• Sonuç bulunamadı

Mechanics of milling 48-2-2 gamma titanium aluminide

N/A
N/A
Protected

Academic year: 2021

Share "Mechanics of milling 48-2-2 gamma titanium aluminide"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Mechanics

of

milling

48-2-2

gamma

titanium

aluminide

Abbas

Hussain

a

,

S.

Ehsan

Layegh

c

,

Ismail

Lazoglu

a,

*

,

Pedro-J.

Arrazola

b

,

Xabier

Lazcano

b

,

Patxi-X.

Aristimuño

b

,

Omer

Subasi

a

,

I.

Enes

Yigit

a

,

Çaglar

Öztürk

a

,

Çaglar

Yava

ş

d

aKocUniversity,ManufacturingandAutomationResearchCenter,Istanbul34450,Turkey bMondragonUniversity,FacultyofEngineering,Mondragon20500,Spain

c

MEFUniversity,Istanbul34396,Turkey

d

KarcanCuttingTools,Eskisehir26110,Turkey

ARTICLE INFO

Articlehistory:

Availableonline23June2020

Keywords: Milling

Gammatitaniumaluminide Coating

ABSTRACT

Accurateandfastpredictionofcuttingforcesisimportantinhigh-performancecuttingintheaerospace industry.Gammatitaniumaluminide(g-TiAl)isamaterialofchoiceforaerospaceandautomotive applicationsduetoitssuperiorthermo-mechanicalproperties.Nevertheless,itisadifficulttomachine material.ThisarticlepresentsthepredictionofcuttingforcesforTi-48Al-2Cr-2Nb(48-2-2)g-TiAlin millingprocessusingorthogonaltoobliquetransformationtechnique.Thenoveltyofthispaperliesin reportingtheorthogonaldatabaseof48-2-2g-TiAl.Fundamentalcuttingparameterssuchasshearstress, frictionangleandshearanglearecalculatedbasedonexperimentalmeasurements.Frictioncoefficients areidentifiedfortwodifferentcoatingconditionswhichareAlTiN,andAlCrNoncarbidetools.Predicted resultsarevalidatedwiththeexperimentalcuttingforcesduringend millingandball-endmilling operationsfordifferentcuttingconditions.Thesimulatedresultsshowedgoodagreementwiththe experimentalresults,whichconfirmsthevalidityoftheforcemodel.

©2020CIRP.

Introduction

Theuseofadvancedlightweightstructuralmaterialsisakey

pointforaerospaceandautomotiveapplicationstoimproveengine

performancesandefficiency,aswellastosatisfytheincreasingly

restrictiveenvironmentalregulations,aimedatreachingadecisive

lesseningofCO2emissions[1].Inthiscontext,intermetallic

aero-engine materials, such as

g

-TiAl, have been identified as

strategically critical materials to be used in both non-rotating

androtatingcomponents,e.g.blademanufacturing.Theyprovidea

remarkable strength-to-weight ratio, approximately half the

density of nickel-based superalloys, high stiffness, high elastic

modulus,strengthretentionatelevatedtemperatures,oxidation

resistance,andgoodcreepproperties[2,3].

However, the attractive mechanical and thermal properties,

becomea drawbackwhendealing withmachining,as itoccurs

with many other materials. As it has been shown in several

conventional machiningpublications, machinabilityof

g

-TiAl is

poorbecauseofitslowductilitycombinedwithhighhardnessand

brittleness at room temperature, low thermal expansion, low

fracture toughness and chemical reactivity with many tool

materials[4,5].Inconsequence,themachiningcostishigh,which

canrestrictthewidespreaduseofthesematerialsintheindustry.

Severalresearchstudieshavebeencarriedoutinthelastyears

dealingwiththemachinabilitypropertiesof

g

-TiAl.Mantleetal.

[6]investigatedthesurfaceintegrityof

g

-TiAl,Ti

–45Al–2Nb–2Mn-0.8vol.% TiB2XD by performing high-speed milling operations.

Experimentswerecarriedoutusingcoatedtungstencarbide

ball-endmillinupmillinganddownmillingdirections.Priaroneetal.

[7] studied the effect of cutting tool angles and cutting-edge

preparation in machinability of Ti-48Al-2Cr-2Nb EBM sintered

g

-TiAl.Allthemillingoperationswereperformedindownmilling

modewithcoatedanduncoatedcarbideendmills.Beranoagirre

etal.[8]providedthespecificcuttingforcecoefficientsobtained

fromthemechanisticcalibrationmethodforthreedifferenttypes

of

g

-TiAlalloys:theMoCuSitypeiningotandextrudedform,and

theTNBtypeiningotform.Theyperformedmillingexperiments

and studied thetool wear for differentcutting conditions and

foundthatthecuttingvelocityisthedeterminingfactorintoollife.

Settinerietal.[9]performedturningandmillingexperimentson

three different

g

-TiAl alloys:Ti–48Al–2Cr–2Nb, Ti–43.5Al–4Nb–

1Mo–0.1B,andTi–45Al–2Nb–2Mn-0.8vol.%TiB2XD,focusingon

machinability and material characterization. The experimental

results wereextremely dissimilar due to the differentalloying

elements which affected the mechanical and thermal material

properties.Hoodetal.[10]investigatedthesurfaceintegrityby

* Correspondingauthor.

E-mailaddress:ilazoglu@ku.edu.tr(I.Lazoglu).

https://doi.org/10.1016/j.cirpj.2020.05.001

1755-5817/©2020CIRP.

ContentslistsavailableatScienceDirect

CIRP

Journal

of

Manufacturing

Science

and

Technology

(2)

performingslotmillingonTi–45Al–2Nb–2Mn-0.8vol.%,TiB2using

AlTiNcoatedWCballnoseendmills.

Although machining of

g

-TiAl alloys has been previously

researchedintheliterature,nostudieshavebeencarriedoutto

develop an orthogonal cutting database for the prediction of

cuttingforcesfor

g

-TiAlinobliqueand3Dprocessessuchasflat

andball-endmilling.Thecreationofsuchadatabaseiscrucialfor

accurateandfastpredictionsofcuttingforcesemployedin

high-performancemachiningofaeronauticcomponentssuchasblades.

Thisimpliesthatindustrialparameterssuchassurfaceroughness,

the possibility of chatter or dimensional tolerances can be

accuratelypredicted.

Afundamentalcuttingparameter databaseindependentofcutter

geometryisrequiredtocalculatethecuttingforcesinamachining

operation.Thisdatabaseisthenusedtocalculatethespecificcutting

coefficients by applying an analytical orthogonal to oblique

transformation model [11]. In addition, this model allows the

predictionofcuttingforcesofcomplexoperationssuchasball-end

milling[12].Thisapproachcanalsobeimplementedtoinvestigate

theeffectsofcuttingparametersonmachiningperformance[13].

High-performancecoatingshavebecomeasuccessfulstandard

forincreasingtheefficiencyofmachiningtoolsintheindustryover

thelastdecade[14,15].Thecurrentstudyfocusesonestablishing

anorthogonalcuttingdatabasefor48-2-2

g

-TiAlfordifferenttool

coatings;AlTiNandAlCrNcoatings.Forcuttingforcepredictions,

an analytical force model and the orthogonal to oblique

transformationmethodisemployed.Themodelisthenvalidated

forendmillingandball-endmillingoperationsfordifferentcutting

conditions,demonstratinggoodagreementbetweenexperimental

andmodeledresults.

Mechanicsofmillingoperation

Millingoperationisoneofthemostfundamentalmetalcutting

operations that is extensively used in the manufacturing of

complex components in high-tech fields such as aerospace,

automotiveand biomedical industries. Unlike turning,which is

acontinuouscuttingoperation,millingisaninterrupted

machin-ing operation. During milling operation, the cutting edges

repeatedly enter and exit the engagement domain. Therefore,

the cutting forces are harmonic and the simulation of cutting

forcesismorecomplicated.Thegeometryofthemillingtooland

themechanicsoftheprocessareillustratedinFig.1(a).

Elemental cutting forces in end milling operation can be

analyticallymodeledusingEq.(1).InthissetofequationsdFt,dFr

anddFaarethedifferentialcuttingforcesintangential,radialand

axialdirections, respectively.Moreover,hð

f

Þand dz denotethe

uncutchipthicknessandelementallengthofthecuttingedgein

the axial direction. Ktc;Krc;Kac;Kte;Kre and Kae are the specific

cuttingandedgecoefficientsthatareassociatedwiththecutting

andploughingphenomenainthemetalcuttingprocess:

dFt¼½Ktchð

f

ÞþKtedz; dFr¼½Krchð

f

ÞþKtedz; dFa¼½Kachð

f

ÞþKaedz; 9 = ; ð1Þ

Theaccuracyoftheanalyticalmodelishighlydependentupon

theaccuratepredictionofthecuttingforcecoefficientsandedge

coefficients. Different approaches have been suggested in the

literaturetopredictthecuttingcoefficients[16–20].Theadvantage

ofusingorthogonaltoobliquetransformationtechniqueoverother

methodsisthatthecuttingcoefficientscanbepredictedbeforethe

manufacturingofthetool.Thismethodisindependentofcutter

geometryandcanbeusedtosimulatethecuttingforcesforany

metalcuttingprocessalike.Orthogonaltoobliquetransformation

techniqueisbasedonthemeasurementofchipthicknessesandthe

cuttingforcesinthetangentialandfeeddirectionsinanorthogonal

turning test. The measurements are used to calculate the

fundamental cutting parameters, including shear stress, shear

angleandfrictionangle.Transformationoftheseparametersare

then utilized to model oblique cutting processes such as the

milling operation. In this paper, using the orthogonal cutting

forces,thecuttingforcecoefficientsandedgecoefficientsinEq.(1)

are estimated [21]. The geometry of the orthogonal cutting is

illustratedinFig.1(b).Thefundamentalparametersfororthogonal

toobliquetransformationcanbepredictedfromEqs.(2)–(6):

b

a

rþtan1 Ffc Ftc ð2Þ

m

¼tanð

b

aÞ ð3Þ

f

p

4¼ ð

b

a

a

rÞ 2 ð4Þ

t

s¼ Fcosð

f

b

a

a

rÞsin

f

c bh ð5Þ rc¼ tanð

f

cosð

a

rÞðtanð

a

rÞtanð

f

cÞþ1Þ ð6Þ

where

b

a;

a

r;Ffc;Ftc;

m

;

f

c;

t

s;F;b;handrcarefrictionangle,rake

angle,averagefeedcuttingforce,averagetangentialcuttingforce,

the coefficient of friction, shear angle, shear stress, average

(3)

resultantforce, thewidthofcut,uncutchipthickness,and chip

thicknessratioinorthogonalturning,respectively.Duetothelow

machinabilityof

g

-TiAl,theproducedchipsduringthemachining

processareexpectedtobediscontinuous,makingthedeformed

chip thickness measurement and empirical calculation of chip

ratio challenging. Totackle this problem, the minimum energy

principle is employed to estimate the shear angle as given in

Eq.(4).Thismodelassumesthattheshearstressontheshearplane

isequivalenttotheyieldshearstressofthematerialandthatthe

shearplaneisthin[22].

Cutter-workpieceengagementmodelforball-endmilling

Theball-endmillingprocessiswidelyusedinthemachiningof

freeformsurfacesespeciallyintheautomobile,aerospace,anddie

andmoldindustries.Owingtothegeometryoftheball-endmilling

tool, the engagement area does not remain constant and the

completecutting-edgelengthisnotincontactwiththeworkpiece

duringthefreeformsurfacemachining.Inthisstudy,thecutting

forcesforfreeformball-endmillingarepredictedbyemployinga

solid modeler-based engagement model to predict the contact

region between the tool and the workpiece. First, the contact

surfacebetweenthetoolandtheworkpieceiscalculatedateach

cutter location, then the swept volume of the cutting tool is

calculatedfromthecutterlocation(CL)file.Theentranceandexit

anglesofeachdiscretecuttingdiskarecalculatedaftersubtracting

thesweptvolumefromablankworkpiece.Theseanglesareusedas

an input for the force model. A detailed explanation of the

employedengagementmodelisprovidedin[23].Asamplecontact

regionforagivencutterlocationonafreeformmillingsurfaceis

showninFig.2.

Experimentalsetup

The experimental stage of this work consisted of both

orthogonal turning and milling of 48-2-2

g

-TiAl, a difficult to

cutmaterial.Theobtainedas-castworkpiecespecimenisreported

Fig.2.(a)CADmodelofthefreeformsurface;(b)CAMsimulationandtool-workpiececontactregion.

Fig.3.(a)Orthogonalturningsetupand(b)millingtestsetupandfor48-2-2g-TiAl machining(DAQ:dataacquisition).

(4)

tohave242HRCwith326MPayieldstrength,422MPaultimate

tensilestrengthand%1.7elasticstrainat23,and384MPayield

strength,474MPaultimatetensilestrengthand5.1%elasticstrain

at 650 [26,27]. Orthogonal turning tests were performed to

establishtheorthogonaldatabase,whereasthemillingtestswere

conductedtovalidatethepredictedcuttingforcesobtainedfrom

thedevelopeddatabase.

Orthogonalturningsetup

Orthogonal cuttingtests wereperformed ona MazakQuick

TurnNexus150turningcenterasshowninFig.3(a).Agrooved

48-2-2

g

-TiAlworkpiecewith55mmdiameterand2mmwidthofcut

wasusedduringtests.Theinclinationanglewassettozerodegrees

tohavean orthogonalcuttingcondition.Allexperimental tests

wereperformedfor40m/mincuttingvelocityand0.06,0.08and

0.100mm/revfeedrates.Cuttingoperationswereconductedwitha

4 rake angle and tungsten carbide inserts with two different

coatings: AlCrN and AlTiN coatings. With scanning electron

microscopemeasurements,theedgeradiioftheturninginserts

wereidentifiedas15

m

mfortheAlCrNcoatedtooland16

m

mfor

theAlTiNcoatedtool.Nocoolantwasusedduringthemachining

andcuttingforcesweremeasuredusingKistler9257Btabletype

dynamometer.

Millingsetup

A set of experimental tests consisting of flat and ball-end

milling wereperformed ona 5-axis MoriSeikiNMV5000DCG

machining center as shown in Fig. 3(b). Once again, all the

milling tests were conducted at dry conditions and a Kistler

9257B table type dynamometer was utilized for cutting force

datacollection.

Flatendmillingtestswereconductedwitha36.5helixangle,

8 rakeangle,12mmdiameter,fourflutedtungstencarbideend

mills having two differentcoating conditions:AlCrNand AlTiN

coating.Thethicknessesofthecoatingsweremeasuredusinga

scanningelectronmicroscope(SEM)showninFig.4.Cuttingforce

datawasacquiredduringdownmillingoperationforthetoolpath

showninFig.5.ThecuttingconditionsaretabulatedinTable1.

Theestimatedcuttingforcesforball-endmillingwerevalidated

by performing down end milling and freeform surface milling

usingAlCrNcoated,fourfluted,tungstencarbideball-endmillwith

30 nominalhelix angle, 8mm nominal diameter, and 5 rake

angle.ThecuttingconditionsaretabulatedinTables2and3.The

cuttingtoolsusedinthestudyareshowninFig.6

Fig.5. Toolpathforflatendmilling.

Table1

Flatendmillingcuttingconditionsfor48-2-2g-TiAl. Cuttingvelocity [m/min] Depthofcut [mm] Widthofcut [mm] Feedrate [mm/tooth] 15 2 0.5 0.04,0.05,0.07,0.08 Table2

Ball-endmillingcuttingconditionsfor48-2-2g-TiAlindownendmilling. Cuttingvelocity [m/min] Depthofcut [mm] Widthofcut [mm] Feedrate [mm/tooth] 48 3 0.5 0.04,0.06,0.08 Table3

Ball-endmillingcuttingconditionsfor48-2-2g-TiAlinfreeformmilling. Cuttingvelocity [m/min] Stepover [mm] Feedrate [mm/tooth] 40 1 0.06

(5)

Resultsanddiscussion

Orthogonalcuttingof48-2-2

g

-TiAl

The measured tangential and feed forces from orthogonal

turningfordifferentfeedratesareshowninFig.7.Thesecutting

forceswereusedtocalculatethefundamentalcuttingparameters

suchasshearstress,shearangle,frictionangleandchipratio.The

calculatedorthogonalcuttingparametersfordifferentcoatingsare

tabulatedinTable4forthe4rakeangleinsert.Resultsshowed

thattheAlCrNcoatinghasasmallershearangleascomparedtothe

AlTiNcoating. In the cuttingprocess, thechip thickness,shear

angleand shear planeareinterrelatedtoeach other.A smaller

shearangleisassociatedwithalongershearplaneandarelatively

large chip thickness. On the other hand, a large shear angle

indicates a small shear plane and during the cutting process,

producedchipsarerelativelythinner[24].Theseresultinlessforce

needed to shear off the chips, implying that a lower friction

coefficientdictatestheprocess.

Thefrictioncoefficientplaysanimportantroleinthetoollife

and workpieceintegrity [25]. The friction coefficient identified

fromtheorthogonalturningshowedthattheAlCrNcoatinghad

thehighestfrictioncoefficientascomparedtotheAlTiNcoating.

Nosignificantchangeinshearstressisobservedbychangingthe

coatings.

Flatendmillingof48-2-2

g

-TiAl

Thecuttingcoefficientsformillingoperationweredetermined

fromorthogonaltoobliquetransformationtechnique,and

employ-ingtheanalyticalmodelshowninEq.(1)thecuttingforceswere

simulated.Thecalculatededgecuttingcoefficientsfrom

orthogo-nalforcedataareshowninTable4.Theestimatedandmeasured

cuttingforcescomponentforflatendmillingfordifferentcoatings

andfeedratesarecomparedinFigs.8and9.Itcanbeinferredfrom

Fig.8thatthesuggestedforcemodelisabletopredictthecutting

forceswithina20%errorbandforAlTiNcoatedtools.However,

while therecorded tangentialforces werefoundtobein close

agreementwiththeforceestimationmodelfortheAlCrNcoated

tool,thereisamismatchfortheradialforcecomparison.This

sub-Fig.7.Cuttingforcesmeasuredduringorthogonalturningof48-2-2g-TiAlfor4

rakeangleanddifferentcoatings.

Fig.8.MeasuredandestimatedcuttingforcesfortheAlTiNcoatedtoolforflatenddown-milling:Cuttingforcesin(a)tangentialand(b)radialdirectionswithafeedrateof 64mm/min;cuttingforcesin(c)tangentialand(d)radialdirectionswithafeedrateof88mm/min.

Table4

Orthogonaltoobliquedatabasefor48-2-2g-TiAl.

Parameters AlTiN AlCrN

Chipratio(rc) 0.540.01 0.460.01

Frictionangle(βa) 35.60.9 42.60.8

Frictioncoefficient(m) 0.720.02 0.920.02 Shearangle(fc) 29.20.3 25.70.2

Shearstress(ts) 289.114.2MPa 311.56.7MPa

Kte 78 71

(6)

optimalmatchcanbeattributedtothepotentialerrorsduringthe

machiningoperation thatcaused theradialcuttingforces tobe

lowerthanexpected.Regardless,ourestimationwassuccessfulin

predictingthe resultant forces (tangential and radial combine)

withminimalerrors.

Ball-endmillingof48-2-2

g

-TiAl

Down-end milling operations were performed using two

differentengagementconditionsasshowninFig.10.Acomparison

between the simulation and the experimental data for these

Fig.9.MeasuredandestimatedcuttingforcesfortheAlCrNcoatedtoolforflatenddown-milling:Cuttingforcesin(a)tangentialand(b)radialdirectionswithafeedrateof 64mm/min;cuttingforcesin(c)tangentialand(d)radialdirectionswithafeedrateof88mm/min.

Fig.10.Ball-endmillingengagementarea:(a)4thpass,and(b)6thpassdownmilling.

Fig.11.Comparisonbetweenthemeasuredandestimatedcuttingforcesfor4thpassdown-millingwiththefeedrateof480[mm/min]:Cuttingforcesin(a)theXdirection, and(b)theYdirection.

(7)

engagementconditionsareshowninFigs.11and12;validation

tests showed that the simulated and measured cutting forces

matchwellwithina15%errorband.

NACA 2429 airfoil profile was machined to validate the

accuracyoforthogonalparametersfor48-2-2

g

-TiAlonfreeform

surfacesasshowninFig.13.Themachiningwasperformedin4

layerswith6pathsineachlayer.Estimatedandmeasuredcutting

forcesintheXandYdirectionsforthethirdpathinthefourth

layerareshowninFig.14.Itcanbeinferredthatthetrendandthe

magnitudeofthesimulatedandexperimentalcuttingforcesare

in good agreement. The deviation in thecutting forcescan be

attributed to the instabilities that occur during machining

operations.

Chipmorphologyof48-2-2

g

-TiAl.

The chip morphology observation during the turning and

milling operation confirmed a serrated, discontinuous and

segmented chip geometry for all the cutting conditions. This

phenomenonisduetothebrittlenessandlowfracturetoughness

Fig.12.Comparisonbetweenthemeasuredandestimatedcuttingforcesfor6thpassdown-millingwiththefeedrateof480[mm/min]:Cuttingforcesin(a)theXdirection, and(b)theYdirection.

Fig.13. (a)Cuttingtoolpathforanairfoilgeometry;(b)machinedpart.

Fig.14.Comparisonbetweenthemeasuredandestimatedcuttingforcesofthe4thlayer,3rdtoolpasswith576[mm/min]feedrate;close-upviewforcuttingforcesin(a)the Xdirectionand(b)theYdirection.

(8)

of

g

-TiAl.Fig.15illustratesthechipmorphologyintheorthogonal

turningandmillingprocesses.

Conclusion

Thearticlepresentstheformationofanorthogonaldatabaseto

predictthefundamentalcuttingparametersof48-2-2

g

-TiAlforthe

firsttimeinliterature.Theeffectofcoatingonfrictioncoefficient,

shearstress,shearangleandcuttingforcesarealsoinvestigated.The

shearangleforAlCrNcoatedtoolwasfoundtobelessthantheAlTiN

coatedtool,andthefrictioncoefficientfortheAlCrNcoatedtoolwas

observedtobegreaterthantheAlTiNcoatedtool.Thedeveloped

databaseisemployedtopredictthecuttingforcesof48-2-2

g

-TiAl

formillingoperation.Ananalyticalforcemodelwasusedtosimulate

thecuttingforcesforendmillingandball-endmillingfordifferent

coatingsandcuttingconditions.Estimatedcuttingforces,validated

viaendmillingexperiments,werefoundwithin13%and20%error

bandforAlCrNandAlTiNcoatings,whereascuttingforcesvalidated

viaball-end millingexperimentsmatchedwell within15% error

bandforAlCrNcoating.Thisstudyaimstobeanimportantguidefor

machiningof48-2-2

g

-TiAlalloysandfacilitatingthetransitionfrom

processing traditional materials to advanced materials for

manufacturingindustries.

DeclarationofCompetingInterest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appearedtoinfluencetheworkreportedinthispaper.

Acknowledgments

TheauthorswouldliketothanktheScientificResearchCouncil

of Turkey (TUBITAK ProjectNo: 9140039), BasqueGovernment

(AeroTiAl,Projectnumber:ZL-2017/000245)andH2020(MMTech,

projectnumber:GA633776)fortheirfinancialsupportprovidedto

thecollaborativeresearchproject.

References

[1]Klocke,F.,Lung,D.,Arft,M.,Priarone,P.C.,Settineri,L.,2013,Onhigh-speed turningofathird-generationgammatitaniumaluminide.IntJAdvManuf Technol,65:155–163.http://dx.doi.org/10.1007/s00170-012-4157-5.

[2]Kothari, K.,Radhakrishnan, R.,Wereley, N.M.,2012,Advances ingamma titaniumaluminidesandtheirmanufacturingtechniques.ProgAerospSci, 55:1–16.http://dx.doi.org/10.1016/j.paerosci.2012.04.001.

[3]Mantle,A.L.,Aspinwall,D.K.,1997,Surfaceintegrityandfatiguelifeofturned gammatitaniumaluminide.JMaterProcessTechnol,72:413–420.http://dx. doi.org/10.1016/S0924-0136(97)00204-5.

[4]Aspinwall, D.K.,Dewes,R.C., Mantle,A.L.,2005,Themachiningofg-TiAI intermetallicalloys.CIRPAnn,54:99–104. http://dx.doi.org/10.1016/S0007-8506(07)60059-6.

[5]Hood,R.,Cooper,P., Aspinwall,D.K.,Soo,S.L.,Lee,D.S.,2015,Creep feed grindingofg-TiAlusingsinglelayerelectroplateddiamondsuperabrasive wheels. CIRP J Manuf Sci Technol, 11:36–44. http://dx.doi.org/10.1016/j. cirpj.2015.07.001.

[6]Mantle,A.L.,Aspinwall,D.K.,2001,Surfaceintegrityofahighspeedmilled gammatitaniumaluminide.JMaterProcessTechnol,118:143–150.http://dx. doi.org/10.1016/S0924-0136(01)00914-1.

[7]Priarone,P.C.,Rizzuti,S.,Settineri,L.,Vergnano,G.,2012,Effectsofcutting angle,edgepreparation,andnano-structuredcoatingonmillingperformance ofagammatitaniumaluminide.JMaterProcessTechnol,212:2619–2628. http://dx.doi.org/10.1016/j.jmatprotec.2012.07.021.

[8]Beranoagirre,A.,Olvera,D.,LópezDeLacalle,L.N.,2012,Millingofgamma titanium-aluminumalloys.IntJAdvManufTechnol,62:83–88.http://dx.doi. org/10.1007/s00170-011-3812-6.

[9]Settineri,L.,Priarone,P.C.,Arft,M.,Lung,D.,Stoyanov,T.,2014,Anevaluative approachtocorrelatemachinability,microstructures,andmaterialproperties ofgammatitaniumaluminides.CIRPAnnManufTechnol,63:57–60.http://dx. doi.org/10.1016/j.cirp.2014.03.068.

[10]Hood,R.,Aspinwall,D.K.,Soo,S.L.,Mantle,A.L.,Novovic,D.,2014,Workpiece surfaceintegritywhenslotmillingg-TiAlintermetallicalloy.CIRPAnnManuf Technol,63:53–56.http://dx.doi.org/10.1016/j.cirp.2014.03.071.

[11]Budak,E., Altintaş, Y., Armarego,E.J.A.,1996,Prediction ofmilling force coefficientsfromorthogonalcuttingdata.JManufSciEng,118:216–224.

[12]Lazoglu,I.,Boz,Y.,Erdim,H.,2011,Five-axismillingmechanicsforcomplexfree formsurfaces.CIRPAnnManufTechnol,60:117–120.http://dx.doi.org/10.1016/ j.cirp.2011.03.090.

[13]Layegh,S.E.,Lazoglu,K.I.,2017,3Dsurfacetopographyanalysisin5-axis ball-endmilling.CIRPAnnManufTechnol,66:133–136.http://dx.doi.org/10.1016/j. cirp.2017.04.021.

[14]Bobzin,K.,2017,High-performancecoatingsforcuttingtools.CIRPJManufSci Technol,18:1–9.http://dx.doi.org/10.1016/j.cirpj.2016.11.004.

[15]Swain,N.,Venkatesh,V.,Kumar,P.,Srinivas,G.,Ravishankar,S.,Barshilia,H.C., 2017, An experimental investigation onthe machining characteristics of Nimonic75usinguncoatedandTiAlNcoatedtungstencarbidemicro-end mills. CIRP J Manuf Sci Technol, 16:34–42. http://dx.doi.org/10.1016/j. cirpj.2016.07.005.

[16]Chiang,S.-T.,Tsai,C.-M.,Lee,A.-C.,1995,Analysisofcuttingforcesinball-end milling.JMaterProcessTechnol,47:231–249. http://dx.doi.org/10.1016/0924-0136(95)85001-5.

[17]Gradišek,J.,Kalveram,M.,Weinert,K.,2004,Mechanisticidentificationof specificforcecoefficientsforageneralendmill.IntJMachToolsManuf, 44:401–414.http://dx.doi.org/10.1016/j.ijmachtools.2003.10.001.

[18]Layegh,S.E.,Lazoglu,K.I.,2014,Anewidentificationmethodofspecificcutting coefficients forball endmilling. ProcCIRP,14:182–187.http://dx.doi.org/ 10.1016/j.procir.2014.03.059.

Fig.15.Chipmorphologyof48-2-2g-TiAl;inorthogonalturningat(a)0.08mmfeedrate,(b)0.100mmfeedrate,andinball-endmillingat(c)336mm/minfeedrate,(d) 480mm/minfeedrate.

(9)

[19]Yao,Z.Q.,Liang,X.G.,Luo,L.,Hu,J.,2013,Achatterfreecalibrationmethodfor determiningcutterrunoutandcuttingforcecoefficientsinball-endmilling.J MaterProcessTechnol,213:1575–1587. http://dx.doi.org/10.1016/j.jmatpro-tec.2013.03.023.

[20]Zhang,X., Zhang,J.,Zheng,X., Pang,B.,Zhao,W.,2017, Toolorientation optimizationof5-axisball-endmillingbasedonanaccuratecutter/workpiece engagementmodel.CIRPJManufSciTechnol,19:106–116.http://dx.doi.org/ 10.1016/j.cirpj.2017.06.003.

[21]AltintasYY.,(Ed.)(2012),Manufacturingautomation,in:manufacturing auto-mation:metalcuttingmechanics,machinetoolvibrations,andCNCdesign. 2nded.CambridgeUniversityPress,Cambridge,pp.pp.xiii–xiv.http://dx.doi. org/10.1017/CBO9780511843723.002.

[22]Merchant,M.E.,1945,Mechanicsofthemetalcuttingprocess.II.Plasticity conditionsinorthogonalcutting.JApplPhys,16:318–324.http://dx.doi.org/ 10.1063/1.1707596.

[23]Yigit,I.E.,SEL,K.,Lazoglu,I.,2015,Asolidmodelerbasedengagementmodel for5-axisballendmilling.ProcCIRP,31:179–184.http://dx.doi.org/10.1016/j. procir.2015.03.051.

[24]Stanford,M.,Lister,P.M.,Morgan,C.,Kibble,K.A.,2009,Investigationintothe useofgaseousandliquidnitrogenasacuttingfluidwhenturningBS 970-80A15(En32b)plaincarbon steelusingWC-Councoatedtooling.JMater Process Technol, 209:961–972. http://dx.doi.org/10.1016/j.jmatpro-tec.2008.03.003.

[25]Akmal,M., Layegh, K.S.E.,Lazoglu, I.,Akgün, A., Yavaş, Ç.,2017, Friction coefficientsonsurfacefinishofAlTiNcoatedtoolsinthemillingofTi6Al4V. ProcCIRP,58:596–600.http://dx.doi.org/10.1016/j.procir.2017.03.231. [26]Seifi,M.,Ghamarian,I.,Samimi,P.,Ackelid,U.,Collins,P.,Lewandowski,J.,2016,

MicrostructureandmechanicalpropertiesofTi-48Al-2Cr-2Nbmanufactured viaelectronbeammelting.Proc13thworldconftitan,1317–1322.http://dx. doi.org/10.1002/9781119296126.ch223.

[27] Draper,S.L.,Lerch,B.A.,2008,DurabilityassessmentofTiAlalloys..Retrieved fromhttps://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080047349.pdf.

Şekil

Fig. 1. Geometry of (a) milling, and (b) orthogonal turning operation.
Fig. 4. Flat end mill coating thicknesses for (a) AlCrN coating, and (b) AlTiN coating.
Fig. 6. Cutting tools used in the study; (a) coated turning inserts, (b) coated end mills and ball-end mill.
Fig. 8 that the suggested force model is able to predict the cutting
+4

Referanslar

Benzer Belgeler

This paper proposes the use of the RCSA approach with a stereolithographic (STL) slicing algorithm to enable the exact calculation of cross sectional properties such as area and

Turn-milling is an intermittent cutting process which in turn causes periodic forces during cutting. Cutting forces in turn-milling are simulated using oblique

They expressed that performing high speed turn-milling (HSTM) with high surface quality and low thermal stress on the cutting edge is possible. Researches about

Physical properties such as length, width, thickness, weight, geometric mean diameter, sphericity, volume, thousand seed weight, bulk density, terminal velocity, projected area

Zaten bilgi okuryazarlığı oturumları için temel bir plan geliştirmiştim, fakat Joy ile gö- rüşmelerim öğrenci araştırma ve yazma becerileri hakkında ortak sorunları

focuses on two of the most prominent figures of American folk music, Woody Guthrie and Pete Seeger, and how their political stances went through significant changes both as

Bu amaç kapsamında 2000-2019 yılları arasında ulusal veri tabanlarında taranan yönetim ve organizasyon ile örgütsel davranış alanındaki tez, makale ve bildiri türünde

In particular, this factsheet is relevant to people who design and develop informal sports offers, people who directly deliver informal sport (coaches, leaders, coordinators etc