: ii) For every f 2 Cx2[0; 1) ; lim

!0 (f; ) = 0:

iii) For each > 0;

(f; )6 2 (1 + ) 1 + 2 (f; ) : (6.1)

From the inequality (6.1) and de…nition of (f; ) we get

(17)

for every f 2 Cx2[0; 1) and x; t 2 R+.

Theorem 6.2. Let 0 < q6 1 and f 2 Cx2[0; 1). Then, we have sup 06x6bn jCnq(f; x) f (x)j (1 + x2)3 6 C f; s bn [n]qn !

where C is an absolute constant. Proof. Using (6.2) , we get

jCnq(f; x) f (x)j = Cnq(jf (t) f (x)j ; x)

6 2 1 + x2 1 + 2

Cnq 1 + (t x)2 1 +jt xj ; x (f; ) also we can write that

Cnq 1 + (t x)2 1 +jt xj ; x = 1 + Cnq (t x)2; x +1Cnq(jt xj ; x) +1Cnq jt xj (t x)2; x 6 1 + Cq n (t x) 2 ; x +1 r Cnq (t x)2; x +1 r Cnq (t x)2; x r Cnq (t x)4; x :

From (4.1) and (??), we know that

Cnq (t x)2; x = O bn [n]qn x2+ x + 1 and Cnq (t x)4; x = O b 2 n [n]2 qn x4+ x3+ x2+ x + 1 : Choosing = q bn [n]qn we have jCnq(f; x) f (x)j 6 2 1 + x2 1 + 2 Cnq 1 + (t x) 2 1 +jt xj ; x (f; ) 6 4 1 + x2 f; s bn [n]qn ! 1 + O [n]bn qn x2+ x + 1 +p(x2+ x + 1) s O b 2 n [n]2 qn (x4+ x3+ x2+ x + 1) ! ; which proves the theorem.

(18)

7. Statistical Convergence of Cq n(f ; x)

In 1951, Fast [14] and Steinhaus [22] de…ned the notion of statistical convergence for sequences of real numbers as:

Let M be a subset of the set of natural numbers N. Then, Mn = fk 6 n : k 2 Mg.

The natural density of M is de…ned by (M ) = limnn1jMnj provided that the limit

exists, where jMnj denotes the cardinality of the set Mn. A sequence x = (xk) is

called statistically convergent to the number ` 2 R, denoted by st lim x = `. For each > 0; the set M"= fk 2 N : jxk `j > g has a natural density zero, that is

lim

n!1

1

njfk 6 n : jxk `j > gj = 0:

This concept was used in approximation theory by Gadjiev and Orhan [16] in 2002. They proved the Bohman–Korovkin type approximation theorem [12] for statistical convergence. Currently, researchers studying statistical convergence have devoted their e¤ort to statistical approximation.

In this section, we examine the statistical approximation properties of the Cq n(f ; x).

Theorem 7.1. q := (qn) ; 0 < qn6 1 be a sequence satisfying the following

condi-tions: st lim n!1qn= 1; st nlim!1q n n = a; st nlim !1 bn [n]qn = 0: (7.1) Let f be a monotone increasing function on [0; 1) then,

st lim

n!1kC qn

n (f ) f kx2= 0:

Proof. Since Cnq(f ; x) is a linear-positive operator, if we show that

st limn!1kCnqn(ei) eikx2 = 0, where ei= xi; i = 0; 1; 2, then we are done. It

is clear that st lim n!1kC qn n (e0) e0kx2 = 0: (7.2) Using (2.2), we get (Cqn n (e1) e1) = 1 1 + qn bn [n]q n : Let " > 0, then we de…ne the following set:

K := fk : kCqk n (e1) e1kx2 > "g = ( k : 1 1 + qk bk [k]qk > " ) : One can obtain that

fk 6 n : kCqk n (e1) e1kx2 > "g 6 ( k6 n : 1 1 + qk bk [k]qk ) : Thus, we get st lim n!1kC qn n (e1) e1kx2 = 0: (7.3)

(19)

Using (2.3), we can write (Cqn n (e2) e2) = x2 [n]q n + xq 2 n+ 3qn+ 2 q2 n+ qn+ 1 bn [n]q n + 1 q2 n+ qn+ 1 b2 n [n]2qn: Thus, we get kCqn n (e2) e2kx26 1 [n]qnke2kx2+ q2n+ 3qn+ 2 q2 n+ qn+ 1 bn [n]q ke1kx2+ 1 q2 n+ qn+ 1 b2n [n]2q: Let " > 0; we de…ne the following sets:

U := fk := kCqk n (e2) e2kx2 > "g ; U1:= ( k := a 2 [k]qk > " 3 ) ; U2:= ( k := aq 2 k+ 3qk+ 2 (q2 k+ qk+ 1) bk [k]qk > " 3 ) ; U3:= ( k := b 2 k (q2 k+ qk+ 1) [k]2qk >"3 ) : It is clear that U U1[ U2[ U3: Thus,

fk 6 n : kCqk n (e2) e2kx2 > "g 6 ( k6 n : a 2 [k]qk > " 3 ) + ( k6 n : aq 2 k+ 3qk+ 2 (q2 k+ qk+ 1) bk [k]qk > " 3 ) + ( k6 n : b 2 k (q2 k+ qk+ 1) [k] 2 qk > " 3 )

and since (qn) satis…es (7.1), we obtain

st lim

n!1kC qn

n (e2) e2kx2 = 0: (7.4)

Hence, by using statistical Korovkin theorem, the desired result follows from (7.2)-(7.4).

Note: It is obvious that f (x) > 0 does not guarantee the positivity of the operators Cq

n(f ; x). Thus, we assumed that f is a monotone increasing function

on [0; bn]. By using this assumption, we showed the statistical convergence of the

operators via Korovkin theorem. However, this assumption is not su¢ cient to investigate the rate of convergence and order of approximation because of the usual de…nition of q integral. In order to solve this problem, there are two ways proposed by Gauchman[17] and Marinkovic [20]. They de…ned di¤erent types of q integrals namely, restricted q integral and Riemann type q integral respectively.

(20)

In this study, we rede…ne q Chlodowsky-Kantorovich operators by using Rie-mann type q integral.

De…nition 1. (Riemann type q integral) Let 0 < q < 1 and 0 < a < b. The Riemann type q integral is de…ned as follows:

Z b a f (x) dRqx = (1 q) (b a) 1 X j=0 f a + (b a) qj qj:

The modi…ed version of Cnq(f ; x) via Riemann type q integral is as follows: ^ Cnq(f ; x) = [n]q n X k=0 q k n k q x bn k 1 x bn n k q Z [k+1]q/[n]q [k]q/[n]q f (bnt) dRqt:

Lemma 7.2. Let 0 < q < 1 and 0 < a < b, m1 + n1 = 1, for Rq(jfgj ; a; b)

(Rq(jfjm; a; b))1=m(Rq(jgjm; a; b))1=n, where Rq(f ; a; b) =

Rb

a f (x) dRqx.

Proof. : Given in [13].

Remark 7.3. From ([13]), we can obtain the following integrals via making neces-sary computations . Z [k+1]q/[n]q [k]q/[n]q dRqt = q k [n]q; Z [k+1]q/[n]q [k]q/[n]q bnt dRqt = qk[k]q bn [n]2q + q2k [2]q bn [n]2q; Z [k+1]q/[n]q [k]q/[n]q b2nt2dRqt = qk[k]2q b 2 n [n]3q + 2q2k[k] q [2]q b2 n [n]3q + q3k [3]q b2 n [n]3q:

Lemma 7.4. By using the above q Riemann type integrals, we can obtain the following formulas for the moments of ^Cq

n(f ; x): ^ Cnq(1; x) = 1; ^ Cnq(t; x) = 2q 1 + qx + bn [n]q; ^ Cnq t2; x = q2 4q2+ q + 1 q3+ 2q2+ 2q + 1 [n 1]q [n]q x 2+ q 4q2+ 5q + 3 q3+ 2q2+ 2q + 1 bn [n]qx + 1 q2+ q + 1 b2 n [n]2q:

Now, we can give the statistical approximation of ^Cq

n(f ; x) in the following

(21)

Theorem 7.5. Let q := (qn) be sequence satisfying (7.1) and let f be a function

de…ned on [0; 1) by f 2 Cx2[0; 1), then we have st lim n!1 ^ Cqn n (f ) f x2= 0: Proof. It is clear that

st lim n!1 ^ Cqn n (e0) e0 x2 = 0: (7.5) Secondly, k ^Cqn n (e1) e1kx2 = qn 1 qn+ 1ke 1kx2+ bn [n]qn (7.6)

Now, for a given " > 0, we de…ne the following sets: L := n k : C^qk n (e1) e1 x2> " o L1:= k : qk 1 qk+ 1 > " 2 ; L2:= ( k : bk [k]q k >2" ) : From (7.6), we see that L L1[ L2: So, we get,

n k6 n : ^Cqk n (e1) e1 x2 > " o 6 k6 n : qk 1 qk+ 1 > " 2 + ( k6 n : bk [n]qk > " 2 ) : Since st lim n!1 qn 1 qn+1 = 0 and st nlim!1 bn [n]qn = 0, we have st lim n!1 ^ Cqn n (e1) e1 x2 = 0: (7.7) Finally, we have ^ Cqn n (e2; x) e2(x) = 4q4 n+ qn3+ qn2 q3 n+ 2qn2+ 2qn+ 1 [n 1]qn [n]qn 1 ! x2 + 4q 3 n+ 5q2n+ 3qn q3 n+ 2q2n+ 2q + 1 bn [n]qnx + 1 q2 n+ qn+ 1 b2 n [n]2qn: Using [n 1]qn < [n]qn, ^ Cqn n (e2) e2 x26 4q4 n qn2 2qn 1 q3 n+ 2qn2+ 2qn+ 1 k e2kx 2 + 4q 3 n+ 5q2n+ 3qn q3 n+ 2qn2+ 2qn+ 1 bn [n]q n k e1kx2 + 1 q2 n+ qn+ 1 b2 n [n]2qn: Let n := 4q4 n q2n 2qn 1 q3 n+ 2q2n+ 2qn+ 1 and n:= 4q 3 n+ 5qn2+ 3qn q3 n+ 2qn2+ 2qn+ 1 bn [n]q n ;

(22)

it is easy to see that the followings hold: st lim

n!1 n= 0; st nlim!1 n= 0 and st nlim!1

b2 n

[n]2qn = 0 Similarly, for a given " > 0, we de…ne the following sets:

N := n k : C^qk n (e2) e2 x2 > " o ; N1:= n k : k> " 3 o ; N2:= n k : k >" 3 o ; N3:= ( k : 1 q2 k+ qk+ 1 b2 k [k]2qk > " 3 ) : It is obtained that N N1[ N2[ N3: So, we may write,

n k6 n : ^Cqk n (e2; :) e2 x2> " o 6 nk6 n : k > " 3 o + n k6 n : k> " 3 o + ( k6 n : 1 q2 k+ qk+ 1 b2 k [k]2qk > " 3 ) : Thus, we obtain st lim n!1 ^ Cqn n (e2; :) e2 x2= 0: (7.8)

The proof is …nished using (7.5), (7.7) and (7.8) via statistical Korovkin’s theorem.

References

[1] Aral A., Gupta V., Agarwal R. P., Applications of q Calculus in Operator Theory, Springer, New York, 2013.

[2] Kac V., Cheung P., Quantum Calculus, Springer, New York, 2002.

[3] Karsli H., Gupta V., Some approximation properties of q Chlodowsky operators, Appl. Math. Comput. (2008), 195, 220–229.

[4] Karaisa A., Approximation by Durrmeyer type Jakimoski–Leviatan operators, Math. Meth-ods Appl. Sci. (2015), In Press, DOI 10.1002/mma.3650.

[5] Karaisa A., Tollu D. T., Asar Y., Stancu type generalization of q-Favard-Szàsz operators, Appl. Math. Comput. (2015), 264, 249–257.

[6] Aral A., Gupta V., Generalized q Baskakov operators, Math.Slovaca (2011), 61, 619–634. [7] Aral A., A generalization of Szàsz-Mirakyan operators based on q integers, Math. Comput.

Model. (2008), 47, 1052–1062.

[8] Gadjieva E. A., ·Ibikli E., Weighted approximation by Bernstein-Chlodowsky polynomials, Indian J. Pure. Appl. Math. (1999), 30 (1), 83–87.

[9] Büyükyaz¬c¬ ·I., Approximation by Stancu–Chlodowsky polynomials, Comput. Math. Appl. (2010), 59, 274–282.

[10] Yüksel ·I., Dinlemez Ü., Voronovskaja type approximation theorem for q Szàsz–Beta opera-tors, Appl. Math. Comput. (2014), 235, 555–559.

[11] Jackson F.H., On the q de…nite integrals, Quart. J. Pure Appl. Math. (1910), 41, 193–203. [12] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications. Vol.

17. Walter de Gruyter, 1994.

[13] Dalmano¼glu Ö., Do¼gru O., On statistical approximation properties of Kantorovich type q Bernstein operators, Math. Comput. Model. (2010), 52, 760–771.

(23)

[15] Gadjiev A.D., Theorems of the type of P. P. Korovkin type theorems, Math. Zametki. (1976) 20, 781–786.

[16] Gadjiev A.D., Orhan C., Some approximation properties via statistical convergence, Rocky Mountain J. Math. (2002), 32, 129–138.

[17] Gauchman H., Integral inequalities in q calculus. Comput Math. Appl. (2004), 47, 281–300. [18] Ispir N., On modi…ed Baskakov operators on weighted spaces, Turk. J. Math. (2001), 26,

355–365.

[19] Lorentz G.G., Bernstein Polynomials, Toronto, Canada, University of Toronto Press, 1953. [20] Marinkovi S., Rajkovi P., Stankovi M., The inequalities for some types of q integrals,

Com-put. Math. Appl. (2008), 56, 2490–2498.

[21] Phillips G.M., Bernstein polynomials based on the q integers. Ann. Numer. Math. (1997), 4, 511–518.

[22] Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq Math. (1951) 2, 73–74.

Current address : A. Karaisa, Department of Mathematics–Computer Sciences, Necmettin Erbakan University, 42090 Meram, Konya, Turkey

E-mail address : akaraisa@konya.edu.tr, alikaraisa@hotmail.com

Current address : A. Aral, Department of Mathematics, K¬r¬kkale University,71450 Yah¸sihan, K¬r¬kkale, Turkey

Referanslar

Benzer Belgeler

Bu çalışmada öncellikle Baskakov ve Kantorovich operatörleri hatırlatılacak, daha sonra

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

Many properties and results of these polynomials, such as Korovkin type ap- proximation and the rate of convergence of these operators in terms of Lipschitz class functional are

3 Korovkin-type approximation theorem In this section, we study Korovkin-type approximation theorems of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators.. Let Cρ denote

Later a q-analogue of the Bernstein-Kantorovich operators, their approximation properties, local and global approximation properties and Voronovskaja type theorem for the

Tezin esas amacı yaklaşımlar teorisinde yapılan çok çeşitli çalışmalar ve bu çalışmalarda verilen farklı Lineer Pozitif Operatörleri göz önüne alarak

We …rst establish approximation properties and rate of convergence results for these operators.. Our main purpose is to give a theorem on the rate of convergence of the r th

1921’de Mülkıye’den mezuni­ yetiyle başlayan düşünsel çalış­ malarıyla Ülken, felsefe, mantık ve çeşitli toplum bilimlerini kap­ sayan çok geniş bir alanda