• Sonuç bulunamadı

A note on A-linear operators on Banach A-module

N/A
N/A
Protected

Academic year: 2021

Share "A note on A-linear operators on Banach A-module"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47228

A Note on A-linear Operators on Banach A-module

Esra Uluocak* and Ömer Gök**

* Istanbul Arel University, Faculty of Science and Letters Department of Mathematics and Computer Science, Turkey

** Yıldız Technical University , Faculty of Arts and Science Department of Mathematics, Turkey

Copyright © 2014 Esra Uluocak and Ömer Gök. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let A be a Banach f algebra. In this paper we are interested in Alinear operators on a Banach Amodule.

Mathematics Subject Classification: 47B65, 46A40

Keywords: Banach Amodule., disjointness preserving operator, ideal, Arens product

Introduction

Let A be a Banach f algebra and let X be a Banach space. By L

 

X we denote the set of all continuous linear opeartors from X into X . The topological dual of X will be denoted

by X. We say that X is a Banach Amodule if there exists a bilinear mapping

 

a x ax X X A p . , :   

(2)

 

   

 

 

. , . , , , . . . , 1 , . 1 X x A a all for x a x a iii X x A b a all for x b a x ab ii A X x all for x x i         

Bilinear mapping p induces m: AL

 

X ,

 

a,xa.xm

 

a x, is a unital, norm . to strong operator topology continuous, algebra homomorphism. Hence, we accomplish the following three other bilinear mappings :

 

      

 

      

 

      

, . . , , , . 3 ; , , , . . , 2 ; , , , . . , 1 X f X z A a for f a z f z a z a X X A A a X f A a for f x a x f a f a X X A A a X f X x for x a f a f x f x A X X                                   

When X is taken as A , then (3)becomes the Arens product on A. The bilinear mapping

(2) defines a Banach A module structures on X that gives a homomorphism

 

X L A

m*:   defined by m*

 

a fa.f . The bilinear mapping (3) defines a Banach 



A module structure on X. These are called the Arens extensions of the module multiplication X ,[6].

Lemma 1 : Let X be a Banach A module. The following assertions are true :

 

i For each aA,

 

 

* * a m a

(3)

 

ii X is a Banach Amodule.

 

iii X is a Banach Amodule.

 

iv For aA, m*

 

a is continuous from X

X,X

into X

X,X

.

 

m

v is continuous from A

A,A

into L

 

X

w*t

, where w*t is the weak * operatör topology. Proof:

 

i For all aA,

 

 

    

 

 

 

 

m a f

 

x x a m f x a f x f a x f a x f a m f a f a m          . . . .

 

ii -To show 1.ff for all fX,1A

  

 

 

. . 1 , . 1 . 1 f f then x f x f x f   

- To show

ab

.fa

b.f

forall a,bA and fX

A b a Take ,   and a,aA as a a   lim b a   lim .

(4)

a a

a.b lim   then ,

a.a

.fa

a.f

a .a

.f lima

a .f

lim and,

a.b

.fa.

b.f

.

- We claim a.fa f for all aA ve fX

Since mapping p is bilinear continuous, mappings (1), (2), (3) are bilinear continuous too. So, a.fa f .

 

iii we can prove this same with

 

ii .

 

iv Let we take aA as aa . Then, for all fA, to operator topology

A,A

 is a

 

fa

 

f . For m :AL

 

X ,

When we take aa for x;

x a x a.  .  by the continuity of (3)

 

m* a x

x

m*

 

a x

x and

 

a m

 

a

m*   * . Then m:AL

 

X is continuous from A

A,A

into

 

X

w t

L  * .

Definition 2 [1]: Let X be a Banach A module , xX . Then ,

 

. :  , 1

x ClX ax a A a ,

where Cl denotes the closure in X X . Let Y be a subspace of X . Y is called an ideal if

for each xY, 

 

xY. Let X be a Banach A module and let fX, then

 

. :  , 1

(5)

Definition 3 [1]: Let X be a Banach A module and x,yX . x,y

xy

is called disjoint if 

xy

    

 x  y and

     

x  y  0 . Let X be a Banach A1 module and let Y be a Banach A2 module and suppose that T:XY is a linear operator. Then

T is called disjointness preserving operator ( d-homomorphism ), if xz implies TxTz. Let X ,Y be two Banach A modules ( with the same A ). A linear continuous

operator T:XY is called Alinear (or a Aorthomorphism) if

 

ax aTx for all a A x X

T .  . ,  ,  . Take AC

 

K . Then, if a linear operator T:XY is an Alinear, then adjoint T of T is disjointness preserving operator from Yinto X

,[4].

Theorem 4 : Let X ,Y be two Banach A modules. If a linear operator is an 

A linear, then its continuous adjoint operator T:YX is an A linear operator.

Proof : Firstly , let us satisfy that T

 

a.y a.Tyfor aA, yY . Take an arbitrary

X

x , we show that T

   

a.yxa.Ty

 

x .

      

ay x a y Tx y aTx

T .   .    . ( by the bilinear mapping (1) )

= y

T

 

a.x

( by the Alinearity)

Ty

  

a.xa x.Ty

( by the bilinear mapping (1) ) =

a.Ty

 

x ( by the bilinear mapping (2) ).

Hence, T is a Alinear. It is well-known that A is

A , A

dense in A[2]. Let

A

a . There exists a net

 

a in A such that aa in 

A,A

. By the continuity of the bilinear mapping (2), we get a.ya.y for a.yY. Since T is continuous, it follows that T

a.y

T

 

a.y. By the first case, we have T

a.y

a.Ty. By the

bilinear mapping (2), a.Tya.Ty and hence T

 

a.y a.Ty. Therefore, Tis

 

A linear.

Proposition 5 : Let X be a Banach A module and let T:XX be a A linear

operator. Then,

Y X T: 

(6)

x T x x

Tx.  .   for all xX,xX, where T:XX is continuous adjoint of T .

We can prove this proposition by using the bilinear mappings (2) and p .

Let X be a Banach A module. Then , we define the set OrthA

 

X as the set of all

A linear mappings.

Corollary 6 : If TOrthA

 

X , then TOrthA

 

X .

Suppose that X is a Banach A module. Then we define the set W

 

X as the set of all continuous linear operators T: XX such that TEE for each w - closed ideal E of

X . In particular, we get the following corollary:

Corollary 7 [5]: Let X be a Banach C

 

K module. Then , W

 

XOrthC(K)

 

X .

Proof : Assume that TW

 

X . Then, it is easy to see that T is a C

 

K linear. Using that

 

K C is

   

     C K,C K

 dense in C

 

K and continuity of T , we see that

 

X Orth  

 

X W

K

C

. For the converse inclusion, we use Lemma 9.7 of [1], or Theorem 2 of [3].

References

[1] Y. A. Abramovich, E. L. Arenson and A. K. Kitover , Banach C

 

K Modules and Operator Preserving Disjointness, Pitman Res. Notes in Mathematics Series 227, J.Wiley (1997).

[2] C.D. Aliprantis, O. Burkinshaw, Positive Operators. Academic Press, Orlando,(1985).

[3] Ö. Gök, On dual Bade theorem in locally convex C

 

K modules, Demonstratio Math.,32 (1999), 807-810.

[4] Ö. Gök, On disjointness preserving operators in Banach C

 

K modules, Int. J. Appl. Math.,1 (1999), 127-130

[5] Ö. Gök, On C

 

K Orthomorphisms Math. Sci. Res. J.,7(2003),72-78.

[6] Don Hadwin; Mehmet Orhon, Reflexivity and approximate reflexivity for bounded Boolean algebras of projections. J. Funct. Anal. 87 (1989) no. 2., 348–358.

Referanslar

Benzer Belgeler

(Donuk, 2015: 1096) Yazar, görevden ayrıldığı zamandan yaklaşık on bir ay gibi bir süre sonra Cigalazâde Yusuf Sinan Paşa’ya ithaf ederek bu eserini kaleme

Sonuç: Erken dönem laparoskopik kolesi- tektomilerde operasyon süresi ve anatomik yapıların ortaya konmasındaki zorluklara rağmen, akut biliyer pankreatit sonrası erken

This software contains Wireless based totally community (Wi-Fi), having unique sensors such as linked to the transmitter section the ones are Heart charge sensing unit,

Fully Autonomous pipelines cleaning robot, Fully autonomous pipeline robot was used for clean the mud inside the pipe [8].. The autonomous pipeline cleaning robot has

Bunlar; (1) Ýbreli aðaçlarýn bulunduðu ormanlar, (2) Yapraklý aðaçlarýn bulunduðu ormanlar, (3) Yapýlarýn bulunduðu yerler ile bitkisiz, sadece toprak yüzeyin bulunduðu

Bu amaca yönelik olarak performansa dayalı tasarım ve değerlendirme yöntemleri, performans hedefi ile taşıyıcı elemanlar ve taşıyıcı olmayan elemanların performans

Çünkü hem benim için çok büyük yorgunluk oluyor, hem de yaptığım işin iyi olduğuna inanmıyorum.” "Sinemacılıktan kaçışımın en büyük sebebi: Terlik

Şekil 1’de verilen path diyagramı incelendiğinde, beden eğitimi ve spor yüksekokulu öğrencilerinin üniversite memnuniyetlerini en fazla etkileyen faktörün; ölçme