• Sonuç bulunamadı

XPS for probing the dynamics of surface voltage and photovoltage in GaN

N/A
N/A
Protected

Academic year: 2021

Share "XPS for probing the dynamics of surface voltage and photovoltage in GaN"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

XPS

for

probing

the

dynamics

of

surface

voltage

and

photovoltage

in

GaN

Hikmet

Sezen

a

,

Ekmel

Ozbay

b

,

Sefik

Suzer

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bDepartmentsofPhysicsandElectricalandElectronicsEngineering,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10February2014

Receivedinrevisedform14June2014 Accepted14June2014

Availableonline20June2014 Keywords: Chargingdynamics Surfacephotovoltage XPS GaN Doping

a

b

s

t

r

a

c

t

WedescribeapplicationoftwodifferentdatagatheringtechniquesofXPSforprobingthedynamicsof surfacevoltageandsurfacephotovoltage(SPV)developedinmicrosecondstosecondstime-domain,in additiontotheconventionalsteady-statemeasurements.Forthelonger(secondstomilliseconds)regime, capturingthedatainthesnapshotfashionisused,butforthefasterone(downtomicroseconds),square wave(SQW)electricalpulsesatdifferentfrequenciesareutilizedtoinduceandprobethedynamicsof variousprocessescausingthesurfacevoltage,includingtheSPV,viathechangesinthepeakpositions. Thefrequencyrangecoversanywherefrom10−3to105Hzforprobingchangesduetocharging(slow), dipolar(intermediate),andelectronic(fast)processesassociatedwiththeexternalstressesimposed.We demonstrateitspowerbyapplicationton-andp-GaN,anddiscussthechemical/physicalinformation derivedthereof.Inaddition,themethodallowsustodecomposeandidentifythepeakswithrespectto theirchargingnatureforacompositesamplecontainingbothn-andp-GaNmoieties.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

GaNisawideband-gapcompoundsemiconductorwith supe-rioroptoelectronicpropertiesutilizedinnumerousdevicesforhigh powerlightemittingdiodeandsensorapplications[1].Surfaceand defectstructuresofthematerialsusedcompletelydeterminemany ofthedeviceperformance,hencecontroloverthesepropertiesare ofutmostimportance.Surfacephotovoltage(SPV)[2,3],isoneofthe propertiesmeasuredtoevaluatethequalityandtheperformanceof suchmaterialsanddevices,andhasrecentlybeencombinedwith microscopictechniquessuchastheKelvinProbe(KP)[4,5].SPV measurementsrelateelectricalinformationtobandstructure,as wellastothenatureofsurfacemoieties, andmostimportantly tothenature of impurities and defects.However,even though asuperb (sub-micron)lateralresolutionisachievable,theKPis basedonelectricalmeasurements,hencedoesnothavechemical specificity.Ontheotherhand,X-rayPhotoelectronSpectroscopy (XPS),whichhasalsobeenusedforprobingSPV,provides excel-lentchemicalinformation,inadditiontotheelectricalpotentials developedonsurfacestructures,althoughtheprecisionfor mea-suringthelatterismuchlower(∼20meV)whencomparedtothat ofKPmeasurements(∼1meV)[2].

∗ Correspondingauthor.Tel.:+903122901476;fax:+903122664068. E-mailaddress:suzer@fen.bilkent.edu.tr(S.Suzer).

EarlierSPVmeasurementsweremostlysynchrotronbaseddue totheneededbrightnessofthesource[6–10],butcombinedwith X-raymicrofocusingandfastaccumulationtools,thenewgeneration commercialXPspectrometerscanalsoprovidecriticalinformation aboutsuchmaterialsanddevices[11,12].Inarecentpublication wereportedoncapturingofthetransientsurfacephotovoltagein n-andp-GaNbyXPSwherenewinformation aboutthe mecha-nismofthetransientsformedbyilluminationwitha∼50mWviolet (405nm)laserwasbroughtoutanddiscussed[13].However,faster measurementsarenotpossibleinthismode,therefore,wehadto introduceothermodulationtechniques[14–19].

XPSisawidelyusedchemicalanalysistechniqueforprobing chemicalandphysicalcompositionofsurfacestructures.In con-ventionaldatagatheringmodethesampleis grounded,and the positionaswellastheintensityofthepeaksarerecordedinastatic fashion[20].Althoughseveralreportshaveappearedinthe liter-aturerelatedtodynamicalXPSmeasurementsinthetwoextreme ends,veryfast(nanosecondstoattoseconds)[21–24],andveryslow (minutestohours)[25–27].Theintermediatedomain (microsec-ondstoseconds)hasbeenoverlooked.Theveryfastmeasurements require either synchrotron facilities and/or specialized instru-mentationwhich arenot easilyaccessibletomany researchers. Theintermediatedomainisimportantespeciallyfortestingand improvingperformanceofvariousmaterialsanddevicesusedfor charge storage, photovoltaics, ferroelectrics, chemical and bio-chemicalsensing,etc.Recently,ourgroupandothershavereported

http://dx.doi.org/10.1016/j.apsusc.2014.06.089

(2)

throughvariouspublications,thebasicprinciplesandtechniques forimplementingsuchmeasurementsemployingverysimple mod-ificationtoconventionalinstruments[28–39].

Herein,we reportsuchXPSmeasurementsonn-andp-GaN samples,coveringtimeintervalsfromkilo-seconds(10−3Hz)down tomicrosecond(106Hz),anddiscusstheresultsobtained

pertain-ingtoelectricalpropertiesofthesampleasreflectedbythebinding energyshifts of theGa core-levels. Someof themeasurements includedinthepresentpaperhavealreadybeenpublishedinour previouspapers,buttheyarereproducedhereforthesakeof clar-ityandtoprovideacontinuousflowofthepresentation[13,40]. Thenextsectiondescribestheexperimentaldetailsandisfollowed byourresultsanddiscussions.Wefinishthepresentationbyour conclusions,tobefollowedbyacknowledgementsandreferences.

2. Experimental

GaNsamplesweregrownondoublepolishedc-planesapphire bylow-pressureMOCVD(AIX200/4RF-S).TheMgdopedp-and Si-dopedn-GaNsampleshaveconductivitiesof0.8and58S−1cm−1, respectively.AThermoFisherK-Alphaelectronspectrometerwith monochromatic AlK␣X-rays is used for XPS analysis,which is slightlymodifiedforimposingexternalvoltagestress(D.C.orA.C.) tothesampleduringdataacquisition. Thespectrometerisalso equippedwithalowenergyflood-gunfacilityforcharge neutraliza-tion,utilizingonlyelectronsorbothelectronsandAr+ions.Sample

surfaceswerecleanedbysputtering withalowenergy(200eV) Ar+ionbeamforavoidingdamagebytheAr+ions,untiltheC1s

peakfellbelowdetectionlimits.Noannealingofthesampleswas performedaftercleaning.Toinducesurfacephotovoltagea50mW 405nm(violet)CrystaLaserlaserisemployedeitherintheC.W. mode,orthroughachopperwithafrequencyrangeof10−1–103.

Forprobingthedynamicsofcharging/dischargingproperties,the dataisgatheredeitherinthefastsnapshotmodewith0.1stime resolutionorthesampleissubjectedtosquarewavepulses(SQW) of±10Vamplitudewithvaryingfrequenciesinthe10−3–105Hz

rangeusingaStanfordResearchSystemDS345pulsegenerator, whilethedataisgatheredinnormalscanningmode.Ingeneralthe accuracyofourmeasurementsarebetterthan20meVinthepeak positions.However,sinceweallowthesamplestochargeand dis-charge,throughtheapplicationoftheSQWmodulation,thepeaks arebroader.Eveninsuchcase,wecanstillclaimanaccuracyof 20meV,sincethistimewemeasurethedifferencebetweentwo peakspositions,whichisinherentlymoreaccuratewhencompared toabsolutepeakpositionmeasurements.

3. Resultsanddiscussions

3.1. Photoresponseofn-andp-typeGaN 3.1.1. Steady-statemeasurements

Asurveyspectrumofthep-typeGaNhasanintenseGa2p3/2

peakat 1118.49eVand3s,3p,3dpeaksat161.41, 106.48,and 20.15eV,respectivelyasshowninFig.1.Inaddition,Gahasa num-berofLMMAugerlinesspanningtheintervalfrom380to630eV. Unfortunately,abroadLMMAugerlineofGaat397eVis overlap-pingwiththeN1speak,soitisnotpossibletofollowindividual N1sregionwithourXPSinstrumentusingAlK␣X-raysource.We generallyfollowtheGa2pifweneedhighintensity(inthesnapshot mode),buttheGa3dpeakisrecordedforbetterenergyresolution. Whenexposedtoelectromagneticradiation,materialsrespond inavarietyofwaysdependingonthewavelength,intensity,and durationof theexposure. TheGa2p3/2 spectraof then-and p-GaNsamples,recordedwithandwithoutvioletlaserillumination, areshowninFig.2.Thehigheststeady-stateSPVforthen-and

Fig.1.AsurveyXPSspectrumofthep-GaNsampletogetherwiththeexperimental set-up.

p-GaN,aremeasuredas+0.15eVand−0.39eV,respectively,while thefloodgunisnotemployed.Whenthefloodgunisfunctioning, theresponseofespeciallythep-typeGaNissignificantlyaltered andprovidesadditionalinformationabouttheelectricalproperties ofthesemiconductor,aswasdiscussedinourpreviouspaper[13]. Whenthesamplesareintroducedintothespectrometer, elec-tronsflowfromthen-typeandholesfromthep-typeGaNsothat theyarechargeddifferently,duetotheirsignandextentofdoping. But,thechargesonthesurfacesarescreenedbybandbendingand byaccumulationofopposite-signchargesnearthesurface.When lightwithsufficientenergyisincidentonthesampleadditional chargecarriersareintroducedwhichnormallyreturnthebandsto theirflat-bandcondition[5,10,13,40–45].GaNhasaband-gapof 3.4eV,thereforethevioletlaser,whichhasonlyanenergyof3.1eV isnotexpectedtocauseanyband–bandexcitation.Presenceof sur-facestates,justabovethevalanceband,aswellasdefects,aidedby thermalenergyatroomtemperaturemustbethereasonforthis band-flattening.Asdepictedbytheschematicsshowninthelower panelofFig.2,theseprocessesmustinvolveanexcitationofan elec-tronandaholefromsurfacestatesintobulkforthen-andp-GaN, respectively,resultinginpartialflatteningofthebands.

Fig.2. Ga2p3/2regionofbothsamplesrecordedwithoutandunderillumination

withaC.W.VioletLaser(405nm)of∼50mWpower.Thelower panelsshow schematicallyflatteningoftheband-bendingunderillumination.

(3)

Fig.3.VariationofthepositionofGa2p3/2peakofp-GaNwithrespecttothepower

oftheilluminationsource,controlledbyNeutralDensityOpticalFilters(NDF).

Wehavealsocarriedoutmeasurementsbyvaryingtheintensity oftheexcitationsourcetoobtainarelationshipbetweenthe mea-suredvalueoftheSPVandthelogarithmoftheintensityoflightas giveninFig.3.Themostimportantfindingofthesemeasurements, isthatitrevealsasaturationbehaviortowardthehighintensity regionofthephotoexcitement.Thispowerdependencyofthe p-GaNindicatesthattheresponseswemeasuredaremostlydueto surface-statesanddefects’relatedprocesses,whichisalsoingood agreementwithourmechanisticexplanationofthepartialband flatteningphenomenoninvolvingthesub-bandgapexcitations.

3.1.2. Transientmeasurementsusingthesnapshotmode

TheK-Alphaspectrometerallowsustorecord,withreasonably highsignal-to-noiseratio,anarrowspectralregionwithlessthan 0.1sintervals.InFig.4(a)and(b),thetime-resolvedGa2p3/2spectra

areshownforthetwosampleswhilethelaseristurnedonand offevery50s,whereweobservethattheSPVdevelopsinamuch shortertimeinterval(<0.1s)thanweareabletomeasure,butitgets severelyscreenedbytheflood-gunelectronsforthep-GaN.This indicatesthatwhenthefloodgunisoperativeanadditional mech-anismistriggeredjustafterthechangeofthestateofthelaser,asa resultofinteractionbetweentheelectronsofthefloodgunandthe surfaceofthep-GaNsample.Thiscanbeexplainedasfollows.The p-GaNdevelopsacertainmagnitudeofdownwardband-bending atitssurface.ThisdownwardbandbendingatthelaserOFFstate providesaproperwelltocapturetheflood-gunelectronsatornear theconductionband,asschematicallyshowninFig.4(c)tocause anoppositeshifttolowerbindingenergyasexpectedand mea-sured.WhenthestateofthelaserischangedtoON,thedownward band-bendingis immediatelyflattenedand thewelldisappears. Hence,theaccumulatedelectronsduring thepreviousstateare quicklysweptawaytothebulk,becausenowtheconductionband ofthebulkhasmanyfavorableenergylevelsfortheelectronsas alsoindicatedinFig.4(c).Thiseventisobservedasafurthershiftto ahigherbindingenergy.Moreover,thetimeconstantsofelectron accumulationandelectronsweepingawayfromthesurfaceofthe p-GaNsamplearedifferentandare6.3and0.85s,respectively.This differencearisesfromthedifferentnatureofthetwomechanisms. Theimpingingelectronstakelongertime tobeaccommodated, sinceeachaccumulatedelectroncontributestothebuild-upofthe negativesheetofchargeatthesurface,whichinturnsuppresses the rate of accumulation of further negative charge. However, whenthelaseristurnedon,thesweepingofaccumulatedelectrons tothebulkisveryeffectiveandquickduetoitslargevolumeof thebulkcomparedtothesurface.Noteinpassingthatwhenthe flood-gunisoperativetheSPVaresmearedout,andundercertain conditions, might be completely unobservable by the normal scanning mode of the spectrometer due to the time-averaged dataacquisition.Only,throughthecarefulimplementationofthe

Fig.4.VariationsofthecenteroftheGa2p3/2peaksrecordedwith0.1sintervalsusingthesnapshotmode,asthelaseristurnONandOFF,withtheflood-gunturned-offand

(4)

Fig.5.Ga3dpeakofthen-andp-GaNsamplerecorded;(i)grounded,andunder theSQWmodulationat(ii)2MHz,and(iii)10kHzfrequencies,withoutandunder photoillumination.

snapshotmodewithrespecttothetimewindowsweusedwere weableustorecoverthefullmagnitudeoftheSPV[13].

3.1.3. ApplicationofSQWpulses

Sinceneitherthesnap-shotmodenorutilizationof an opti-calchoppercanbeusedintheshortermicrosecondsregime,we makeuseofapplicationofelectricalvoltagestressesintheform ofSQWpulses.InFig.5,wedisplaytheGa3dpeakofthen-and thep-GaNsamplerecordedwhilethesamplesaregrounded,as wellasunder2MHzand10kHzSQWmodulations,andwithout andwithvioletlaserillumination.SQWmodulationofthesample resultsintwinningofallthepeaks,sincethesamplesexperience either+10Vor−10Velectricalstressduringtheup(positive)and thedown(negative)cycles,respectively.Ifthesampleis conduct-ingtheresultistrivialshiftsofthepeakpositionsto+10.00and

Fig.6. Measuredpeakpositionsat+10Vand−10VcyclesoftheGa3dpeakasa functionofthefrequencyoftheappliedSQWexcitation,withoutandunder photo-illumination.Thelowerpartplotsthedifferencebetweenthetwinnedpeaks.

−10.00eV,respectively,andwithabindingenergydifference mea-surementofexactly20.00eVbetweenthem.However,ifthesample is poorly conducting,a difference of less than 20.00eV results, sincechargeneutralizationisdifferentunder+10and−10Vbiasing cycles[14–19].Thismeasurednegativedeviationfromthe20.00eV islargeratlow frequenciessincemoretimeis allocatedforthe sampletochargeordischarge,andapproacheszeroastheSQW modulationfrequencyincreases,dependingonthemechanismof theoperatingprocesses. Hence,aplotof themeasuredbinding energydifferenceasafunctionoftheappliedSQWfrequenciesis highlyinformative(seebelowFig.6)[14–19].

Accordingly,asshowninFig.5,thebindingenergydifference iscloserto20.00eV,yetslightlylowerat2MHz,fromwhichwe

Fig.7. Ga3dpeakofacompositesampleformedbyplacingthen-andp-GaNsamplesside-by-side,recorded;(i)grounded,andundertheSQWmodulationat(ii)2MHz, and(iii)10kHzfrequencies,withoutandunderphotoillumination.Theinsetdepictstheexperimentalset-up.

(5)

cannowdeducethatn-GaNismuchmoreconductingcomparedto thep-GaNsample,inagreementwiththemeasuredvaluesgiven intheexperimentalsection.Thissimpleagreementisactuallyan importantproofofthevalidityofourmethodology,whichcould leadtonumerousanalyticalapplicationsforharvestingdielectric propertiesofbothsimpleandcompositesurfacestructures[28,46]. Inaddition,themeasureddifferenceof19.81eVatthelower fre-quencyof2MHzislowerthan19.98eVmeasuredat10kHz,while thelatteriswithintheexperimentaluncertaintyofthe theoreti-calvalueof20.00eV.Thesituationisverydifferentforthep-GaN, whichisdrasticallycharged,andthemeasuredvalueis16.74eV at2MHz, and approaches(19.93eV)to thetheoreticalvalueat 10kHz,butdoesnotquitereachit.Whatonelearnsfromthese mea-surementsisthat,especiallyforthep-GaN,charging/discharging propertiesarestronglyaffectedbyamultitudeofprocesses opera-tiveinthemicrosecondsallthewayupsecondsrange.

Inthesamefigure,datarecordedunderlightilluminationare alsogiven.For then-GaN,themagnitude ofthephotoresponse issmall,andisthesameirrespectiveofthemodeofdata gath-ering,whichrevealsthat photoresponseof thesampleis much faster(<10␮s)thanwecanmeasureevenifweemploytheSQW modulationuptothefrequencyof105Hz.Themagnitudeofthe

photoresponseofthep-GaNismuchlarger,and,similartothecase oftheelectricalcharging,hasmultiple(slow,intermediateandfast) components,ascanbededucedfromthefactthatevenat10kHz modulation,themeasuredbindingenergydifferenceof19.97eV, underilluminationislargerthanthat(19.93eV)withoutit.

Acomprehensivesetof measurementsfor thep-GaNis dis-played in Fig.6, where themeasuredpositions of thetwinned peaksoftheGa3dpeak,aswellasthedifferencebetweenthem areplottedasafunctionoffrequencyoftheSQWpulses,bothwith andwithoutC.W.violetlaserillumination.Themeasuredcharging shiftsaresignificantlyalteredintwodomains;(i)0.2–20Hz,and (ii)0.2–10kHz,andcontinuetopersistevenathigherfrequencies. Wemustemphasizethatallthechargingshiftswehavereportedso farinourpreviousstudiesonvariousdielectricmaterialslikeSiO2,

CdSandpolymershavealwaysbeeninthelowerfrequencyrangeof 10−1–102Hz,andthisisthefirsttimeweareabletorecordthemin

thekHzrange,whicharetoofastfortheusualchargecompensation processesinvolvingseveralcascadingprocesses,andmust some-howberelatedwithelectronicprocesses.Accordinglywepropose thatatleastforthep-GaN,wehavesuccessfullydemonstratedthat withacombinationofthesnap-shotmeasurementsandutilization ofSQWpulses,XPSisabletoprobeanddistinguishamongtheslow (ionic),intermediate(dipolar),andthefast(mostlikelydueto elec-tronic)chargingprocessesofmaterialsandtheirphotoresponses.

Asimple analyticalextensionofourmethodisdemonstrated inFig.7,whereweanalyzeacompositeregionconsistingofboth n-andp-GaNsamplesplacedside-by-sideinanad-hocp–n junc-tionfashion.TheGa3dpeakofthecompositesampleappearsas a singleone,when recorded withthesampleis grounded, and thephotoresponseisnotstrongenoughtodistinguishbetween thedifferentlydopeddomains.However,whentheSQWpulses with10kHzmodulationareapplied,thepeaksdecomposetotwo distinctcomponents,assignabletothen-orthep-domains, respec-tively.Atthelowerfrequencythedecompositionhappensonlyfor the+10Vcycle,whilestillonlyoneoverlappingcompositepeakis observableinthe−10Vcycle.Thephotoresponsesofthen-and thep-componentsare notasstrong,but neverthelessarealso indicativeofthenatureofthedopingascanalsobeseenfromfigure.

4. Conclusions

Byutilizingdifferentopticaland/orelectricalmodulation tech-niques, XPS spectroscopy, which is conventionally used in the

staticscanningfashion,canalsobeusedforprobingthe dynam-ics of surface structures. A combination of time-resolved XPS with0.1sintervals,incorporationofSQWmodulation,anduseof photoilluminationprovidesusnewwaysofinvestigatingsurface electronicstructureandothersurfacepropertiesof semiconduct-ing and dielectric materials in a chemically specificfashion, in themicrosecondstosecondstimedomains,which hasnotbeen reportedbefore.Oneparticularadvantageofthemethodisits abil-itytodistinguishandidentifythepeaksrepresentingtheirdoping natureforcompositesurfacestructures,usingtheirresponsesto electrical,electromagneticstresses,aswellastoacombinationof both.

Acknowledgements

ThisworkwassupportedbytheScientificandTechnological ResearchCouncilofTurkey(TUBITAK)GrantNo:212M051.

References

[1]M.Kocan,A.Rizzi,H.Luth,S.Keller,U.K.Mishra,Phys.StatusSolidiB234(2002) 773.

[2]L.Kronik,Y.Shapira,Surf.Sci.Rep.37(1999)1.

[3]D.K.Schroder,Meas.Sci.Technol.12(2001)R16.

[4]M.Foussekis,J.D.Ferguson,A.A.Baski,H.Morkoc,M.A.Reshchikov,Phys.B404 (2009)4892.

[5]M.A.Reshchikov,M.Foussekis,A.A.Baski,J.Appl.Phys.107(2010)113535.

[6]J.E.Demuth,B.N.J. Persson,A.J. Schell-Sorokin,Phys.Rev.Lett.51(1983) 2214.

[7]J.E.Demuth,W.J.Thompson,N.J.DiNardo,R.Imbihl,Phys.Rev.Lett.56(1986) 1408.

[8]A.Schellenberger,R.Schlaf,C.Pettenkofer,W.Jaegermann,Phys.Rev.B45 (1992)3538.

[9]R.Schlaf,A.Klein,C.Pettenkofer,W.Jaegermann,Phys.Rev.B48(1993) 14242.

[10]M.Moreno,H.Yang,M.Horicke,M.Alonso,J.A.Martin-Gago,R.Hey,K.Horn, J.L.Sacedon,K.H.Ploog,Phys.Rev.B57(1998)12314.

[11]H.Shpaisman,E.Salomon,G.Neher,A.Vilan,H.Cohen,A.Kahn,D.Cahen,J. Phys.Chem.C113(2009)3313.

[12]S.Schafer,S.A.Wyrzgol,R.Caterina,A.Jentsy,S.J.Schoell,M.Havecker,A. Knop-Gericke,J.A.Lercher,I.D.Sharp,M.Stutzmann,J.Am.Chem.Soc.136(2012) 12528.

[13]H.Sezen,E.Ozbay,O.Aktas,S.Suzer,Appl.Phys.Lett.98(2011)111901.

[14]H.Sezen,G.Ertas,A.Dana,S.Suzer,Macromolecules40(2007)4109.

[15]S.Suzer,H.Sezen,A.Dana,Anal.Chem.80(2008)3931.

[16]S.Suzer,H.Sezen,G.Ertas,A.Dana,J.ElectronSpectrosc.Relat.Phenom.176 (2010)52.

[17]H.Sezen,G.Ertas,S.Suzer,J.ElectronSpectrosc.Relat.Phenom.178-179(2010) 373.

[18]H.Sezen,S.Suzer,J.Vac.Sci.Technol.A28(2010)639.

[19]H.Sezen,S.Suzer,Surf.Sci.Lett.604(2010)L159.

[20]D.Briggs,M.P.Seah,PracticalSurfaceAnalysis,2nded.,Wiley,Chichester,1999.

[21]M.Marsi,R.Belkhou,C.Grupp,G.Panaccione,A.Taleb-Ibrahimi,L.Nahon,D. Garzella,D.Nutarelli,E.Renault,R.Roux,M.E.Couprie,M.Billardon,Phys.Rev. B61(2000)R5070.

[22]M.Marsi,M.E.Couprie,L.Nahon,D. Garzella,R. Bakker,A.Delboulbe,D. Nutarelli,R.Roux,B.Visentin,C.Grupp,G.Indlekofer,G.Panaccione,A. Taleb-Ibrahimi,M.Billardon,Nucl.Instrum.MethodsPhys.Res.A393(1997)548.

[23]M.Marsi,M.E.Couprie,L.Nahon,D.Garzella,T.Hara,R.Bakker,M. Billar-don,A.Delboulbe,G.Indlekofer,A.Taleb-Ibrahimi,Appl.Phys.Lett.70(1997) 895.

[24]M.Marsi,L.Nahon,M.E.Couprie,D.Garzella,T.Hara,R.Bakker,M. Billar-don,A.Delboulbe,G.Indlekofer,A.Taleb-Ibrahimi,J.ElectronSpectrosc.Relat. Phenom.94(1998)149.

[25]K.Hirose,M.Yamawaki,K.Torii,T.Kawahara,S.Kawashiri,T.Hattori,Appl. Surf.Sci.237(2004)411.

[26]K.Hirose,H.Nohira,K.Azuma,T.Hattori,Prog.Surf.Sci.82(2007)3.

[27]K.Hirose,J.ElectronSpectrosc.Relat.Phenom.176(2010)46.

[28]S.Suzer,Anal.Chem.75(2003)7026.

[29]F.Karadas,G.Ertas,S.Suzer,J.Phys.Chem.B108(2004)1515.

[30]S.Suzer,A.Dana,J.Phys.Chem.B110(2006)19112.

[31]G.Ertas,U.K.Demirok,A.Atalar,S.Suzer,Appl.Phys.Lett.86(2005)183110.

[32]G.Ertas,U.K.Demirok,S.Suzer,Appl.Surf.Sci.249(2005)12.

[33]S.Suzer,A.Dana,G.Ertas,Anal.Chem.79(2007)183.

[34]C.P.Conger,S.Suzer,Langmuir25(2009)1757.

[35]H.Cohen,R.Maoz,J.Sagiv,NanoLett.6(2006)2462.

[36]H.Cohen,S.K.Sarkar,G.Hodes,J.Phys.Chem.B110(2006)25508.

[37]A.Samokhvalov,R.W.Gurney,M.Lahav,S.Cohen,H.Cohen,R.Naaman,J.Phys. Chem.B107(2003)4245.

(6)

[39]H.Cohen,J.ElectronSpectrosc.Relat.Phenom.176(2010)24.

[40]H.Sezen,S.Suzer,J.Spectrosc.Dyn.2(2012)3.

[41]N.J.Halas,J.Bokor,Phys.Rev.Lett.62(1989)1679.

[42]J.P.Long,H.R.Sadeghi,J.C.Rife,M.N.Kabler,Phys.Rev.Lett.64(1990)1158.

[43]J.P.Long,V.M.Bermudez,Phys.Rev.B66(2002)121308.

[44]E.A.Kraut,R.W.Grant,J.R.Waldrop,S.P.Kowalczyk,Phys.Rev.Lett.44(1980) 1620.

[45]S.A.Ding,S.R.Barman,K.Horn,H.Yang,B.Yang,O.Brandt,K.Ploog,Appl.Phys. Lett.70(1997)2407.

Referanslar

Benzer Belgeler

Nation branding strategy can be successful with state aids, private sector supports, the support of skilled people in the field and the efforts of all those who

b) Make sure that the bottom level of the inlet is at the same level as the bottom of the water feeder canal and at least 10 cm above the maximum level of the water in the pond..

can be seen that all the listed geometries have caused a significant amount of increase in the strength of the material. This toughening effect can be seen in the shape of a decrease

Petrin and Sivadasan (2013) develop a straightforward yet powerful measure that uses firm level production data and defines the ”gap” of an input as the difference between an

thus, we adopt the third option and create variables that take the differences in location characteristics between destination and origin provinces. The data

a. Higher the productivity of the firm, especially in its final year, the lower is its hazard for exit. Profitability also increases firm survival, although first year

Object-Oriented Database Systems are based on Object-Oriented Programming Language and Database storage mechanisms that depend on the data model established.. The Relational

This descriptive study conducted on the information related to the calculations of nursing students’ ideas on drug dose on 4-6 June 2012 in the Department of Near East