• Sonuç bulunamadı

Exact travelling solutions for the generalized (1+1) dimensional and the generalized (2+1) dimensional Ito equations by G'/G-expansion method

N/A
N/A
Protected

Academic year: 2021

Share "Exact travelling solutions for the generalized (1+1) dimensional and the generalized (2+1) dimensional Ito equations by G'/G-expansion method"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 11. No.2. pp. 41-53 , 2010 Applied Mathematics

Exact Travelling Solutions for the Generalized (1+1) Dimensional and the Generalized (2+1) Dimensional Ito Equations by0 -Expansion Method

M. Abdollahzadeh1, D. D. Ganji1∗, A. G. Davodi12, M. Barzegar13

1Babol University of Technology, Department of Mechanical Engineering, Babol, Iran

e-mail: ∗ddg_davood@yahoo.com

2Shahrood University of Technology, Department of Civil Engineering, Shahrood, Iran 3Iran’s University of Science and Technology, Department of Mechanical Engineering,

Tehran, Iran

Received Date: August 23, 2009 Accepted Date: October 19, 2010

Abstract. In this paper, we establish exact solutions for some nonlinear par-tial differenpar-tial integral equations (PDIE). The ³0´-expansion method was used to construct travelling wave solutions of the generalized (1+1) dimensional and the generalized (2+1) dimensional Ito equations. In this method we take the advantage of general solutions of second order linear ordinary differential equation (LODE) to solve effectively many nonlinear evolution equations. The ³

0  ´

-expansion method presents a wider applicability for handling nonlinear wave equations.

Key words: The 0-expansion method; Traveling wave solutions; the gener-alized (1+1) dimensional and the genergener-alized (2+1) dimensional Ito equations. 2000 Mathematics Subject Classification. 35G20.

1. Introduction

The investigation of travelling wave solutions for nonlinear partial differential equations plays an important role in the study of nonlinear physical phenomena. Nonlinear wave phenomena appear in various scientific and engineering fields, such as: solid state physics [1], fluid mechanics [2], chemical kinetics [3], plasma physics, population models [4], nonlinear optics .Analytical exact solutions to nonlinear partial differential equation play an important role in nonlinear sci-ence, especially they may provide us much physical information and more insight into the physical aspects of the problem and may lead to further applications.

(2)

In recent years, a variety of powerful methods, such as inverse scattering method [5, 6], bilinear transformation [7], Bäcklund and Darboux transformation [7-11], tanh-sech method [12-14], extended tanh method [15], Exp-function method[16-19], the sine-cosine method [20-22], the Jacobi elliptic function method [23-25], F-expansion method [26,27], Li group analysis[28], He’s Variational iteration method[29], He’s homotopy perturbation method[30-32] , homogeneous balance method [33,34] were used for obtaining explicit travelling and solitary wave so-lutions of nonlinear evoso-lutions equations .

The pioneer work Wang et al. [35] introduced the 0-expansion method for a reliable treatment of the nonlinear wave equations. The useful 0-expansion method is widely used by many authors in references [36-40].

In this paper, we will apply the 0-expansion method to obtain the exact travelling wave solution of the generalized (1+1) dimensional and generalized (2+1) dimensional Ito equations

(1.1) + + 3 (2+ ) + 3  Z 0 −∞ = 0 (1.2) + + 3 (2+ ) + 3  Z 0 −∞ + + = 0

which was recently derived by Wazwaz, by generalizing the bilinear forms of the standard KdV equation. Wazwaz obtained Multiple-soliton solutions of these equations using tanh method and Hirota bilinear method [41].

The rest of the paper is organized as follows. In Section 2, we present a method-ology of the generalized³0

 ´

-expansion method. In Section 3 and 4, we apply our method to the generalized (1+1) dimensional and the generalized (2+1) dimensional Ito equations. In Section 5, some conclusions are given.

2- The³0  ´

-Expansion Method

Wang has summarized the main steps for using ³0´-expansion method, as following:

1-We introduce the wave variables  =  −  into the PDE, we get

(2.1)  (         ) = 0

where ( ) is travelling wave solution. This enables us to use the following changes:

(3)

(2.2)  ( ) =  ()  (2.3)   = −   2 2 =  2 2 2   =   2 2 = 2 2    

And so on for the other derivates. Using (2.3) and (2.2), the nonlinear PDE (2.1) changes to a nonlinear ODE:

(2.4) Ψ¡ −0 0 200 00 −00 000   ¢= 0

If all terms of the resulting ODE contain derivatives in , then by integrating this equation, by considering the constant of integration to be zero, we obtain a simplified ODE.

2-Suppose that the solution of ODE (2.2) can be expressed by a polynomial in ³ 0  ´ as follows: (2.5)  () =  X =0  µ 0  ¶ =  µ 0  ¶ + · · · 

Where  = () satisfies the second order LODE in the form:

(2.6) 00+ 0+  = 0

where 0 = ()  , 00 =

2()

2 .      ,and  are constants to be deter-mined later, 6= 0, the unwritten part in (2.5) is also a polynomial

³ 0

 ´

, but the degree of which is generally equal to or less than  − 1, the positive integer  can be determined by considering the homogeneous balance the highest order derivatives and highest order nonlinear terms appearing in ODE (2.4).

3- By substituting Eq. (2.5) into Eq. (2.4) and using second order LODE (2.6), collecting all terms with the same order of³0´ together, the left-hand side of Eq. (2.4) is converted into another polynomial in³0´. Equating each coefficient of this polynomial to zero, yield a set of algebraic equations involving        and  .

(4)

4-Assuming that the constants        and  can be obtained by solving the algebraic equations in Step 3, since the general solutions of the second order LODE (2.6) have been well known for us, then substituting        and general solutions of Eq. (2.6) into Eq.(2.5) we have more travelling wave solutions of the nonlinear evolution equation (1.1) and (1.2).

3. The (1+1)-Dimensional Ito Equation

In this section, we will demonstrate the proposed method on (1+1) dimensional Ito equation [41]: (3.1) + + 3 (2+ ) + 3  Z 0 −∞ = 0

By using the potential  = , Eq. (3.1) can be reduced to:

(3.2) + + 6+ 3+ 3= 0

As described in Section 2 we perform a traveling wave reduction ( ) =  () with the argument  =  − , generating the reduced nonlinear ODE:

(3.3) 2000− (5)− 6 (00)2− 60000= 0 Or equivalently:

(3.4) 2000(5)− 3¡(02¢¨= 0 Integrating Eq. (3.4) twice, we will obtain:

(3.5) 20− 000− 3(02= 0

Setting  = 0 as new depend variable, a second order nonlinear ODE results:

(3.6) 2 − 002= 0

Suppose that the solution of ODE (3.6) can be expressed by

(3.7) () =  µ 0  ¶ +    

(5)

(3.8) 00+ 0+  = 0 By using Eq. (3.7) and Eq. (3.8) it is easily derived that

2() = 2 µ 0  ¶2 + · · ·  (3.9) 0() = −  µ 0  ¶+1 + · · ·  00() = ( + 1) µ0  ¶+2 + · · · 

Considering the homogeneous balance between 2 and 00 in Eq. (3.6), based on Eq. (3.9), we required that 2 =  + 2 ⇒  = 2 so we can write Eq. (3.7) as: (3.10) () = 0+ 1 µ 0  ¶ + 2 µ 0  ¶2  26= 0 By using Eq. (3.8) and Eq. (3.10), it is derived that

(3.11) 2() = 2 0+ 201 µ 0  ¶ + (202+ 21) µ 0  ¶2 + 212 µ 0  ¶3 +22 µ 0  ¶4  and (3.12) 00() = 222+  1 + (21 + 12+ 62) µ 0  ¶ +(422+ 31 + 82) µ 0  ¶2 + (21+ 102) µ 0  ¶3 +62 µ 0  ¶4

By substituting Eqs. (3.10)— (3.12) into Eq. (3.6) and collecting all terms with the same power of³0´ together, the left-hand side of Eq. (3.6) is converted into another polynomial in³0´. Equating each coefficient of this polynomial

(6)

to zero, yields a set of simultaneous algebraic equations for 0 1 2   and  As follows: (3.13a) µ 0  ¶0 : 20− 222− 320− 1 = 0 (3.13b) µ 0  ¶1 : 21− 21 − 12− 62 − 610= 0 (3.13c) µ 0  ¶2 : −82 − 321− 31 − 620+ 22− 422= 0 (3.13d) µ 0  ¶3 : −21− 102 − 612= 0 (3.13e) µ 0  ¶4 : −322− 62= 0 Solving the algebraic equations above, yields:

(3.14) 0= −2  1= −2  2= −2   = 2− 4 or (3.15) 0= − 2 3 − 1 3 2 1= −2  2= −2  = 4 − 2 where  and  are arbitrary constants.

By using Eqs. (3.14) and (3.15), expression (3.7) can be written as

(3.16) 1() = −2 − 2 µ 0  ¶ − 2 µ 0  ¶2  where  =  − , or (3.17) 2() = − 2 3 − 1 3 2 − 2 µ 0  ¶ − 2 µ 0  ¶2  where  =  − (4 − 2).

(7)

Substituting general solution of Eq. (2.6) into Eqs. (3.16) and (3.17) we have the solutions of Eq. (3.6) as follows:

When 2− 4  0, (3.18) 1() = −2 + 2 2 − 1 2( 2 − 4) µ 1sinh12 √ 2−4+ 2cosh12 √ 2−4 1cosh12 √ 2 −4+2sinh12 √ 2 −4 ¶2  where  =  − , or (3.19) 2() = − 2 3+ 2 6 − 1 2( 2 −4) µ 1sinh12 √ 2−4+ 2cosh12 √ 2−4 1cosh12√2−4+2sinh12√2−4 ¶2  where  =  − (4 − 2). When 2− 4  0, (3.20) 3() = −2 + 2 2 − 1 2(4 −  2 ) µ −1sin12 √ 4−2+ 2cos12 √ 4−2 1cos12 √ 4−2+ 2sin12 √ 4−2 ¶2  where  =  − , or (3.21) 4() = − 2 3 + 2 6 − 1 2(4 −  2 ) µ −1sin12 √ 4−2+ 2cos12 √ 4−2 1cos12 √ 4−2+ 2sin12 √ 4−2 ¶2  where  =  − (4 − 2).

Recalling that  = 0 and using the potential transformation ( ) = ( ) and the travelling wave reduction ( ) =  () and ( ) =  (), we have: When 2− 4  0, (3.22) 1( ) =  2 −  2 Ã 1sinh( √  2 ( − )) + 2cosh( √  2 ( − )) 1cosh( √  2 ( − )) + 2sinh( √ 2 ( − )) !2  where  = 2− 4, or (3.23) 2( ) =  6 − 1 2 Ã 1sinh( √  2 ( + )) + 2cosh( √  2 ( + )) 1cosh( √ 2 ( + )) + 2sinh( √  2 ( + )) !2 

where  = 2− 4. And when 2− 4  0,

(3.24) 3( ) = − 1 2 − 1 2 ³ −1sin(12 √ (+))+2cos(12 √ (+)) 1cos(12 √ (+))+2sin(12 √ (+)) ´2 

(8)

where  = 4 − 2, or (3.25) 4( ) = − 1 6 − 1 2 ³ −1sin(12 √ (−))+2cos(12 √ (−)) 1cos(12 √ (−))+2sin(12 √ (−)) ´2  where  = 4 − 2.

1  2are arbitrary constants .If 1and 2are taken as special values, the various results can be rediscovered. For instance, if 1 6= 0 and 2 = 0, then 1( ) can be written as:

(3.26) 1( ) =  2 −  2 Ã 1sinh( √  2 ( − )) 1cosh( √  2 ( − )) !2 = 2sec  2( √  2 ( − )) Which is equal to the exact solution of Eq (3.1) obtained by Wazwaz [41]. 4. The (2+1)-Dimensional Ito Equation

In this section we apply the³0´-expansion method to the (2+1)-dimensional Ito equation [41]: (4.1) + + 3(2+ ) + 3  Z −∞ 0+ + = 0

That can be reduced to:

(4.2) + + 6+ 3+ 3+ + = 0 Upon using the potential  = , where  and  are arbitrary constants. We seek travelling wave solutions for Eq. (4.3) in the form:

(4.3) (  ) =  ()  =  +  −   Using Eq. (4.3), Eq. (4.2) is carried to a nonlinear ODE:

(4.4) 2000(5)− 6(002− 60000− 000− 000= 0 or equivalently

(4.5) ( − ( + ))000(5)− 3¡(02¢¨= 0 Integrating Eq. (4.5) twice, we will obtain:

(9)

Introducing  = 0 as a new depend variable, we obtain the reduced nonlinear ODE:

(4.7) ( − ( + )) − 002= 0

Considering the homogeneous balance between 2 and 00 in Eq. (4.7), we required that 2 =  + 2 ⇒  = 2 so we suppose that the solution of Eq. (4.7) is of the form (4.8) () = 0+ 1 µ 0  ¶ + 2 µ 0  ¶2  26= 0

Where  = () satisfies the second order LODE (2.6) and 0 1 2  and  gare constants to be determined later.

By using Eq. (4.8) and Eq. (2.6), it is derived that

(4.9) 2() = 20+201 ³ 0  ´ +(202+21) ³ 0  ´2 +212 ³ 0  ´3 +22³0´ 4  and (4.10) 00() = 2 22+ 1 + (21 + 12+ 62) µ 0  ¶ +(422+ 31 + 82) µ 0  ¶2 + (21+ 102) µ 0  ¶3 +62 ³ 0  ´4

By substituting Eqs. (4.8)— (4.10) into Eq. (4.7) and collecting all terms with the same power of³0

 ´

together, the left-hand side of Eq. (4.7) is converted into another polynomial in³0´. Equating each coefficient of this polynomial to zero, yields a set of simultaneous algebraic equations for 0 1 2   and  As follows: (4.11a) µ0  ¶0 : 20− 320− 0− 222− 1 − 0= 0 (4.11b) µ 0  ¶1 : −62 − 610− 21 − 12+ 21− 1− 1= 0 (4.11c) µ 0  ¶2 : 22−82−620−2−422−31−2−321= 0

(10)

(4.11d) µ 0  ¶3 : −612− 21− 102 = 0 (4.11e) µ 0  ¶4 : −322− 62= 0 Solving the algebraic equations above, yields:

(4.12) 0= −2  1= −2  2= −2   = 2− 4 +  +  or (4.13) 0= − 2 3 − 1 3 2  1= −2  2= −2   = 4 − 2+  +  where  and  are arbitrary constants.

By using Eqs. (4.12) and (4.13), expression (4.8) can be written as

(4.14) () = −2 − 2 µ 0  ¶ − 2 µ 0  ¶2  where  =  +  − (2− 4 +  + ), or (4.15) () = −2 3 − 1 3 2 − 2 µ 0  ¶ − 2 µ 0  ¶2  where  =  +  − (4 − 2+  + ).

Substituting general solution of Eq. (2.6) into Eqs. (4.14) and (4.15), we have solutions of Eq (4.7) as follows: (4.16) 1() = −2 + 2 2 − 1 2( 2 − 4) µ 1sinh12 √ 2 −4+2cosh12 √ 2 −4 1cosh12 √ 2−4+ 2sinh12 √ 2−4 ¶2  Where  =  +  − (2− 4 +  + ) (4.17) 2() = − 2 3+ 2 6 − 1 2( 2 −4) µ 1sinh12√2−4+2cosh12√2−4 1cosh12 √ 2−4+ 2sinh12 √ 2−4 ¶2  where  =  +  − (4 − 2+  + ). And when 2− 4  0,

(11)

(4.18) 3() = −2 + 2 2 − 1 2(4 −  2 ) µ −1sin12 √ 4−2+ 2cos12 √ 4−2 1cos12√4−2+2sin12√4−2 ¶2  where  =  +  − (2− 4 +  + ), or (4.19) 4() = − 2 3 + 2 6 − 1 2(4 −  2 ) µ −1sin12 √ 4−2+ 2cos12 √ 4−2 1cos12 √ 4−2+ 2sin12 √ 4−2 ¶2  where  =  +  − (4 − 2+  + ).

Recalling that  = 0and using the potential transformation ( ) = ( ) and the travelling wave reduction ( ) =  ()and( ) =  () , we have: When 2− 4  0, (4.20) 1( ) =  2 −2 µ 1sinh( √  2 (+−(++)))+2cosh( √  2 (+−(++))) 1cosh( √  2 (+−(++)))+2sinh( √  2 (+−(++))) ¶2  where  = 2− 4 +  + , or (4.21) 2( ) =  6 −2 µ 1sinh( √  2 (+−(+−)))+2cosh( √  2 (+−(+−))) 1cosh( √  2 (+−(+−)))+2sinh( √  2 (+−(+−))) ¶2  where  = 2− 4. When 2− 4  0, (4.22) 3( ) = − 1 2 −2 ³−1sin(12 √ (+−(+−)))+2cos(12 √ (+−(+−))) 1cos(12 √ (+−(+−)))+2sin(12 √ (+−(+−))) ´2  where  = 4 − 2,or (4.23) 4( ) = − 1 6 −12³−1sin(12 √ (+−(++)))+2cos(12 √ (+−(++))) 1cos(12√(+−(++)))+2sin(12√(+−(++))) ´2  where  = 4 − 2.

(12)

1  2are arbitrary constants .If 1and 2are taken as special values, the various results can be rediscovered. For instance, if 16= 0, 2= 0 and we take  +  +  =  then 1( ) can be written as:

(4.24) 1( ) =  − ( + ) 2 −  − ( + ) 2 µ 1sinh( √ −(+) 2 (+−)) 1cosh( √ −(+) 2 (+−)) ¶2 =  − ( + ) 2 sec  2( p  − ( + ) 2 ( +  − ))

Which is equal to the exact solution of Eq. (4.1) obtained by Wazwaz [41]. 5- Conclusions

The³0´-expansion method was successfully used to establish travelling wave solutions of the generalized (1+1) dimensional and the generalized (2+1) dimen-sional Ito equations. Many well known nonlinear wave equations were handled by this method. The performance of this method is reliable and effective and gives more solutions. This method has more advantages .it is direct and concise .It is elementary that the general solutions of the second order LODE have been well known for the researchers and effective that it can be used in many other nonlinear evolution equations. The availability of computer systems like Math-ematica or Maple facilitates the tedious algebraic calculations. The method which we have proposed in this letter is also a standard, direct and comput-erizable method, which allows us to solve complicated and tedious algebraic calculation.

References

1. G. Eilenberger, Solitons, Springer-Verlag, Berlin, 1983.

2. G. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

3. P. Gray and S. Scott, Chemical Oscillations and Instabilities, Clarendon, Oxford, 1990.

4. A. Hasegawa, Plasma Instabilities and Nonlinear Effects, Springer-Verlag, Berlin, 1975.

5. C. S. Gardner, J. M. Green, D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, (1967), 1095.

6. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

7. R .Hirota, Backlund Transformations, Springer, Berlin (1980), 1157. 8. M. Wadati, H. Shanuki, K. Konno, Prog. Theor. Phys. 53 (1975) 419.

9. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991.

10. A. Coely, Backlund and Darboux transformations, American Mathematical Soci-ety, Providence, Rhode Island, 2001.

(13)

11. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991.

12. W. Malfliet, Amer, J. Phys. 60 (1992) 650.

13. W. Malfliet, W. Hereman, Physica. Scripta 54 (1996) 563.

14. D.D. Ganji, M. Abdollahzadeh, Appl. Math. Comput. 206 (2008) 438—444 15. E. Fan, Phys. Lett. A 277 (2000) 212.

16. J.H. He, X.H. Wu, Chaos Solitons Fractals 30 (2006) 700. 17. J.H. He, M.A. Abdou, Chaos Solitons Fractals 34 (2007) 1421. 18. X. H. Wu, J.H. He, Chaos Solitons Fractals 38 (2008) 903.

19. Z.Z. Ganji, D.D. Ganji, H. Bararnia, Appl. Math. Model. (2008), doi: 10.1016/j.apm. 2008.03.005.

20. A.M. Wazwaz. Appl. Math. Comput. 159 (2004) 559.

21. A.M. Wazwaz, M.A. Helal, Chaos Solitons Fractals 26 (2005) 767. 22. A.M. Wazwaz, Math. Comput. Model. 40(2004), 499.

23. Shikuo Liu, Shida Liu, Q. Zhao, Phy. Lett. A 289 (2001) 69. 24. Z. Fu, Shikuo Liu, Shida Liu, Q. Zhao, Phy. Lett. A 290 (2001) 72. 25. E.J. Parkes, B.R. Duffy, P.C. Abbott, Phy. Lett. A 295 (2002) 280. 26. Y. Zhou, M. Wang, Y. Wang. Phy. Lett. A 308 (2003) 31.

27. G. Cai, Q. Wang, J. Huang, Int. J. Nonl. Sci. 2, (2) (2006), 122.

28. P. J. Olver, Application of Lie Group to Differential Equation ,Springer, New York, 1986.

29. A. Sadighi, D.D. Ganji, Comput. Math. Appl. 54 (2007) 1112. 30. D.D. Ganji, M. Rafei, Phys. Lett. A 356 (2006) 131.

31. D.D. Ganji, Phys. Lett. A 355, (2006) 337.

32. D.D. Ganji, G.A. Afrouzi, R.A. Talarposhti, Phys. Lett. A 368 (2007) 450. 33. E. Fan, H. Zhang, Phys. Lett. A 246 (1998) 403.

34. L.Wang, J. Zhou, L. Ren, Int. J. Nonl. Sci. 1(1), (2006) 58. 35. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372 (2008) 417—423

36. M. Wang, J. Zhang, X. Li, Appl. Math. Comput. (2008), doi: 0.1016/j.amc.2008.08.045 37. D. D. Ganji, M. Abdollahzadeh, Journal of Mathematical Physics 50, 1 (2009) 38. J. Zhang, X Wei, Y. Lu, Phys. Lett. A 372 (2008) 3653.

39. A. Bekir, Phys. Lett. A 372 (2008) 3400.

40. A. Bekir, A.C. Cevikel, Chaos Solitons Fractals ,doi:10.1016/j.chaos.2008.07.017. 41. A.M. Wazwaz, Appl. Math. Comput. 202 (2008) 840.

Referanslar

Benzer Belgeler

Her bir hareket ic¸in ayrı ayrı ve rasgele sec¸ilmis¸ olan 24’er tane ¨oznitelik vekt¨or¨un¨un ortalaması alınarak 8 farklı hareket ic¸in birer tane e˘gitme vekt¨or¨u

Hidrolik basınç hattı filtrelerinin istenilen çalışma koşulları altında hizmet verebilmesi filtrede kullanılan malzemeye, filtrenin boyutsal özelliklerine ve

Türkiye 1950’li yıllardan sonra hızlı bir kentleşme sürecine girmiş ve kentlere doğru hızlı bir göç artışı yaşanmıştır. Kentler hızla büyürken gelişme

Þekil 8'de bu kontrol algoritmasý ile daha hýzlý referans yörüngeleri için sistemden elde edilen konum-zaman, hýz- zaman, basýnç farký-zaman ve kumanda-zaman grafikleri

a) Photo showing west dipping Korgun fault that limits the western border of the EPCW at the southeast of Korgun town. Corrugations indicate normal slip of the fault, see inset. b)

Bu çalışmada, Bulgaristan’da hızlı tüketim ürünleri perakendeciliği sektöründe faaliyet gösteren yüksek indirimli mağazalar incelenerek, pazara girmek isteyen

4.7 The effect of palmitoleate on palmitate-induced inactivation of 5 ’ AMP activated protein kinase...54 4.8 The effect of PERK and IRE1 branches of the Unfolded Protein Response

Bu spekülasyonlara aç kl k getirmek amac yla bistüri, elektrokoter ve plasmakinetik enerjili peak plasmablade koter kullan larak yap lan kar n duvar ve intestinal kesilerden sonra