• Sonuç bulunamadı

Bulanık esnek matrisler

N/A
N/A
Protected

Academic year: 2021

Share "Bulanık esnek matrisler"

Copied!
36
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

T.C.

GAZOSMANPA“A ÜNVERSTES Bilimsel Ara³trma Projeleri Komisyonu

SONUÇ RAPORU

Proje No:2010/89

BULANIK ESNEK MATRSLER

Proje Yöneticisi Doç. Dr. Naim ÇA‡MAN Fen Ed. Fak. Matematik Bölümü

Serdar ENGNO‡LU Fen Bil. Enstitüsü

(2)

BULANIK ESNEK MATRSLER*

Bu çal³mada, bulank esnek (be) matrisler ve i³lemleri tanmland. Daha sonra,

be-matrislerin çarpmlar tanmland. Son olarak, be-karar verme metodu in³a edildi ve bir tür belirsizlik problemi üzerine uyguland.

Anahtar kelimeler: Bulank Esnek Kümeler, Bulank Esnek Matris, Bulank Esnek Matrislerin Çarpm, Bulank Esnek Max-Min Karar Verme.

(*) Bu çal³ma Gaziosmanpa³a Üniversitesi Bilimsel Ara³trma Projeleri Komisyonu tarafndan desteklenmi³tir. (Proje No: 2010/89).

(3)

ABSTRACT

FUZZY SOFT MATRICES

In this work, we dene fuzzy soft (fs) matrices and their operations. We then dene products of fs-matrices and their properties. We nally construct a fs- decision making method and apply to a problem that contain uncertainties.

Key words: Fuzzy Soft Sets, Fuzzy Soft Matrix, Product of Fuzzy Soft Matrices, Fuzzy Soft Max-Min Decision Making.

(4)

olarak desteklenmi³tir. Gaziosmanpa³a Üniversitesine ve tüm BAP çal³anlarna verdikleri fevkalade destekten dolay te³ekkür ederim.

Doç. Dr. Naim ÇA‡MAN Proje Yürütücüsü

(5)

ÇNDEKLER ÖZET . . . i ABSTRACT . . . ii TE“EKKÜR . . . iii 1. GR“ . . . 1 2. TEMEL KAVRAMLAR . . . 2

2.1 Bulank Esnek Kümeler . . . 2

3. BULANIK ESNEK MATRSLER VE “LEMLER . . . 6

3.1 Bulank Esnek Matris . . . 6

3.2 Bulank Esnek Matris ³lemleri . . . 9

3.3 be-Matris Çarpmlar . . . 12

4. BULANIK ESNEK KARAR VERME VE UYGULAMALARI . . . 14

4.1 Bulank Esnek mak-min Karar Verme . . . 14

4.2 Uygulama . . . 16

5. SONUÇ . . . 19

KAYNAKLAR . . . 20

EK: FUZZY SOFT MATRIX THEORY AND ITS APPLICATION IN DECISION MAKING . . . 21

(6)

Esnek küme teorisi; belirsiz, bulank ve açkça tanmlanmayan kavramlarla ba³a çkabilmek için, Molodtsov tarafndan ortaya atld (Molodtsov,1999). Daha sonra, bu teori üzerine baz zorluklara sahip olan bir takm çal³malar yapld. Akabinde, esnek küme i³lemleri yeniden tanmland (Ça§man ve Engino§lu, 2010a) ve bu i³lemler kullanlarak bir-kes karar verme metodu in³a edildi. Ardndan, esnek küme i³lemlerinin bilgisayarda kolayca hesaplanabilmesi için esnek matris teorisi ortaya atld ve esnek mak-min karar verme metodu in³a edildi (Ça§man ve Engino§lu, 2010b). Son zamanlarda, bulank parametreli bulank esnek (bpbe) kümeler, bulank esnek (be) matrisler, be-kümeler ve bulank parametreli esnek (bpe) kümeler üzerine çal³malar yapld (Ça§man ve ark, 2010;Ça§man ve Engino§lu, 2011; Ça§man ve ark, 2011a,2011b).

Bu çal³mada, bulank esnek (be) matrisler ve i³lemleri tanmland. Daha sonra,

be-matrislerin çarpmlar tanmland. Son olarak, be-karar verme metodu in³a edildi ve bir tür belirsizlik problemi olan karar verme problemi üzerine uyguland.

(7)

2.TEMEL KAVRAMLAR

2.1 Bulank Esnek Kümeler

Bu bölümde, be-kümeler ve i³lemleri tanld ve örneklendirildi. Esnek kümelerde, fonksiyon de§erleri klasik küme iken be-kümelerde fonksiyon de§erleri bulank kümedir. Tanm 2.1.1. U gözönüne alnan elemanlarn kümesi, E bu elemanlar niteleyen parametrelerin kümesi, A ⊆ E ve F (U), U üzerindeki tüm bulank kümelerin kümesi olsun. x /∈ A için γA(x) = ∅biçiminde tanmlanan γA : E → F (U) fonksiyonuna U

üzerinde bir be-küme denir ve γAile gösterilir.

Burada, γA(x)bulank kümesi her x ∈ E için

γA(x) = {µγA(x)(u)/u : u ∈ U, µγA(x)(u) ∈ [0, 1]}

biçiminde tanmldr. Bir be-küme

γA= {(x, γA(x)) : x ∈ E},

biçiminde sral ikililerin bir kümesi olarak gösterilebilir.

Bu çal³mada, U üzerinde E ile tanml tüm be-kümelerin kümesini BE(U) ile gösterilecektir. Tanm 2.1.2. γA ∈ BE(U)olsun. E§er her x ∈ E için γA(x) = ∅oluyorsa γA'ya bo³

be-küme denir ve γΦ ile gösterilir.

Tanm 2.1.3. γA ∈ BE(U)olsun. E§er her x ∈ A, γA(x) = Uoluyorsa γA'ya A-evrensel

be-küme denir ve γA˜ ile gösterilir. Özel olarak, bu ³art A = E için sa§lanyorsa γA'ya

evrensel be-küme denir ve γE˜ ile gösterilir.

Örnek 2.1.4. Kabul edelim ki, gözöününe alnan elemanlarn kümesi U = {u1, u2, u3, u4, u5} ve bu elemanlar niteleyen parametrelerin kümesi E = {x1, x2, x3, x4}biçiminde verilsin.

(8)

E§er A = {x2, x3, x4}, γA(x2) = {0.5/u1, 0.3/u5}), γA(x3) = ∅ ve γA(x4) = U biçiminde ise o halde γA be-kümesi γA = {(x2, {0.5/u1, 0.3/u5}), (x4, U)} ³eklinde yazlr.

E§er Y = {x1, x4}, γA(x1) = ∅ve γA(x4) = ∅biçiminde ise o halde γY be-kümesi bo³

be-kümedir. Yani, γY = γΦ³eklindedir.

E§er Z = {x1, x2}, γZ(x1) = U ve γZ(x2) = U biçiminde ise γZ be-kümesi Z-evrensel

be-kümedir. Yani, γZ = γZ˜ ³eklindedir.

E§er A = E ve γA(x1) = U, γA(x2) = U, γA(x3) = U ve γA(x4) = U biçiminde ise o halde γAbe-kümesi evrensel be-kümedir. Yani, γA= γE˜ ³eklindedir.

Tanm 2.1.5. γA, γB ∈ BE(U)olsun. E§er her x ∈ E için γA(x) ⊆ γB(x) oluyorsa

γA'ya γB'nin be-altkümesi denir ve γA⊆γe Bile gösterilir.

Önerme 2.1.6. γA, γB ∈ BE(U)olsun. O halde,

i. γA⊆γe E˜ ii. γΦ⊆γe A iii. γA⊆γe A

iv. γA⊆γe B ve γB⊆γe C ⇒ γA⊆γe C

Tanm 2.1.7. γA, γB ∈ BE(U)olsun. E§er her x ∈ E için γA(x) = γB(x)oluyorsa γA

ve γB'ye be-e³it denir ve γA = γB ile gösterilir.

Önerme 2.1.8. γA, γB, γC ∈ BE(U)olsun. O halde,

i. γA= γBand γB = γC ⇒ γA= γC

ii. γA⊆γe B and γB⊆γe A⇔ γA= γB

Tanm 2.1.9. γA ∈ BE(U)olsun. O halde, γA'nn be-tümleyeni her x ∈ E için

(9)

4

e³itli§i yoluyla elde edilir ve γ˜c

A ile gösterilir. Burada, γAc(x) kümesi γA(x)'in klasik

tümleyenidir. Yani, her x ∈ E için γc

A(x) = U \ γA(x)biçimindedir.

Önerme 2.1.10. γA∈ BE(U)olsun. O halde,

i. (γ˜c

Ac= γA

ii. γ˜c

Φ = γE˜

Tanm 2.1.11. γA, γB∈ BE(U)olsun. O halde, γAve γB'nin birle³imi her x ∈ E için,

γAe∪B(x) = γA(x) ∪ γB(x)

e³itli§i yoluyla elde edilir ve γA∪γe Bile gösterilir.

Önerme 2.1.12. γA, γB, γC ∈ BE(U)olsun. O halde,

i. γA∪γe A = γA

ii. γA∪γe Φ = γA

iii. γA∪γe E˜ = γE˜ iv. γA∪γe B = γB∪γe A

v. (γA∪γe B)e∪γC = γA∪(γe B∪γe C)

Tanm 2.1.13. γA, γB∈ BE(U)olsun. O halde, γAve γB'nin kesi³imi her x ∈ E için,

γAe∩B(x) = γA(x) ∩ γB(x)

e³itli§i yoluyla elde edilir ve γA∩γe Bile gösterilir.

Önerme 2.1.14. γA, γB, γC ∈ BE(U)olsun. O halde,

i. γA∩γe A = γA

(10)

iii. γA∩γe E˜ = γA

iv. γA∩γe B = γB∩γe A

v. (γA∩γe B)e∩γC = γA∩(γe B∩γe C)

Not 2.1.15. γA∈ BE(U)olsun. E§er γA6= γΦ veya γA 6= γE˜ ise o halde γA∪γe A˜c 6= γE˜

ve γA∩γe A˜c 6= γΦ.

Önerme 2.1.16. γA, γB ∈ BE(U)olsun. O halde De Morgan kurallar sa§lanr. Yani,

i. (γA∪γe Bc= γA˜c∩γe Bc˜

ii. (γA∩γe Bc= γA˜c∪γe Bc˜

Önerme 2.1.17. γA, γB, γC ∈ BE(U)olsun. O halde,

i. γA∪(γe B∩γe C) = (γAe∪γB)e∩(γA∪γe C)

(11)

3. BULANIK ESNEK MATRSLER VE “LEMLER

3.1 Bulank Esnek Matris

Bu bölümde, be-kümelerin matris temsilleri olan ve be-küme i³lemlerinin bilgisayar ortamnda yaplabilmesine olanak sa§layan be-matris kavram tanmland.

Tanm 3.1.1. γA ∈ BE(U)olsun. O halde, γA'in bulank ba§nt formu

RA= {(µRA(u, x)/(u, x)) : (u, x) ∈ U × E}

biçiminde tanmlanr. Burada, µRA üyelik fonksiyonu

µRA : U × E → [0, 1] × [0, 1], µRA(u, x) = µγA(x)(u)

³eklindedir.

E§er U = {u1, u2, ..., um}, E = {x1, x2, ..., xn}ve A ⊆ E ise o halde RA

RA x1 x2 ... xn

u1 µRA(u1, x1) µRA(u1, x2) ... µRA(u1, xn) u2 µRA(u2, x1) µRA(u2, x2) ... µRA(u2, xn)

... ... ... ... ...

um µRA(um, x1) µRA(um, x2) ... µRA(um, xn)

³eklinde tablo olarak gösterilebilir. Burada, aij = µRA(ui, xj)e³lemesi yaplrsa tablo

[aij]m×n =        x11 x12 · · · x1n x21 x22 · · · x2n ... ... ... ... xm1 xm2 · · · xmn       

(12)

m × ntipinde matris formunda yazlabilir. Bu matrise U üzerinde bir γAbe-kümesinin

be-matrisi ad verilir.

Bu tanma göre, bir γA be-kümesi [aij]m×n matrisi yoluyla tek türlü olarak karakterize

edilebilir. Bu yüzden, bu kavramlardan biri di§eri yerine kullanlabilir.

Bu çal³mada, BEMm×n notasyonu ile U üzerinde E ile yazlan tüm m × n tipindeki

be-matrislerin kümesi kastedildi. Ayrca, i ∈ {1, 2, ...n} ve j ∈ {1, 2, ...m} için [aij]m×n ∈ BEMm×n notasyonu yerine ksalk için m × n alt indisi kullanlmadan

[aij] ∈ BEMm×ngösterimi kullanlacaktr.

Örnek 3.1.2. Örnek 2.1.4'ü gözönüne alalm. O halde, γA'nn be-ba§nt formu

RA = {0.5/(u1, x2), 1/(u1, x4), 1/(u2, x4), 1/(u3, x4),

1/(u4, x4), 0.3/(u5, x2), 1/(u5, x4)} ³eklinde yazlr. Buradan, [aij] be-matrisi

[aij] =           0 0.5 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0.3 0 1          

biçiminde elde edilir.

Tanm 3.1.3. [aij] ∈ BEMm×nolsun. O halde,

1. E§er her i ve j için aij = 0oluyorsa [aij] be-matrisine bir sfr be-matrisi ad verilir

ve [0] ile gösterilir.

2. E§er her i ve j ∈ IA = {j : xj ∈ A} için aij = 1 oluyorsa [aij] be-matrisine

A-evrensel be-matris, denir ve [˜aij]ile gösterilir.

3. E§er her i ve j için aij = 1oluyorsa [aij] be-matrisine evrensel be-matris denir ve

(13)

8

Örnek 3.1.4. U = {u1, u2, u3, u4, u5}, E = {x1, x2, x3, x4}ve [aij], [bij], [cij] ∈ BEM5×4(U) verilsin.

E§er A = {x1}için γA(x1) = ∅ise o halde [aij] = [0]

[0] =           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          

biçiminde açkça yazlan bir sfr be-matrisidir.

E§er B = {x1, x2}, γY(x1) = U ve γY(x2) = U ise o halde [bij] = [˜bij]

[˜bij] =           1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0          

biçiminde açkça yazlan bir B-evrensel be-matrisidir.

E§er A = E ve γA(x1) = U, γA(x2) = U, γA(x3) = U ve γA(x4) = U ise o halde [aij] = [˜eij] = [1] [1] =           1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          

biçiminde açkça yazlan bir evrensel be-matristir. Tanm 3.1.5. [aij], [bij] ∈ BEMm×nolsun. O halde,

(14)

1. E§er her i ve j için aij 6 bij oluyorsa o halde [aij], [bij]'nin be-altmatrisidir denir

ve [aij] ˜⊆[bij]ile gösterilir.

2. E§er [aij] ˜⊆[bij] ve en az bir i ve j için aij < bij oluyorsa o halde [aij], [bij]'nin

proper be-altmatrisidir denir ve [aij] ˜⊂[bij]ile gösterilir.

3. E§er her i ve j için aij = bij oluyorsa o halde [aij]ve [bij] be-matrisleri be- e³ittir

denir ve [aij] = [bij]ile gösterilir.

3.2 Bulank Esnek Matris ³lemleri

Bu bölümde, be-kümelerin matrisler üzerinde baz i³lemler tanmland ve bir takm özelikleri incelendi.

Tanm 3.2.6. [aij], [bij] ∈ BEMm×nolsun. E§er her i ve j için

1. cij = max{aij, bij}olacak biçimde tanmlanan [cij]'ye [aij]ve [bij]'nin be-birle³imi

denir ve [aij∪[bij]ile gösterilir.

2. cij = min{aij, bij}olacak biçimde tanmlanan [cij]'ye [aij]ve [bij]'nin be-kesi³imi

denir ve [aij∩[bij]ile gösterilir.

3. cij = 1 − aij olacak biçimde tanmlanan [cij]'ye [aij]'nin be-tümleyeni denir ve

[aijcile gösterilir.

Tanm 3.2.7. [aij], [bij] ∈ BEMm×nolsun. E§er [aij∩[bij] = [0]oluyorsa o halde [aij]

ve [bij]ayrktr denir.

Örnek 3.2.8. Kabul edelim ki

[aij] =           0 0.6 0.2 0 0.1 0 1 0 0 0.3 0.8 0 0.7 0 0 0 0 1 0 0          

(15)

10 [bij] =           0 0 0.7 0.4 0 0.2 0.6 1 0 0.4 0 0.9 0 0 0.5 1 0 0 0 0.3           verilsin. O halde, [aij∪[bij] =           0 0.6 0.7 0.4 0.1 0.2 1 1 0 0.4 0.8 0.9 0.7 0 0.5 1 0 1 0 0.3           [aijc=           1 0.4 0.8 1 0.9 1 0 1 1 0.7 0.2 1 0.3 1 1 1 1 0 1 1           biçimindedir.

Önerme 3.2.9. [aij] ∈ BEMm×nolsun. O halde,

1. [[aij]c˜]˜c= [aij]

2. [0]c˜= [1]

Önerme 3.2.10. [aij], [bij] ∈ BEMm×nolsun. O halde

1. [aij] ˜⊆[1]

2. [0] ˜⊆[aij]

3. [aij] ˜⊆[aij]

4. [aij] ˜⊆[bij]and [bij] ˜⊆[cij] ⇒ [aij] ˜⊆[cij]

(16)

Önerme 3.2.11. [aij], [bij], [cij] ∈ BEMm×nolsun. O halde,

1. [aij] = [bij]ve [bij] = [cij] ⇒ [aij] = [cij]

2. [aij] ˜⊆[bij]ve [bij] ˜⊆[aij] ⇔ [aij] = [bij]

Önerme 3.2.12. [aij], [bij], [cij] ∈ BEMm×nolsun. O halde

1. [aij∩[bij] = [bij∩[aij] 2. [aij∪[bij] = [bij∪[aij] 3. ([aij∩[bij])˜∩[cij] = [aij∩([bij∩[cij]) 4. ([aij∪[bij])˜∪[cij] = [aij∪([bij∪[cij]) 5. [aij∩([bij∪[cij]) = ([aij∩[bij])˜∪([aij∩[cij]) 6. [aij∪([bij∩[cij]) = ([aij∪[bij])˜∩([aij∪[cij])

Not 3.2.13. Burada, [aij] = [0]veya [aij] = [1]olmad§ durumlarda [aij∩[aij]c˜ 6= [0]

ve [aij∪[aijc6= [1]oldu§una dikkat edilmelidir.

Önerme 3.2.14. [aij], [bij] ∈ BEMm×nolsun. O halde De Morgan kurallar sa§lanr.

1. ([aij∪[bij])c˜= [aijc∩[b˜ ij]c˜

2. ([aij∩[bij])c˜= [aijc∪[b˜ ij]c˜

spat . Her i ve j için

i. ([aij∪[bij])c˜ = [max{aij, bij}]˜c

= [1 − max{aij, bij}]

= [min{1 − aij, 1 − bij}]

= [aijc∩[b˜ ij]c˜

(17)

12

3.3 be-Matris Çarpmlar

Bu bölümde, be-karar verme metotlar in³a edebilmek için be-matris çarpmlar in³a edildi. Tanm 3.3.15. [aij], [bik] ∈ BEMm×nolsun. O halde, [aij]ve [bik]'nin V e-çarpm

∧ : BEMm×n× BEMm×n→ BEMm×n2, [aij] ∧ [bik] = [cip]

biçiminde tanmlanr. Burada, p = n(j − 1) + k olmak üzere cip = min{aij, bik}³eklinde

tanmldr.

Tanm 3.3.16. [aij], [bik] ∈ BEMm×nolsun. O halde [aij]ve [bik]'nin V eya-çarpm

∨ : BEMm×n× BEMm×n→ BEMm×n2, [aij] ∨ [bik] = [cip]

biçiminde tanmlanr. Burada, p = n(j − 1) + k olmak üzere cip = max{aij, bik}

³eklindedir.

Tanm 3.3.17. [aij], [bik] ∈ BEMm×nolsun. O halde, [aij]ve [bik]'nin V e-Degil-çarpm

Z : BEMm×n× BEMm×n→ BEMm×n2, [aij] Z [bik] = [cip]

biçiminde tanmlanr. Burada, p = n(j − 1) + k olmak üzere cip = min{aij, 1 − bik}

³eklindedir.

Tanm 3.3.18. [aij], [bik] ∈ BEMm×nolsun. O halde [aij]ve [bik]'nin V eya-Degil-çarpm

Y : BEMm×n× BEMm×n→ BEMm×n2, [aij] Y [bik] = [cip]

biçiminde tanmlanr. Burada, p = n(j − 1) + k olmak üzere cip = max{aij, 1 − bik}

³eklindedir.

Örnek 3.3.19. Kabul edelim ki [aij], [bik] ∈ BEM2×3

[aij] =   0 0 0.2 0 1 0.7 , [bik] =   0.5 0 0.2 0.2 0 0  

(18)

olarak verilsin. O halde, [aij] ∧ [bik]   0 0 0 0 0 0 0.2 0 0.2 0 0 0 0.2 0 0 0.2 0 0  

biçimindedir. [aij]∨[bik], [aij]Z[bik]ve [aij]Y[bik]çarpmlar da benzer ³ekilde bulunabilir.

Tanmlanan bu çarpmlarn de§i³meli olmad§na dikkat edilmelidir.

Önerme 3.3.20. [aij], [bik] ∈ BEMm×nolsun. O halde, De Morgan kurallar sa§lanr.

1. ([aij] ∨ [bik]) = [aij]◦∧ [bik]

2. ([aij] ∧ [bik]) = [aij]◦∨ [bik]

3. ([aij] Y [bik]) = [aij]◦Z [bik]

(19)

4. BULANIK ESNEK KARAR VERME VE UYGULAMALARI

4.1 Bulank Esnek mak-min Karar Verme

Bu bölümde, be mak-min karar verme metodu tantld. Bu metot gözönüne alnan alternatierin kümesinin bir çözüm için uygun bir alt kümesinin seçilmesini amaçlar. Bu sayede, karar vericinin çok sayda alternatif yerine daha küçük sayda alternati gözden geçirmesi sa§lanr.

Bu bölüm boyunca, ksalk için, ˜× notasyonu ∧, ∨, Z, Y notasyonlarndan bir yerine kulllanlr.

Tanm 4.1.1. γA, γB ∈ BE(U)olsun ve srasyla [aij]ve [bik]matrisleriyle temsil edilsin.

E§er IA = {r : xr ∈ A}, IB = {s : xs ∈ B} ve [aij] ˜×[bik] = [cip] olsun. O halde

makrminsve maksminroperatörleri, srasyla,

di1 = max r∈IA {min s∈IB {ci,s+(r−1)n}} olmak üzere

makrmins : SMm×n2 → SMm×1, makrmins[cip] = [di1]

ve ei1= max s∈IB {min r∈IA {ci,s+(r−1)n}} olmak üzere

maksminr : SMm×n2 → SMm×1, maksminr[cip] = [ei1]

(20)

makrminsoperatörü maksminr'nün altere operatörüdür ve alt-makrminsile gösterilir.

di§er bir ifadeyle, alt-makrmins= maksminrve alt-alt-makrmins = makrmins.

makrmins([aij] ˜×[bik]) 6= maksminr([aij] ˜×[bik])oldu§u açktr. Fakat, a³a§daki önerme

do§rudur.

Önerme 4.1.2. [aij], [bik] ∈ SMm×nolsun. O halde,

makrmins([aij] ˜×[bik]) = maksminr([bik] ˜×[aij])

spat . spat, Tanm 4.1.1'den görülebilir.

Tanm 4.1.3. [cip] ∈ SMm×n2 olsun. O halde, ˜×-çarpmlar için mak-min karar

fonksiyonu

max-min : BEMm×n2 → BEMm×1,

fonksiyonu yoluyla

max-min[cip] = makrmins[cip] ˜∪ maksminr[cip]

biçiminde tanmlanr.

Tanmlanan bu dört özel çarpmn de§i³meli olmad§ biliniyor. Fakat, a³a§daki önerme do§rudur.

Önerme 4.1.4. [aij], [bik] ∈ BEm×nolsun. O halde,

max-min([aij] ˜×[bik]) = max-min([bik] ˜×[aij])

spat . spat Önerme 4.1.2'den görülür.

Tanm 4.1.5. U = {u1, u2, ..., um}gözönüne alnan elemanlern kümesi ve max-min[cip] =

[vi1]olsun. O halde,

opt[vi1](U) = {µ(ui)opt[vi1](U )/ui : ui ∈ U, µ(ui)opt[vi1](U )= vi1}

(21)

16

Kabul edelim ki, alternatierin ve parametrelerin birer kümesi verilsin. O halde, be-mak−

minkarar verme metodu (BEMmKV ) kullanlarak U'nun uygun bir alt kümesi a³a§daki yolla bulunabilir.

Step 1 Parametre kümesinden iki alt küme seçilir.

Step 2 Seçilen bu alt kümeler kullanlarak iki esnek matris in³a edilir. Step 3 Bulank esnek matrislerin uygun bir çarpm bulunur.

Step 4 Bu çarpmdan be-mak-min karar matrisi elde edilir.

Step 5 Elde edilen bu karar matrisi yoluyla U'nun uygun bir alt kümesi tespit edilir.

Burada, 3. admda kullanlan matris çarpmlarndan hangisinin daha uygun oldu§unu belirlemek için bir kriter bulunmamaktadr. Yani, tantm yaplan BEMmKV metodu, her zaman U'nun yetrince küçük bir alt kümesini vermeyebilir. Bu taktirde karar verici, (BEmMKV ), (BEmmKV ), (BEMMKV ) metotlarndan birini tercih edebilir.

4.2 Uygulama

Kabul edelim ki, bir emlakçnn sat³ta bulunanan evlerinin kümesi U = {u1, u2, u3, u4, u5} ve bu evleri kararkterize etmek için kulland§ parametrelerin kümesi E = {x1, x2, x3, x4} biçiminde olsun. Burada, j ∈ {1, 2, 3, 4} için xj parametreleri, srasyla, iyi konumda",

ucuz", modern", büyük" anlamna gelsin.

Örnek 4.2.6. Bay X ve Bayan X bir ev satn almak için yukarda bahsedilen emlakçya ba³vursun. Emlakç önce bu çiftin her birinden, parametreler kümesinden kendileri için uygun olanlarn seçmelerini ister. Ardndan, BEMmKV metodunu a³a§daki gibi kullanr.

Step 1: Emlakç Bay X'in ve Bayan X'in seçti§i parametrelerin kümesini A = {x2, x3, x4} ve B = {x1, x3, x4}biçiminde yazar.

(22)

Step 2: Verilen be-kümelerin matris temsillerini [aij] =           0 0 0.2 0.4 0 0.6 0.9 0.4 0 0.8 0.7 0.5 0 0.5 0 0 0 1 0 0.8           [bik] =           1 0 0.9 0.7 0.2 0 0 0.9 0.7 0 0.4 0.3 0 0 0.5 0.6 0 0 0 1          

biçiminde in³a eder.

Step 3: [aij]ve [bik] be-matrislerinin V e-çarpmn a³a§daki gibi elde eder.

          0 0 0 0 0 0 0 0 0.2 0 0.2 0.2 0.4 0 0.4 0.4 0 0 0 0 0.2 0 0 0.6 0.2 0 0 0.9 0.2 0 0 0.4 0 0 0 0 0.7 0 0.4 0.3 0.7 0 0.4 0.3 0.5 0 0.4 0.3 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.8          

Burada, Bay X ve Bayan X'in kararlar ayn anda dikkate alnd§ için her ikisinin seçti§i özelikleri ta³yan evleri tespit etmeye olanak sa§layan V e-çarpm kullanld. Ku³ku yok ki uzman farkl bir anlam yükledi§i farkl bir çarpm da kullanabilirdi.

Step 4: Daha sonra, Mm([aij] ∧ [bik]) = [di1]'i bulur. Bunun için, IA = {2, 3, 4}ve

IB= {1, 3, 4}oldu§undan

d31 = maxr∈{2,3,4}{mins∈{1,3,4}{c3,s+(r−1)4}}

= maxr∈{2,3,4}{min{c3,1+(r−1)4, c3,3+(r−1)4, c3,4+(r−1)4}}

= max{min{c3,5, c3,7, c3,8}, min{c3,9, c3,11, c3,12}, min{c3,13, c3,15, c3,16}} = max{min{0.7, 0.4, 0.3}, min{0.7, 0.4, 0.3}, min{0.5, 0.4, 0.3}}

= max{0.3, 0.3, 0.3}} = 0.3

(23)

18

ve benzer ³ekilde d11= 0.4, d21 = 0.0, d41= 0.0ve d51 = 0.0sonucuna ula³r. Ardndan,

be-max-min karar matrisini

Mm([aij] ∧ [bik]) = [di1] =           0.4 0 0.3 0 0           biçiminde yazar.

Step 5: U üzerinde bir be-matris olan Mm([aij] ∧ [bik])'i kullanlarak

optM m([aij]∧[bik])(U) = {0.4/u1, 0.3/u3}

karar kümesini elde eder. Burada, u1 evinin di§er tercihlere göre çift için daha uygun oldu§u sonucuna vararak bu evi tavsiye eder ve ya yeniden ve daha hassas bir inceleme için tüm evler yerine U'nun {u1, u3} uygun alt kümesinin gözönüne alnmasn tavsiye edebilir.

Ancak, bu problemde en yüksek üyelik derecesinin 0.4 olmas nedeniyle çifte ba³ka bir emlakçya daha ba³vurmalar tavsiye edilebilir.

(24)

Bu çal³mada, bulank esnek (be) kümeler tantld. Ardndan, be-matrisler ve i³lemleri tanmland. Daha sonra, be-matrislerin çarpmlar da tanmland ve baz özelikleri incelendi. Son olarak, bu çarpmlar bir tür karar verme problemi üzerine uyguland. bu alanda önemli bir yer tutan bu çal³ma be-analiz ve be-cebir gibi çal³ma konular için bir ilham kayna§ olacaktr. Ayrca ³imdiye kadar yaplan çal³malarn en genel hali olarak parametreleri bulankla³trlm³ bulank esnek matris veya sezgisel parametreleri bulankla³trlm³ bulank esnek matris konular gerçekten çal³lmaya de§erdir. Bu çal³malarn di§er alanlara da rahatlkla uygulanabilece§i öngörülmektedir.

(25)

20

KAYNAKLAR

C.a§man N. and Engino§lu S., 2010. Soft set theory and uni-int decision making, European Journal of Operational Research 207, 848-855.

C.a§manN.andEngino§luS., 2010.Softmatrixtheoryanditsdecisionmaking.Computers and Mathematics with Applications, 59, 3308-3314.

C.a§man N., Ctak F. and Engino§lu S., 2010. Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1(1), 21-35.

C.a§man N. and Engino§lu S., 2011. Fuzzy soft matrix theory and its application in decision making. Iranian Journal of Fuzzy Systems(In Press).

C.a§man N., Engino§lu S. and Ctak F.,2011. Fuzzy Soft Set Theory and Its Applications, Iranian Journal of Fuzzy Systems, 8 (3), 137-147.

C.a§man N., Ctak F. and Engino§lu S., 2011. Fuzzy parameterized soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics, 2 (2), 219-226.

Molodtsov D.A., 1999. Soft set theory-rst results, Computers and Mathematics with Applications, 37, 19-31.

(26)

FUZZY SOFT MATRIX THEORY AND ITS APPLICATION IN DECISION MAKING

N. C. A ˘GMAN AND S. ENGINO ˘GLU

Abstract. In this work, we define fuzzy soft (f s) matrices and their opera-tions which are more functional to make theoretical studies in the f s-set theory. We then define products of f s-matrices and study their properties. We finally construct a f s-max-min decision making method which can be successfully applied to the problems that contain uncertainties.

1. Introduction

Soft set theory [33] was firstly introduced by Molodtsov in 1999 as a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. After presentation of the operations of soft sets [29], the properties and applications on the soft set theory have been studied increasingly [4, 12, 13, 25, 26, 30, 31, 35, 37, 38, 40, 46, 47, 48, 51]. The algebraic structure of soft set theory has also been studied in more detail [1, 3, 5, 11, 14, 15, 16, 17, 18, 19, 20, 22, 36, 41, 44]. In recent years, by embedding the ideas of fuzzy sets [52] many interesting applications of soft set theory have been done [2, 8, 9, 10, 21, 23, 24, 27, 28, 32, 34, 39, 42, 43, 45, 49, 50]. To develop the soft set theory, operations of the soft sets are redefined to improve several new results and uni-int decision making method is constructed by using these new operations [6]. To make easy computation with the operations of soft sets, the soft matrix theory is presented and soft max-min decision making method is set up [7]. These decision making methods are more practical and can be successfully applied to many problems that contain uncertainties.

In [9], a fuzzy soft (f s) set theory is defined. It allows constructing more ef-ficient decision making method. In this paper, we first define f s-matrices which are representation of the f s-sets. This representation has several advantages. It is easy to store and manipulate matrices and hence the f s-sets represented by them in a computer. Here, we also construct a f s-decision making method which is more practical and can be successfully applied to many problems. We finally give an example which shows that the method successfully works.

Received: July 2010; Revised: ; Accepted:

Key words and phrases: Fuzzy soft sets, fuzzy soft matrix, products of fuzzy soft matrices,

(27)

52 N. C. a˘gman and S. Engino˘glu

2. Fuzzy Soft Matrices

In this section, we define f s-matrices which are representations of the f s-sets. This style of representation is useful for storing a soft set in a computer mem-ory. The operations can be presented by the matrices which are very useful and convenient for application.

From now on, a set of all fuzzy sets over U will be denoted by F (U ). ΓA,

ΓB, ΓC,..., etc. and γA, γB, γC,..., etc. will be used for f s-sets and their fuzzy

approximate functions, respectively.

Definition 2.1. [9] Let U be an initial universe, E be the set of all parameters,

A ⊆ E and γA(x) be a fuzzy set over U for all x ∈ E. Then, an f s-set ΓA over U

is a set defined by a function γArepresenting a mapping

γA: E → F (U ) such that γA(x) = ∅ if x /∈ A

Here, γA is called fuzzy approximate function of the f s-set ΓA, the value γA(x)

is a fuzzy set called x-element of the f s-set for all x ∈ E, and ∅ is the null fuzzy set. Thus, an f s-set ΓA over U can be represented by the set of ordered pairs

ΓA= {(x, γA(x)) : x ∈ E, γA(x) ∈ F (U )}

Note that from now on, the sets of all f s-sets over U will be denoted by F S(U ). Example 2.2. Assume that U = {u1, u2, u3, u4, u5} is a universal set and E = {x1, x2, x3, x4} is a set of all parameters.

If A = {x2, x3, x4}, γA(x2) = {0.5/u2, 0.8/u4}, γA(x3) = ∅ and γA(x4) = U ,

then the f s-set ΓA is written by ΓA= {(x2, {0.5/u2, 0.8/u4}), (x4, U )}.

Definition 2.3. Let ΓA∈ F S(U ). Then a fuzzy relation form of ΓA is defined by

RA= {(µRA(u, x)/(u, x)) : (u, x) ∈ U × E}

Where the membership function of µRA is written by

µRA : U × E → [0, 1], µRA(u, x) = µγA(x)(u)

If U = {u1, u2, ..., um}, E = {x1, x2, ..., xn} and A ⊆ E, then the RA can be

presented by a table as in the following form

RA x1 x2 ... xn u1 µRA(u1, x1) µRA(u1, x2) ... µRA(u1, xn) u2 µRA(u2, x1) µRA(u2, x2) ... µRA(u2, xn) .. . ... ... . .. ... um µRA(um, x1) µRA(um, x2) ... µRA(um, xn)

If aij = µRA(ui, xj), we can define a matrix

[aij]m×n=      x11 x12 · · · x1n x21 x22 · · · x2n .. . ... . .. ... xm1 xm2 · · · xmn      which is called an m × n f s-matrix of the f s-set ΓA over U .

(28)

Therefore, we shall identify any f s-set with its f s-matrix and use these two concepts as interchangeable.

The set of all m × n f s-matrices over U will be denoted by F SMm×n. From now

on we shall delete the subscripts m × n of [aij]m×n, we use [aij] instead of [aij]m×n,

since [aij] ∈ F SMm×nmeans that [aij] is an m × n f s-matrix for i = 1, 2, ...m and

j = 1, 2, ...n.

Example 2.4. Let us consider Example 2.2. Then the relation form of ΓA is

written by

RA = {0.5/(u2, x2), 0.8/(u4, x2), 1/(u1, x4)

1/(u2, x4), 1/(u3, x4), 1/(u4, x4), 1/(u5, x4)}

Hence, the f s-matrix [aij] is written by

[aij] =       0 0 0 1 0 0.5 0 1 0 0 0 1 0 0.8 0 1 0 0 0 1       Definition 2.5. Let [aij] ∈ F SMm×n. Then [aij] is called

(1) a zero f s-matrix, denoted by [0], if aij = 0 for all i and j.

(2) an A-universal f s-matrix, denoted by [˜aij], if aij = 1 for all j ∈ IA= {j :

xj∈ A} and i.

(3) a universal f s-matrix, denoted by [1], if aij = 1 for all i and j.

Example 2.6. Assume that U = {u1, u2, u3, u4, u5} is a universal set, E = {x1, x2, x3, x4}

be a set of parameters, A ⊆ E, γA(x) be a fuzzy set over U for all x ∈ E and

[aij], [bij], [cij] ∈ F SM5×4.

If A = {x1, x3} and γA(x1) = ∅, γA(x3) = ∅, then [aij] = [0] is a zero f s-matrix

written by [0] =       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      

If B = {x1, x2} and γB(x1) = U , γB(x2) = U , then [bij] = [˜bij] is a B-universal

f s-matrix written by [˜bij] =       1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0      

(29)

54 N. C. a˘gman and S. Engino˘glu

If C = E, and γC(xi) = U for all xi ∈ C, i = 1, 2, 3, 4, then [cij] = [1] is a

universal f s-matrix written by

[1] =       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       Definition 2.7. Let [aij], [bij] ∈ F SMm×n. Then

(1) [aij] is a f s-submatrix of [bij], denoted by [aij] ˜⊆[bij], if aij 6 bij for all i

and j.

(2) [aij] is a proper f s-submatrix of [bij], denoted by [aij] ˜⊂[bij], if aij 6 bij for

all i and j and for at least one term aij < bij.

(3) [aij] and [bij] are f s-equal matrices, denoted by [aij] = [bij], if aij = bij for

all i and j.

Definition 2.8. Let [aij], [bij] ∈ F SMm×n. Then the f s-matrix [cij] is called

(1) union of [aij] and [bij], denoted [aij∪[bij], if cij = max{aij, bij} for all i

and j.

(2) intersection of [aij] and [bij], denoted [aij∩[bij], if cij = min{aij, bij} for

all i and j.

(3) complement of [aij], denoted by [aij]◦, if cij = 1 − aij for all i and j.

Definition 2.9. Let [aij], [bij] ∈ F SMm×n. Then [aij] and [bij] are disjoint, if

[aij∩[bij] = [0] for all i and j.

Example 2.10. Assume that

[aij] =       0 0.6 0 0 0.1 0 1 0 0 0.3 0.8 0 0.7 0 0 0 0 1 0 0      , [bij] =       0 0 0.7 0.4 0 0.2 0 1 0 0 0 0.9 0 0 0.5 1 0 0 0 0.3       Then, [aij∩[bij] = [0] and [aij∪[bij] =       0 0.6 0.7 0.4 0.1 0.2 1 1 0 0.3 0.8 0.9 0.7 0 0.5 1 0 1 0 0.3      , [aij] =       1 0.4 1 1 0.9 1 0 1 1 0.7 0.2 1 0.3 1 1 1 1 0 1 1       Proposition 2.11. Let [aij] ∈ F SMm×n. Then

(1) [[aij]]◦= [aij]

(2) [0]= [1]

Proposition 2.12. Let [aij], [bij] ∈ F SMm×n. Then

(30)

(4) [aij] ˜⊆[bij] and [bij] ˜⊆[cij] ⇒ [aij] ˜⊆[cij]

(5) [aij] ˜⊆[bij] ⇔ [aij∩[bij] = [aij] ⇔ [aij∪[bij] = [bij]

Proposition 2.13. Let [aij], [bij], [cij] ∈ F SMm×n. Then

(1) [aij] = [bij] and [bij] = [cij] ⇔ [aij] = [cij]

(2) [aij] ˜⊆[bij] and [bij] ˜⊆[aij] ⇔ [aij] = [bij]

Proposition 2.14. Let [aij], [bij], [cij] ∈ F SMm×n. Then

(1) [aij∩[bij] = [bij∩[aij] (2) [aij∪[bij] = [bij∪[aij] (3) ([aij∩[bij])˜∩[cij] = [aij∩([bij∩[cij]) (4) ([aij∪[bij])˜∪[cij] = [aij∪([bij∪[cij]) (5) [aij∩([bij∪[cij]) = ([aij∩[bij])˜∪([aij∩[cij]) (6) [aij∪([bij∩[cij]) = ([aij∪[bij])˜∩([aij∪[cij])

Note that, [aij∩[aij]◦6= [0] and [aij∪[aij]◦6= [1]

Proposition 2.15. Let [aij], [bij] ∈ F SMm×n. Then De Morgan’s laws are valid

(1) ([aij∪[bij])◦= [aij]◦∩[b˜ ij]

(2) ([aij∩[bij])◦= [aij]◦∪[b˜ ij]

Proof. For all i and j,

i. ([aij∪[bij]) = [max{aij, bij}]◦

= [1 − max{aij, bij}]

= [min{1 − aij, 1 − bij}]

= [aij]◦∩[b˜ ij]

ii. It can be proved similarly. ¤

3. Products of f s-matrices

In this section, we define four special products of f matrices to construct f s-decision making methods.

Definition 3.1. Let [aij], [bik] ∈ F SMm×n. Then And-product of [aij] and [bik] is

defined by

∧ : F SMm×n× F SMm×n → F SMm×n2, [aij] ∧ [bik] = [cip]

where cip= min{aij, bik} such that p = n(j − 1) + k.

Definition 3.2. Let [aij], [bik] ∈ F SMm×n. Then Or-product of [aij] and [bik] is

defined by

∨ : F SMm×n× F SMm×n → F SMm×n2, [aij] ∨ [bik] = [cip]

(31)

56 N. C. a˘gman and S. Engino˘glu

Definition 3.3. Let [aij], [bik] ∈ F SMm×n. Then And-N ot-product of [aij] and

[bik] is defined by

Z : F SMm×n× F SMm×n → F SMm×n2, [aij] Z [bik] = [cip]

where cip= min{aij, 1 − bik} such that p = n(j − 1) + k.

Definition 3.4. Let [aij], [bik] ∈ F SMm×n. Then Or-N ot-product of [aij] and

[bik] is defined by

Y : F SMm×n× F SMm×n → F SMm×n2, [aij] Y [bik] = [cip]

where cip= max{aij, 1 − bik} such that p = n(j − 1) + k.

Example 3.5. Assume that [aij], [bik] ∈ F SM2×3 are given as follows

[aij] = · 0 0 0.3 0 1 0.7 ¸ , [bik] = · 0.5 0 0.2 0.2 0 0 ¸

To calculate [aij] ∧ [bik] = [cip], we have to find cip for all i = 1, 2 and p = 1, 2, ..., 9.

Let us find c17. Since n = 3, i = 1 and p = 7, we get j = 3 and k = 1 from

7 = 3(j − 1) + k. Hence c17 = min{a13, b11} = min{0.3, 0.5} = 0.3. If the other

entries of [cip] can be found similarly, then we can obtain the matrix as follows;

[aij] ∧ [bik] =

·

0 0 0 0 0 0 0.3 0 0.2 0 0 0 0.2 0 0 0.2 0 0

¸

Similarly, we can also find the others products [aij] ∨ [bik], [aij] Z [bik] and [aij] Y

[bik].

Note that the commutativity is not valid for the products of f s-matrices. Proposition 3.6. Let [aij], [bik] ∈ F SMm×n. Then the following De Morgan’s

types of results are true.

(1) ([aij] ∨ [bik])◦= [aij]◦∧ [bik]

(2) ([aij] ∧ [bik])◦= [aij]◦∨ [bik]

(3) ([aij] Y [bik])◦= [aij]◦Z [bik]

(4) ([aij] Z [bik])◦= [aij]◦Y [bik]

4. f s-max-min decision making

In this section, we construct an f s-max-min decision making (F SM mDM ) method by using f s-max-min decision function which is also be defined here. The method selects optimum alternatives from the set of the alternatives.

Definition 4.1. Let [cip] ∈ F SMm×n2, Ik = {p : ∃i, cip 6= 0, (k − 1)n < p 6 kn}

for all k ∈ I = {1, 2, ..., n}. Then f s-max-min decision function, denoted M m, is defined as follows M m : F SMm×n2 → F SMm×1, M m[cip] = [di1] = [max k {tik}] where tik= ½ minp∈Ik{cip}, if Ik6= ∅, 0, if Ik= ∅.

(32)

opt[di1](U ) = {di1/ui: ui∈ U, di16= 0}

which is called an optimum fuzzy set on U .

Now, by using the definitions we can construct a F SM mDM method by the following algorithm.

Step 1: choose feasible subsets of the set of parameters, Step 2: construct the f s-matrix for each set of parameters, Step 3: find a convenient product of the f s-matrices, Step 4: find a max-min decision f s-matrix,

Step 5: find an optimum fuzzy set on U .

Note that, by the similar way, we can define f s-min-max, f s-min-min and

f s-max-max decision making methods which may be denoted by (F SmM DM ),

(F SmmDM ), (F SM M DM ), respectively. One of them may be useful than others according to the type of the problems.

5. Applications

Assume that a real estate agent has a set of different types of houses U =

{u1, u2, u3, u4, u5} which may be characterized by a set of parameters E = {x1, x2, x3, x4}. For j = 1, 2, 3, 4 the parameters xj stand for “in good location”, “cheap”,

“modern”, “large”, respectively. Then we can give the following examples.

Example 5.1. Suppose that a married couple, Mr. X and Mrs. X, come to the real estate agent to buy a house. If each partner has to consider their own set of parameters, then we select a house on the basis of the sets of partners’ parameters by using the F SM mDM as follows.

Assume that U = {u1, u2, u3, u4, u5} is a universal set and E = {x1, x2, x3, x4}

is a set of all parameters.

Step 1: First, Mr. X and Mrs. X have to choose the sets of their parameters, A = {x2, x3, x4} and B = {x1, x3, x4}, respectively.

Step 2: Then we can write the following f s-matrices which are constructed

according to their parameters.

[aij] =       0 0 0.2 0.4 0 0.6 0.9 0.4 0 0.8 0.7 0.5 0 0.5 0 0 0 1 0 0.8       [bik] =       1 0 0.9 0.7 0.2 0 0 0.9 0.7 0 0.4 0.3 0 0 0.5 0.6 0 0 0 1      

(33)

58 N. C. a˘gman and S. Engino˘glu

Step 3: Now, we can find a product of the f s-matrices [aij] and [bik] by using

And-product as follows       0 0 0 0 0 0 0 0 0.2 0 0.2 0.2 0.4 0 0.4 0.4 0 0 0 0 0.2 0 0 0.6 0.2 0 0 0.9 0.2 0 0 0.4 0 0 0 0 0.7 0 0.4 0.3 0.7 0 0.4 0.3 0.5 0 0.4 0.3 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.8       Here, we use And-product since both Mr. X and Mrs. X’s choices have to be considered.

Step 4: To calculate M m([aij] ∧ [bik]) = [di1], we have to find di1 for all i ∈

{1, 2, 3, 4, 5}. For instance, let us find d31. Since i = 1 and k ∈ {1, 2, 3, 4}, d31= maxk{t3k} = max{t31, t32, t33, t34}

Let us find t31and t32. For k = 1 and n = 4, I1= {p : cip6= 0, 0 < p ≤ 4} = ∅ and

for k = 2 and n = 4, I2= {p : cip6= 0, 4 < p ≤ 8} = {5, 7, 8}. Hence t31= 0 and t32= min{c35, c37, c38} = min{0.7, 0.4, 0.3} = 0.3

Similarly, we can find as t33= 0 and t34= 0. Thus, d31= max{0.0, 0.3, 0.3, 0.3} = 0.3

Similarly we can find d11= 0.4, d21= 0.0, d41= 0.0 and d51= 0.0. Finally, we can

obtain the f s-max-min decision f s-matrix as

M m([aij] ∧ [bik]) = [di1] =       0.4 0 0.3 0 0      

Step 5: Finally, we can find an optimum fuzzy set on U according to M m([aij] ∧

[bik])

optM m([aij]∧[bik])(U ) = {0.4/u1, 0.3/u3}

where u1is an optimum house to buy for Mr. X and Mrs. X.

Similarly, we can also use the others products [aij]∨[bik], [aij]Z[bik] and [aij]Y[bik]

for the other convenient problems.

6. Conclusion

The f s-set theory is being applied to many fields varying from theoretical to practical. In this paper, we define f s-matrices which are matrix representation of the f s-sets. We then define the set-theoretic operations of f s-matrices which are more functional to improve several new results. Afterwards, we construct a

f s-decision making model on the f s-set theory. This new decision making method

depends on the ideas of fuzzy and soft sets. The main idea of it is similar to the de-cision making method, given in [7], which depends on only soft sets. Therefore, this

(34)

Acknowledgements. The authors are grateful for financial support from the Research Fund of Gaziosmanpasa University under grand no: 2010/89.

References

[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59, 3458-3463, 2010.

[2] B. Ahmad and A. Kharal, On fuzzy soft sets, Advances in Fuzzy Systems, 1-6, 2009. [3] H. Aktas. and N. C.a˘gman, Soft sets and soft groups, Information Sciences, 1(77), 2726-2735,

2007.

[4] M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications, 57, 1547-1553, 2009.

[5] A.O. Atag¨un and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (3), 592-601, 2011.

[6] N. C. a˘gman and S. Engino˘glu, Soft set theory and uni-int decision making, European Journal of Operational Research, DOI: 10.16/j.ejor.2010.05.004, 2010.

[7] N. C. a˘gman and S. Engino˘glu, Soft matrix theory and its decision making. Computers and Mathematics with Applications, 59, 3308-3314, 2010.

[8] N. C. a˘gman, F. Cıtak, S. Engino˘glu, Fuzzy parameterized fuzzy soft set theory and its appli-cations, Turkish Journal of Fuzzy Systems, 1 (1), 21–35, 2010.

[9] N. C. a˘gman, S. Engino˘glu and F. Cıtak, Fuzzy Soft Set Theory and Its Applications, Iranian Journal of Fuzzy Systems (In Press)

[10] F. Feng, Y.B. Jun, X. Liu and L. Li, An adjustable approach to fuzzy soft set based decision making, Journal of Computational and Applied Mathematics 234, 10-20, 2010.

[11] F. Feng, Y.B. Jun and X. Zhao, Soft semirings, Fuzzy Sets and Systems: Theory and Appli-cations, 56 (10), 2621-2628, 2008.

[12] T. Herawan, A. N. M. Rose and M. M. Deris, Soft set theoretic approach for dimensionality reduction, in database theory and application 64, Springer Berlin Heidelberg, pp.171-178, 2009.

[13] Y. Jiang, Y. Tang, Q. Chen, J. Wang and S. Tang, Extending soft sets with description logics, Computers and Mathematics with Applications 59, 2087-2096, 2010.

[14] Y. B. Jun, Soft BCK/BCI-algebras, Computers and Mathematics with Applications, 56, 1408-1413, 2008.

[15] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras. Information Sciences, 178, 2466-2475, 2008.

[16] Y. B. Jun and C. H. Park, Applications of soft sets in Hilbert algebras, Iranian Journal of Fuzzy Systems, 6 (2), 55-86, 2009.

[17] Y. B. Jun, H. S. Kim and J. Neggers, Pseudo d-algebras, Information Sciences 179, 1751-1759, 2009.

[18] Y. B. Jun, K. J. Lee and A. Khan, Soft ordered semigroups, Mathematical Logic Quarterly. 56 (1), 42-50, 2010.

[19] Y. B. Jun, K. J. Lee and C. H. Park, Soft set theory applied to commutative ideals, in BCK–algebras, Journal of Applied Mathematics Informatics, 26 (3-4), 707-720, 2008. [20] Y. B. Jun, K. J. Lee and C. H. Park, Soft set theory applied to ideals in d-algebras, Computers

and Mathematics with Applications 57, 367-378, 2009.

[21] Y. B. Jun, K. J. Lee and C. H. Park, Fuzzy soft set theory applied to BCK/BCI-algebras, Computers and Mathematics with Applications 59, 3180-3192, 2010.

[22] Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Computers and Mathe-matics with Applications, 58, 2060-2068, 2009.

(35)

60 N. C. a˘gman and S. Engino˘glu

[23] S. J. Kalayathankal and G. S. Singh, A fuzzy soft flood alarm model, Mathematics and Computers in Simulation 80, 887-893, 2010.

[24] A. Kharal and B. Ahmad, Mappings on fuzzy soft classes, Advances in Fuzzy Systems, 1-1, 2009.

[25] Z. Kong, L. Gao, L. Wang and S. Li, The normal parameter reduction of soft sets and its algorithm, Computers and Mathematics with Applications, 56, 3029-3037, 2008.

[26] D.V. Kovkov, V. M. Kolbanov and D. A. Molodtsov, Soft sets theory-based optimization. Journal of Computer and Systems Sciences International, 46 (6), 872-880, 2007.

[27] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (3), 589-602, 2001a.

[28] P.K. Maji, R. Biswas and A.R. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathe-matics, 9 (3), 677-691, 2001b.

[29] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, 45, 555-562, 2003.

[30] P.K. Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44, 1077-1083, 2002.

[31] P. Majumdar and S.K. Samanta, Similarity measure of soft sets, New Mathematics and Natural Computation, 4 (1), 1-12, 2008.

[32] P. Majumdar and S.K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications 59, 1425-1432, 2010.

[33] D.A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37, 19-31, 1999.

[34] A. Mukherjee and S.B. Chakraborty, On intuitionistic fuzzy soft relations. Bulletin of Kerala Mathematics Association, 5 (1), 35-42, 2008.

[35] M.M. Mushrif, S. Sengupta and A.K. Ray, Texture classification using a novel, Soft-Set Theory Based Classification, Algorithm. Lecture Notes In Computer Science. 3851, 246-254, 2006.

[36] C.H. Park, Y.B. Jun and M.A. ¨Ozt¨urk, Soft WS-algebras. Communications of the Korean Mathematical Society, 23 (3), 313-324, 2008.

[37] D. Pei and D.Miao, From soft sets to information systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T.Y. Lin, R.R. Yager, B.Zhang) IEEE 2005, Volume: 2, pp: 617- 621.

[38] K. Qin and Z. Hong, On soft equality, Journal of Computational and Applied Mathematics 234, 1347-1355, 2010.

[39] A.R. Roy and P.K. Maji, A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203, 412-418, 2007.

[40] A. Sezgin and A.O. Atag¨un, On operations of soft sets, Comput. Math. Appl. 61 (5), 1457-1467, 2011.

[41] A. Sezgin, A.O. Atag¨un and E. Ayg¨un, A note on soft near-rings and idealistic soft near-rings, Filomat, In press.

[42] T. Som, On the theory of soft sets soft relation and fuzzy soft relation, Proc. of the national conference on Uncertainty: A Mathematical Approach, UAMA-06, Burdwan, 1-9, 2006. [43] M.J. Son, Interval-valued fuzzy soft sets, Journal of Fuzzy Logic and Intelligent Systems, 17

(4), 557-562, 2007.

[44] Q.M. Sun, Z.L. Zhang and J. Liu, Soft sets and soft modules, Proceedings of Rough Sets and Knowledge Technology, Third International Conference, RSKT 2008, 17-19 May, Chengdu, China, pp. 403-409, 2008.

[45] Z. Xiao, K. Gong and Y. Zou, A combined forecasting approach based on fuzzy soft sets, Journal of Computational and Applied Mathematics 228, 326-333, 2009.

[46] Z. Xiao, K. Gong, S. Xia and Y. Zou, Exclusive disjunctive soft sets, Computers and Math-ematics with Applications 59, 2128-2137, 2010.

[47] Xiao, Z., Li, Y., Zhong, B., Yang, X., Research on synthetically evaluating method for business competitive capacity based on soft set, Statistical Research, 52-54. 2003.

(36)

[49] X. Yang, T.Y. Lin, J. Yang, Y. Li and D. Yu, Combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications, 58, 521-527, 2009.

[50] J. Zhan and Y.B. Jun, Soft BL-algebras based on fuzzy sets, Computers and Mathematics with Applications 59, 2037-2046, 2010.

[51] Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems, 21, 941-945, 2008.

[52] L.A. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965) 338-353.

Naim Cagman, Department of Mathematics, Faculty of Arts and Sciences, Gazios-manpasa University, 60250 Tokat, Turkey

E-mail address: ncagman@gop.edu.tr

Serdar Enginoglu, Department of Mathematics, Faculty of Arts and Sciences, Gazios-manpasa University, 60250 Tokat, Turkey

Referanslar

Benzer Belgeler

An expected utility theory (EUT) as a descriptive model is criticized in this paper while taking appropriate decision under risk, and developed an alternate

Delici kafatasl ate~li silah yaralanmasma bagh kafatasl a&lt;;lkhgl nedeniyle akrilik kraniyoplasti uygulanan ve kafatasl i&lt;;indekemik ve/veya madeni par&lt;;a bulunan 76

Latife Tekin ise Sevgili Arsız Ölüm adlı romanında toplumsal gerçekliği, fantastik, masalsı ve renkli bir atmosferden yansıtır ve böylece ‘büyülü gerçeklik’ olarak

Under this specification, the log of income per capita in 1999 is the dependent variable, whereas the log of investment share of GDP, log of population growth rate plus

Bu çalışmada; özel eğitim okullarında çalışan öğretmenlerin tükenmişlik nedenleri ile çözüm önerileri araştırılmıştır. Çalışma nitel araştırma

Ders müsabakası Sarayı hümayunda olduğu gibi, hariçte de Hidayet beyi taksim edemez oldular; padişah müzik seviyor diye, piyanolara, kemanlara koştular Bun­ ların

Eleştiriyi bir zaman daha beklemek, taklitlerden kur­ tulmak gereği ile zamanın acımasızca ve hiç de dostça olmayacak eleştirisine, de­ ğer hükümlerinde tahammül

On the contrary, the Janissaries had, in fact, complex and strong ties with the other social groups of Ottoman society, which made their destruction a turning point in