• Sonuç bulunamadı

Preparation and characterization of mixed monolayers and Langmuir−Blodgett films of merocyanine 540/octadecylamine mixture

N/A
N/A
Protected

Academic year: 2021

Share "Preparation and characterization of mixed monolayers and Langmuir−Blodgett films of merocyanine 540/octadecylamine mixture"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Colloids

and

Surfaces

A:

Physicochemical

and

Engineering

Aspects

j ou rn a l h o m e pag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f a

Preparation

and

characterization

of

mixed

monolayers

and

Langmuir

−Blodgett

films

of

merocyanine

540/octadecylamine

mixture

Bahri

Gür, Kadem

Meral

DepartmentofChemistry,FacultyofScience,AtatürkUniversity,25240,Erzurum,Turkey

h

i

g

h

l

i

g

h

t

s

 Langmuir–Blodgett films of mero-cyanine 540/octadecylamine mix-turewerefabricated.

 Photophysical properties of mero-cyanine540werefollowedas spec-troscopic.

 H-aggregateformationof merocya-nine540atsolidandliquidphases wascharacterized.

 Surfacemorphologyofthinfilmwas examined by using atomic force microscopy.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

Langmuir–Blodgettfilms(LB)ofmerocyanine540(MC540)mixedwithamphiphilicoctadecylamine (ODA)onglasssubstratearefabricatedbyco-spreadingmethod.TheformationofstableLBfilmofMC540 mixedwithODAonwatersubphaseischeckedbysurfacepressure–area(–A)isotherm.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6June2012

Receivedinrevisedform31July2012 Accepted22August2012

Available online 10 September 2012 Keywords:

Langmuir–Blodgettfilms

Surfacepressure–area(–A)isotherms Merocyanine540(MC540)

Octadecylamine(ODA) Atomicforcemicroscopy(AFM)

a

b

s

t

r

a

c

t

Mixedmonolayerofmerocyanine540(MC540)dyeandoctadecylamine(ODA)attheair/water inter-facehasbeenpreparedusingtheco-spreadingmethod.Thepressure–area(–A) isotherm studies revealedthatthemixturesofMC540/ODAatadifferentratioformedastablemonolayerattheair/water interfaceandthesefloatinglayerswereeasilytransferredontohydrophilicsubstratesastheY-type Langmuir–Blodgett(LB)film.Thespecificareapermoleculeinthe–Aisothermofthemixedmonolayer ofMC540/ODAwaslargerthanthatofthepristineODA.Theareacanalsogetincreasedupto40mN/m surfacepressurebytheincreaseofthedyeconcentrationinthemixtures.TheLBfilmsofMC540/ODA mixturewereformedat30mN/msurfacepressurebytransferringthemixedmonolayerattheair/water interfaceonhydrophilicglasssubstrateviaverticaldip-coatingasmono-andmultilayerfilms.The photo-physicalpropertiesofMC540inchloroformandLBfilmshavebeeninvestigatedusingtheabsorption, steady-stateandtime-resolvedfluorescencespectroscopytechniques.H-aggregateformationofMC540 bothinchloroformandLBfilmwereconcludedfromthespectroscopicresults.Themorphologyofthe one-layermixedLBfilmofMC540/ODAontheglasssubstratehasbeencharacterizedbyAFM(atomic forcemicroscopy).Thenon-contactmodeAFMimageoftheone-layermixedLBfilmshowedthatthe filmsurfaceconsistedofMC540/ODAnanoclusters.Inconclusion,ourresultscontributeto understand-ingthestronginteractionbetweenMC540andODAattheair/waterinterface,andshowtheeffectsof someparametersonthemixedLBfilmsofMC540.

© 2012 Elsevier B.V. All rights reserved.

∗ Correspondingauthor.Tel.:+902314410;fax:+904422360948. E-mailaddress:kademm@atauni.edu.tr(K.Meral).

1. Introduction

Thinfilmoffunctionaldyemoleculeshasasignificantrolein thedesignofultrafast,miniaturized,optoelectronicandphotonic devices [1]. Thereare several techniquesfor thefabrication of thin filmsoffunctional dyemolecules,suchasspin-coating[2], 0927-7757/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Fig.1.Chemical structures ofmerocyanine540 (MC540)and octadecylamine (ODA).

layer-by-layer [3], Langmuir–Blodgett (LB)techniques [4,5] etc. Amongthese,theLBtechniqueisauniquemethodthatprovides flexibilityincontrollingthespatialdistributionandtheorientation ofthedyemoleculesinthefilmmatrix[4–6].IntheLBtechnique, themoleculararchitecture and thicknesscan beprecisely con-trolledbymonitoringcertainparameterssuchasthepHofthe subphase,barrierspeed,dippingspeed,molarcomposition, tem-perature, and thesurface pressure of lifting of the LBfilm [7]. Therefore,theLBmethodhasbeenwidelyusedtofabricatethin filmsofalargevarietyoforganicmolecules.Amphiphilicorganic moleculesand numerous polyaromatichydrocarbon derivatives havebeenextensivelyusedforLBfilmapplicationsbecausethey formasuperb monolayerattheair/waterinterface[8].In con-trast,nonamphiphilicandwater-solubleorganicmoleculeshave presentedlimiteduseinLBfilmstudiesbecausenonamphiphilic moleculestendtoformmicrocrystalsattheair/waterinterfaceand water-solublemoleculesmoveintothewatersubphaseduringthe evaporationofthevolatilesolvent[9].Therefore,nonamphiphilic andwater-solublemoleculesaredifficulttotransferontosolid sub-stratesforthepurposeofthegenerationofhigh-qualityLBfilms. Thisproblemcanbeovercomebydopingnonamphiphilicor water-solublemoleculeswithamphiphilicmoleculessuchasfattyacids, octadecylamin and some phospholipids, which form excellent monolayersattheair/waterinterface[9–14].Themixture contain-ingwater-solublemolecules(ornonamphiphilicmolecules)and amphiphilicmoleculesusuallyresultsintheformationofa sta-blefloatinglayerthatcouldpotentiallybeeasilytransferredontoa solidsurface[15].IntheLBmatrix,thewater-solublemoleculescan beembeddedwithinthedopedamphiphilicmoleculesorformed awater-insolublecomplexwiththem.Incontrast,nonamphiphilic moleculestendtoformasandwich-typestructureasaresultof squeezingbetweenheadgroupsoftheamphiphilicmoleculesand watersubphase[13–15].

Dyemoleculeshaveattractedagreat dealofattentioninthe areaofelectronicsandoptoelectronicsduetotheirpotentiallylow costandeaseofdesigningatthemolecularlevel[16].Themost importantrequirement for theuseof functional dyemolecules inthetechnologicalapplicationsisthepreparationoftheirthin films [17]. The thin film of dyes with the desired optical and morphologicalpropertiescanbefabricatedbytheLBfilm tech-nique,easily[4,5].Oneofthesedyemoleculesismerocyanine540 (MC540),whosemolecularsystemshowsanextendedconjugation thatisresponsibleforitsabsorptionatthelongerwavelengthin thevisiblespectrum(Fig.1)[18].MC540isananioniclipophilic

polymethinedyethatisusedasthefluorescentprobeforstudying biologicalmembranesandsensitizersforphotodynamictherapy [9–21].Thephotophysicalpropertiesofthedyestronglydepend onchangesinenvironmentalfactorssuchaspolarity,viscosityand temperature[18].Forexample,thefluorescencequantumyieldof MC540inanaqueoussolutionislowduetoitsabilitytoform non-fluorescentaggregates[21].MC540moleculesalsohaveatendency tobindmicelles,liposomesorvesicles[22].Therefore,their non-fluorescentaggregatesdissociateintofluorescentmonomersinthe presenceofamediumcontainingmicellesorvesicles[21].Although therearenumerousreportsontheLBfilmstructuresofamphiphilic merocyaninedyes[23],thereiscurrentlynostudyregardingthe LBandthemixedLBfilmsofMC540dopedwithODA.Therefore, itwouldbeinterestingtounderstandphotophysicalpropertiesof MC540inLBmatrixandtheroleofinteractionbetweenthedye andODAforbiomedicalapplication.

Herein we report the preparation of the mixed monolayer of MC540withamphiphilicODAat theair/water interfaceand thephotophysicalpropertiesofthedyeinanLBfilm.The spec-troscopic properties of MC540in chloroform and LB filmwere determinedbyusingabsorptionandfluorescence(steady-stateand time-resolved)spectroscopytechniques.Thesurfacemorphology oftheone-layermixedLBfilmshasbeencharacterizedusingthe non-contactmodeAFM(atomicforcemicroscopy).Ourresults con-tribute totheunderstanding ofthe stronginteraction between MC540and ODA at the air/water interface,where the concen-trationsof MC540canmodifythefilm. Additionally,this study supports noteworthyfindings related to thenanostructure and opticalpropertiesofMC540dyeatsolidsurface.

2. Experimental 2.1. Materials

MC540,octadecylamine(ODA),andchloroformwerepurchased fromSigma–Aldrich.

2.2. Methods

AcommerciallyavailableLBtrough(KSV,Minithroughsystem) wasusedforthedepositionofmono-andmulti-layerLBfilms.In LBfilmexperiments,puredeionizedwaterusedforthesubphase wasobtainedfromaKrosClinic(model:KRS-R-75).ThepHofthe subphasewas6.3andthetemperaturewas22◦C.Thepreparation ofLBfilmsofMC540/ODAmixturewasoutlinedintheSupporting Information.

2.3. Instrumentation

TheabsorptionspectrawererecordedonaPerkinElmer(Model Lambda35)spectrophotometeratroomtemperature.The absorp-tionspectraofthedyesinchloroformweretakeninaquartzcuvette with a dimension of 0.5cm×1.0cm. Steady-state fluorescence spectraweretakenwithaShimadzuRF-5301PC Spectrofluoropho-tometer.Fluorescencedecaysforthelifetimemeasurementsand theemissionspectrawerecarriedoutwithaLaserStrobeModel TM-3lifetimefluorometerfromPhotonTechnologyInternational. Thedetailsofthismethodhavebeengivenelsewhere[15].All mea-surementsrelatingtofluorescencestudieshavebeenrecordedby usinga 0.5cm×1.0cm fluorescencequartz cuvette. AFMimage oftheLBfilmwasperformedinairusingNanomagnetics instru-mentsobtainedfromAnkara,Turkey.Theimagewasacquiredina non-contactmode.

(3)

Fig.2.Surfacepressure–area(–A)isothermsofpristineODAandthemixtureof MC540/ODAatdifferentratio.

3. Resultsanddiscussion

3.1. Surfacepressure–area(–A)isothermofthemixturesof MC540/ODA

Theformationofthestableandfloatinglayersofbothpristine ODAandMC540/ODAmixturesattheair/waterinterfacewas con-firmedbyusingthesurfacepressure–area(–A)isotherms.When 35␮lof pristineODAinchloroform(0.5mg/mlwasusedforall experimentsandkeptconstant)wasspreadandcompressedon thepurewater subphase,theobtained–Aisothermshoweda smallliquid-phaseregionbeforeitreachedtheclose-packedsolid phase[24].ThespecificareapermoleculeforpristineODAwas cal-culatedas∼0.24nm2,whichiscomparablewiththevaluegiven

in literature[11]. Followingthis,the same–Aisothermstudy wasperformedforpristineMC540.In thisinstance,thesurface pressuredidnotrisesufficientlytobeappliedtoahigh-quality LBfilmwhenpristine MC540monolayerat theair/water inter-face wascompressed at a slow rate. Additionally, fluorescence studiesindicatedthata sectionofMC540moleculespenetrated intothesubphaseduringtheevaporationofvolatilesolvents dur-ingthecompressionprocess(Fig.S1).Therefore,pristineMC540 moleculesdonotformaself-supportingmonolayerattheair/water interfacebecausethedyedoesnothavelongenoughalkylchains, which preventsubmergenceof thedyeintosubphase.In order toovercomethisproblem,itwasanticipatedthatdyemolecules mixedwithanyamphiphilicmoleculescouldbeincorporatedin LBfilms via theacknowledged co-spreading method[10].This procedurehasbeen appliedin many studies including nonam-phiphilicandwater-solublemolecules[9–15].Inthisregard,the performed –A isotherm studies verified that the MC540/ODA mixtureformedhighlystableandfloatinglayersattheair/water interface.TheODA-shaped–Aisothermswereobtainedbythe mixturesofMC540/ODAatdifferentratiosin whichtheMC540 concentrationwasalteredfrom5.0×10−5Mto1.0×10−4M.Fig.2 shows the–A isotherms of pristine ODAand the mixtures of MC540/ODAatadifferentratioat22◦C.The–Aisothermsofthe mixturesshowedanexpansionincomparisontothatofpristine ODA,andthedegreeofthisexpansionincreasedbyincreasingthe levelofMC540inthemixture,whichisclearly showninFig.2 [11].Inotherwords,thespecificareapermoleculeobtainedfrom the–Aisothermofthemixturecontaining1.0×10−4MMC540 is greater than those of the others containing a lower level of MC540(Fig.2).TheexpansionindicatesthatMC540moleculesare

retainedamongODAmoleculesattheair/waterinterface,where ODAmoleculescanactasasupportingmatrix.Theshapeof–A isothermsofpristineODAandMC540/ODAmixturesatlowdye loading(5.0×10−6Mand1.0×10−5M)arevery similartoeach other, withtheexception of the specificarea permolecule. At thehigherdyeloadings(5.0×10−5Mand1.0×10−4M),the–A isothermsshowedaplateauregionstartingatsurfacepressuresof 40mN/m.Theflatplateaubecomesmoreapparentbytheincrease ofthedyeconcentrationinthemixture.Suchaplateauinthe–A isothermshasbeenobservedin somemoleculesand frequently interpretedinconnectionwithphasetransition,whichis gener-atedbyeffectivechangesinorientationandthearrangementsof moleculesatmonolayerandmolecularaggregation[25].Sincethe plateauformationinthe–Aisothermisonlyobservedathigh dyeloadings,theMC540concentrationinthemixtureis consid-eredforthemoleculararrangementintheLBmatrixasadriving force.ThearrangementofMC540dyemoleculesatahigher sur-facepressurebring abouttheplateauformationdue tothefact that dye molecules at highloadings form aggregate structures thatarearrangedinaside-by-sideandtail-to-tailconformation ofdyemolecules.Additionally,thisplateaucorrespondstoa two-dimensionaltothree-dimensional(2D-to-3D)phasetransitionof MC540 molecules in ODA matrix. The absorptionproperties of MC540in LB filmrevealed that thecompression of mixtureat theair/waterinterfaceforthehighersurfacepressuresinduced theplateauformationduetomolecularaggregationofMC540in ODAmatrix,whichisilluminatedbytheUV–visabsorptionstudy (Fig.S2).Asaresultofspectroscopicstudy,themolecular aggre-gation ofMC540thattookplace atthehigher surfacepressure wasdeterminedbytheincreaseintheabsorbanceoftheMC540 aggregateband.Theexpansionsorchangesinthe–Aisotherm werefollowedbythemolecularareaatseveralsurfacepressures whenODAwasmixedwithMC540atdifferentratios.Themolecular packingofamixedmonolayercouldbedrawnfromtheplotofthe areapermolecule(nm2)versustheconcentrationsofMC540(Fig.

S3).Thesurfaceareawasincreasedbytheincreaseintheratioof MC540/ODAunder40mN/msurfacepressures(Fig.S3).Incontrast, thesurfaceareaathigherpressureswasincreasedup1.0×10−5M andthendecreasedwiththeincreaseoftheMC540concentration. Inthiscase,itisalsopossiblethatthedyemoleculesremain under-neaththeheadgroupsof theODAmonolayer,compressingthe barriersorsomeofthedyesthataresubmergedintothewater subphase,aswellaspreviousexplanationsrelatedtothealteration ofthe–Aisotherm.ThepossibilityofaparticleofMC540 pene-tratingintothesubphasewasfollowedbyafluorescencestudy.The resultsoffluorescencestudyprovedthatMC540moleculesatthe air/waterinterfacedidnotpassintothewatersubphase. Addition-ally,thesurfaceareaatthelowerdyeconcentrationwassharply increased,whilethechangeofthesurfaceareaatthehigherdye concentrationlevelwasgradual(Fig.S3).Thisobservationimplies thatthemolecularaggregationofMC540moleculesintheODA matrixtakeplaceatthehigherconcentrationlevels.Consequently, thestrongelectrostaticinteractionbetweencationicaminogroups ofODAandanionicMC540moleculespreventtheescapeofthedye moleculesintothewatersubphase.Thestronginteractionenables MC540moleculestostandattheair/waterinterface.Thisresult givesaremarkablecontributiontothedyemoleculesbindingto themodelmembranesystems.

3.2. PhotophysicalpropertiesofMC540inchloroformandLBfilm 3.2.1. Absorptionspectroscopy

Theabsorptionpropertiesofdyeinchloroformwereinitially investigated in a wide range of concentration (1.0×10−6 M-1.0× 10−4M) for the determination of the molecular behavior

(4)

Fig.3.NormalizedabsorptionspectraofMC540inchloroform.

absorptionspectraofMC540withrespecttothemonomer max-imum in chloroform atdifferent concentrations. MC540dye in chloroformhastwoabsorptionbandsatlowconcentrationlevels (Fig.3).Theintensebandat570nmbelongstoMC540monomersin chloroform.Thisbandmaximuminchloroformwasreportedtobe 568nmand572nm[18,26].Theotherbandat∼528nmrelatedto H-dimerformationofMC540.Theequilibriumbetweenthe maxi-mumabsorbancevaluesoftwobandsinchloroformwaschanged byincreasingthedyeconcentrationlevels.Theabsorbanceofthe monomerbanddecreasedandthatoftheH-dimerincreasedwith theshiftofthebandmaximumwhenthedyeconcentrationwas increasedto1.0×10−4M.Inthemeantime,theH-dimerband max-imumofMC540inchloroformshiftedtotheblueregion,which appearedat512nmfor1.0×10−5Mandat509nmfor1.0×10−4M. Additionally,theH-dimerbandwasbroadercomparedtothatin thelowerdyeconcentrations.The absorptionbandobserved at theblueregionrevealsthedifferentmolecularbehaviorofMC540 moleculesintheconcentratedsolution.Therearetwoabsorption bandsinthedimerspectrumofMC540inchloroformasreadily seenin Fig.3.Thisis illuminated bythesecond derivativeand deconvolution ofthe absorptionspectrum ofMC540 in chloro-form[27].Thesemethodsareimportantforthedeterminationof theabsolutemaximaofabsorptionbands,whichareparticularly usedforthecharacterizationofoverlappingabsorptionbandsdue totheirintenseaggregation[28].Thesecondderivativespectraof MC540inchloroformdependingonthedyeconcentrations(Fig.S4) demonstratedthatthereweretwobandsobservedat571nmand 528nmat1.0×10−6Mdyeconcentration,whichwereattributedto monomerandH-dimer,respectively.Anewbandappearedinthe blueregionwithincreasingdyeconcentrationcomparedtothat inthediluteddyeconcentration.Themaximumofthisbandwas observedat504nmwhentheotherbandmaximawereconstant. TheabsorptionbandmaximaofMC540inchloroformwere con-firmedbythedeconvolutionspectrumofMC540at1.0×10−4M dyeconcentration(Fig.S5).Thedeconvolutionspectrumcomposed ofthreeabsorptionbandswhicharelocatedat503nm,530nmand 570nm.Thebandpositioninginthedeconvolutionspectrumare compatiblewiththoseinthesecondderivativesanalysisofMC540 absorptionspectrainchloroform.Accordingtothespectral anal-ysisofMC540inchloroform,thebandat∼528nmand∼504nm attributedtoH-dimerandhigheraggregates(H-aggregates)while theabsorptionbandat571nmbelongingtoMC540monomers. H-aggregateformationofMC540iswell-knowninthepresenceofa cationicsurfactantinnonpolarsolvents[29].Additionally,the for-mationofthebandobservedat504nminchloroformcontributes

Fig.4.AbsorptionspectraofmixedLBfilmsofMC540/ODA.

colorchangeofthedyesolution(Fig.S6).Therefore,the spectro-scopiccharacterizationoftheH-aggregateformationofMC540in asolutionisimportantforthebiomedicalapplications.

AbsorptioncharacteristicsofMC540intheLBfilmwere inves-tigated by the preparation of mono- and multilayer films. For this purpose, the mixed LB films of MC540/ODA at a certain (1.0× 10−4M)dyeconcentrationwerefabricatedat30mN/m

sur-facepressure.Fig.4shows theabsorptionspectraof monoand multilayerLBfilmsofMC540/ODAmixture.Itcanbeseenfrom Fig. 4 that there are two intense absorption bands aroused at 530nmand571nmintheabsorptionspectrumoftheone-layer mixed LB film of MC540/ODA. The absorption bandat 530nm revealedtheH-dimerstructureof MC540,while theabsorption bandat571nmattributedtomonomericformofthedyeinLB film.Thesmallred-shiftobservedattheabsorptionbandmaxima of theH-dimerand monomer in the case of themixed mono-layer,withrespecttothoseinchloroformstemsfromtheorganized aggregationofMC540inLBfilm.ThenumberofMC540/ODA lay-erstransferredonto glasssubstratewasincreasedto11.It was concludeduponthecarefulexaminationofFig.4thatabsorption characteristicsofMC540inLBfilmweredrasticallyaffectedbythe mixedlayersbeingtransferredontoglasssurfaces.Thisobservation fortheabsorptionpropertyofMC540impliesthattheinteraction betweenthetransferredlayerstakesplaceandthisalsotriggers themoleculararrangementofthedye.It canalsobeconcluded fromFig.4 that theincrease in thenumber of transferred lay-ersdecreasedtheintensityofthemonomerbandat571whenit increasedH-dimerbandobservedat530nminLBfilms. Addition-ally,themultilayerLBfilmofMC540/ODAresultedintheformation of a newabsorptionshoulder of approximatelyat 470nm.The newabsorptionbandimpliestheformationofhigheraggregates of MC540 in LB film knownas H-aggregate. The clear absorp-tionmaximumofthisbandwasconfirmedbythedeconvolution ofthetotalabsorptionspectrum.Fig.5demonstratedthe decon-volutionabsorptionspectrumofthenine-layermixedLBfilmof MC540/ODA.The analysisresult exposed thepresence of three absorptionbandsintheabsorptionspectrumofnine-layerLBfilm, whichwaslocatedat476nm,532nmand575nm.Inthemultilayer LBfilms,theincreaseinthedyeaggregationisduetothe inter-actionofdyemoleculesinonemonolayerwithODAandMC540 moleculesofanothermonolayer.Asresultsofthesecond deriva-tiveanddeconvolutionspectraofMC540indifferentmedia,the increaseinthedegreeofaggregationcausedablue-shiftin aggre-gatebandmaximumofthedye.Spectroscopicdifferencesandband splittingobservedinaggregatedsystemareexplainedaccording

(5)

Fig.5. Deconvolutionofabsorptionspectraofnine-layerMC540/ODALBfilm. totheexcitontheorybasedonmonomerdipole–dipole interac-tionintheaggregates[30,31].Strongelectroniccouplingbetween thedyemoleculesinaggregateunitscausestheformationof H-aggregates,J-aggregatesanddimers.InthecaseoftheH-aggregate, theabsorptionbandmaximumarisesattheblueregioncompared tothemonomerbandandtheydecreasefluorescencepropertiesof dyemolecules.IncontrasttotheH-aggregate,J-aggregateshavea red-shiftandnarrowabsorptionbandwithrespecttothemonomer andtheyenhancethefluorescenceintensityofthedyes.The infor-mationrelatedtospectroscopicandphotophysicalpropertiesof aggregatestructuresisavailableinliterature[15,30,31].

3.2.2. Fluorescencespectroscopy

In order to determine fluorescence properties of MC540 in chloroformandLBfilm,steady-statefluorescencespectraofthe sampleswerestudiedatthe536nmexcitationwavelength.The presenceof intensenon-fluorescentH-aggregation ofMC540in chloroformdrasticallyinfluencesthefluorescentpropertiesofthe dye.Therefore,thecharacterizationoffluorescencepropertiesof dyeinchloroformandLBfilmareessentialfortechnological appli-cations.ItwasreportedthatthefluorescencemaximumofMC540 in chloroform was formed at 589±1nm [18,26]. The fluores-cencepropertiesof MC540ina wide concentrationrangefrom 1.0×10−6Mto1.0×10−4Mwereexamined.Fig.6showsthe fluo-rescencespectraofMC540inchloroform.Oneintensefluorescence

Fig.6. FluorescencespectraofMC540atdifferentconcentrationinchloroform.

Fig.7.NormalizedfluorescencespectraofmixedLBfilmsofMC540/ODA.

bandat583nmwasobservedatdilutedyeconcentrationwhichis attributedtothemonomericformofMC540moleculesin chlo-roform. The fluorescence maximum and intensityof MC540in chloroformwasalteredwithanincreaseinthedyeconcentration. Forexample,thefluorescencemaximawereobservedat588nm for5.0×10−5Mand593nmfor1.0×10−4Mandthefluorescence intensitywasstronglyquenched atconcentrations greaterthan 1.0×10−5M.Thefluorescencequenchingandred-shiftinthe fluo-rescencespectrumofMC540dependingonthedyeconcentrationis duetotheintenseaggregationandchangingpolarity[21,28,29,32]. Additionally,thefluorescencequenchingisattributedtothe reab-sorptioneffect,which canbeobserved intheconcentrated dye solution[33].AlthoughtheH-aggregateofMC540isobservedat concentrationsgreaterthan5.0×10−6M(Fig.3),theincreasein thefluorescenceintensityofMC540canbeexplainedbyincreasing theamountoffluorescentMC540monomers(Fig.S7).Incontrast, thestrongquenchingobservedat1.0×10−4MofMC540in partic-ularindicatesthepresenceofthereabsorptionprocessaswellas intenseaggregation.

The normalized fluorescence spectra of mixed LB films of MC540/ODAwerepreviouslypresentedinFig.7.AsshowninFig.7, thefluorescencebandmaximumofone-layermixedLBfilmwas observedat576nm.Thefluorescencebandascribedtomonomeric MC540intheLBfilm.ThefluorescencebandmaximumofMC540 intheLBfilmisblue-shiftedincomparisontothatinchloroform. Theblue-shiftcanberelatedtothevibrationalenergylevelsinthe groundstateoftheMC540moleculesbyvaryingthelocal envi-ronmentaroundthedyemolecules[28].Theretentionofthedye moleculesintheLBmatrixsupportsthisphenomenon.The rela-tivelyhigherrigidityofthedyemoleculesprovided bythelocal environmentaroundMC540moleculesconstrictsthefreedomof rotation.Thesignificantdifferencesinthefluorescencespectrum ofMC540intheLBfilmwerenotobservedbyanincreaseinthe numberoflayersonthesubstrateandthereweresmalldifferences intheintensitiesofthefluorescencespectra.Additionally,the flu-orescencebandmaximumwasred-shiftedfrom576nmto578nm withincreaseinthenumberoflayer.Thesmallred-shiftinthe fluo-rescencebandmaximumcanbeascribedtomolecularaggregation becauseincreasingthenumberoflayersenhancesaggregationof MC540intheLBfilm(Fig.4).

3.2.3. Time-resolvedfluorescencespectroscopy

To determinethe fluorescencelifetime ofMC540 in chloro-form and the one-layer LB film, fluorescence decay spectrum of the samples were recorded upon excitation at 536nm. The

(6)

Table1

ThespectroscopicdataandfluorescencelifetimevaluesofMC540inchloroformandLBfilm.

[MC540] abs.max.(nm) fluo.max.(nm) 1(ns) 2(ns) 2 Inchloroform 1.0× 10−6M 571a/528b/– 583 1.20 1.00 1.0× 10−5M 571a/528b/504c 588 1.40 0.95 1.0×10−4M 571a/528b/504c 593 1.60 1.10 InLBfilm One-layer 571a/531b/– 576 0.50 2.67 1.10 Nine-layer 571a/531b/476c 578 aMonomer. b H-dimer. c H-aggregate.

fluorescence lifetime values were calculated by using specific fit-softwareofPTI(PhotonTechnologyInternational).The fluores-cencedecayspectraofMC540withexponentialfitinchloroform were presented in Fig. 8. The exponential analysesof the flu-orescence decays of MC540 in chloroform were fitted to the single-exponentialdecayswiththeacceptablestatistical2value.

The obtained single-exponential decay indicates homogeneous environmentaroundthedyemolecules.Asaresultofdecay analy-sis,thelifetimevalueofdilutedMC540(1.0×10−6M)inchloroform was1.20ns.ThelifetimeofMC540inchloroformwasdependenton theincreaseindyeconcentrationandthelifetimesat1.0×10−5M and1.0×10−4Mdyeconcentrationwerefoundtobe1.40nsand 1.60ns, respectively. The value of thelifetime for 1.0×10−4M MC540 in chloroform was markedly greater than the lifetime observedfor MC540ata dilutedconcentration.Theincrease in the lifetime of dye molecules is explained by the presence of thereabsorptionprocesseswhilenon-fluorescentH-aggregatewas stronglyobserved[34].Iftherewasnoreabsorptionprocessinthe system,it would beobservedasa decreasein thefluorescence lifetimeofconcentratedMC540comparedtothatofthediluted oneduetothefactthatH-aggregatesandH-dimerquench fluo-rescenceintensityanddecreasefluorescencelifetimeduetotheir fastinternalconversionprocess,inwhichtheradiativetransition isforbidden[28].

IntheLBfilm,thefluorescencedecayofMC540wasfoundtobe bi-exponential(Fig.9).Thebi-exponentialdecaywasinterpreted bytheinhomogeneousdistributionofthedyemoleculesandthe factthattheprobeencountersdifferentenvironmentsdueto dif-fusionwithinitslifetime.Accordingtothebi-exponentialanalysis ofthefluorescencedecays,fluorescencelifetimevaluesofMC540 intheLBfilmwerecalculatedas1=0.50nsand2=2.67ns.The

longlifetimecomponentwasassignedtofreeMC540monomers

Fig.8.FluorescencedecayspectraofMC540withexponentialfitsinchloroform.

intheLBfilmwhenshortlifetimesresultedfromdifferent orien-tationofthedyemonomers.Additionally,theshortlifetimemight beduetotheexcitationenergytransferredtothenon-fluorescent aggregatesresultinginadecreaseinfluorescencelifetime[14,28]. ComparisonoffluorescencelifetimesofMC540moleculesin chlo-roformandLBfilmrevealsthatthefluorescencelifetimeintheLBis increasedduetoamorerigidenvironmentforthedyemoleculesin theLBmatrix.Thespectroscopicresultsandfluorescencelifetimes ofMC540indifferentmediaweresummarizedinTable1. 3.3. AFMobservationsofone-layerLBfilmofMC540/ODA

AFMisausefultechniqueforgaining informationonsurface morphologyofthethinfilms,especiallyfortheflatLBfilms[34]. One-layerofthemixedLBfilmofMC540/ODAwastransferredonto hydrophilicglasssurfacetotakeitsAFMimages.Fig.10showed theAFMimageofY-typemixedLBfilmofMC540/ODAwithphase imageand3Dimages.AFMimagedepictedthattheMC540/ODA nanoclusters were formed in LB film. These nanoclusters are nearlythesamesizesandhaveuniformdistributiononthe sur-face.Thedimension(width×length×height)ofthenanoclusters weredeterminedasanaveragevalueof300nm×500nm×10nm for MC540/ODA mixture by examination of AFM images (Fig. S4). Additionally, the phase and 3D AFM images (Fig. 10 and Fig.S8) reveal thatthe stablenanoclusters are actuallyformed byagglomerationofseveralsmallernanoclusterswhose dimen-sion is 300nm×150nm×10nm. Since the morphology of LB filmdependsonthefilmmaterials,thenonamphiphilicdopant moleculesaffectthemonolayershape ofamphiphilicmolecules suchasODA,fattyacidand phospholipidswhich mayformbig

Fig.9.Fluorescencedecayspectrumofone-layermixedLBfilmofMC540/ODAwith exponentialfits.

(7)

Fig.10. AFMimage(5.0␮m×5.0␮m)ofone-layermixedLBfilmofMC540/ODA(a)and3D-AFMimages(b).

clustersatair/waterinterface.Inthisregard,itisreportedthatthe differentdomainmorphologieshavebeenobservedinthemixedLB filmofmethyleneblue(MB)mixedwithdimyristoyl-phosphatidic acid(DMPA)asafunctionofMBsurfacedensity[12].AFMstudyhas demonstratedthecrystallinedomainstructuresofN,N-bis (2,6-dimethylphenyl)-3,4,9,10-perylenetetracarboxylicdiimide(DMPI) mixedwithstearicacid(SA)in themixedLBfilm[35].In addi-tion,wehaverecentlyshowedthemixedmonolayerofpyronin dyes/SAmixtureinLBfilmhasasurfacemorphologiesconsisting ofnanoclusters[15].Itisconcludedthatthemorphologicfindings ofMC540/ODA-LBfilmarecompatible withtheexplanationsin thesurfacepressure–area(–A)isothermsstudiesandthe spec-troscopicresults.Theformationofthenanoclustersisattributed toself-assembleddyemoleculesinODAmatrixandthecomplex formationofdyemoleculesinteractedwithODA.

4. Conclusions

Thisstudyshows that mixed monolayerof MC540/ODAcan bereadilypreparedonpurewatersubphasewhileMC540cannot merelyform.TheformationofthemixedmonolayerofMC540/ODA attheair/waterinterfacewasconfirmedby–Aisothermstudies. ThestronginteractionbetweenMC540and ODAforma water-insolublecomplexandproducethefloatinglayersattheair/water interface. The specific area per molecule obtained from –A isothermsrevealedthattheMC540dyemoleculesretainedamong

thearrangedODAmoleculesattheair/waterinterface. Addition-ally,theplateauformationathighsurfacepressurewasobserved due to molecularaggregationin the higher dyeconcentrations atthemixedmonolayer.OpticalpropertiesofMC540in chloro-formand LBfilmwerestudiedspectroscopicallyand theprobe environmentaffectedthephotophysicalpropertiesofMC540. H-aggregatesofMC540inchloroformwereobservedbyincreasing thedyeconcentration,whilethemonomericdyeindiluteddye concentrationwaspredominant.TheintenseH-typeaggregation andreabsorption processesobservedinchloroform inducedthe strongquenchinginthefluorescenceintensityofMC540aswellas thestrongred-shiftingoffluorescencemaximumofthedye.Inthe LBfilm,theincreaseinthenumberoflayersbroughtabout form-ingthemolecularaggregationstructureofMC540.Theabsorption spectraofMC540/ODAdemonstratedthatthemonomerand H-dimerformationofMC540wereavailableinone-layermixedLB filmwhenH-aggregatesofthedyewereformedinthemultilayer mixedLBfilm.OurresultsconcludedthattheaggregationofMC540 iseasilycontrolledbythenumberoflayers.Themolecular organi-zationbasedonthenumberoftransferredlayerscausedtothesmall changingintheintensityandmaximumoffluorescencespectrum ofMC540intheLBfilm.Accordingtotime-resolvedstudies,the flu-orescencedecayspectraofLBfilmwerebi-exponentialwhenthe decaysinchloroformindicatedcompliancewithmono-exponential kinetic.Additionally,MC540moleculesembeddedinODAmatrix increasedthefluorescencelifetime.TheAFMimageofone-layer

(8)

mixedLBfilmshowedasurfacecoveredwithnanoclusterswhich areclosetoequalsizeandhaveuniformdistribution.Consequently, thisstudyisanexcellentexamplerelatedtothequalityofmixed monolayerapplicationsofthefunctionaldyemolecules,whichare incapableofformingamonolayerbythemselvesattheair/water interface.Ourresultscontributetotheunderstandingofthestrong interactionbetweenMC540andODAat theair/waterinterface, wheretheamountsofMC540canmodifythefilmpropertiesand revealhowtobuildthevariousopticalpropertiesofMC540thin films.

Acknowledgment

TheauthorsthanktheResearchFundofAtatürkUniversityfor thefinancialsupportofthiswork.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. colsurfa.2012.08.067.

References

[1]A.K.Dutta,Spectroscopicstudiesofnonamphiphiliccoroneneassembledin Langmuir–BlodgettFilms:aggregation-inducedreabsorptioneffects,Langmuir 14(1998)3036–3040.

[2]V.M.Martinez,F.LopezArbeloa,J.BanuelosPrieto,T.ArbeloaLopez,I.Lopez Arbeloa,Characterizationofsupportedsolidthinfilmsoflaponiteclay. Inter-calationofRhodamine6Glaserdye,Langmuir20(2004)5709–5717. [3]N.Kometani,H.Nakajima,K.Asami,Y.Yonezawa,O.Kajimoto,Luminescence

propertiesofthemixedJ-aggregateoftwokindsofcyaninedyesin layer-by-layeralternateassemblies,J.Phys.Chem.B104(2000)9630–9637. [4] A.Ulman,Anintroductiontoultrathinorganicfilms:fromLangmuir–Blodgett

filmstoself-assemblies,AcademicPress,NewYork,1991.

[5]M.C.Petty,Langmuir–BlodgettFilms:AnIntroduction,CambridgeUniversity Press,Cambridge,U.K.,1996.

[6] Y.Cheng,W.Song,J.Cheng,B.Zhao,Studiesonthestructureandmiscibilityof mixedLangmuir–Blodgettfilmsofadouble-armeddibenzo-18-crown-6ether withstearicacid,J.ColloidInterfaceSci.307(2007)447–454.

[7]S.Biswas,D.Bhattacharjee,R.K.Nath,S.A.Hussain,Formationofcomplex LangmuirandLangmuir–Blodgettfilmsofwatersolublerosebengal,J.Colloid InterfaceSci.311(2007)361–367.

[8]H. Tachibana, Y. Yamanaka, M.Matsumoto, Temperature effect on pho-tochromicreactioninLangmuir–Blodgettfilmsofamphiphilicspiropyranand theirmorphologicalchanges,J.Phys.Chem.B105(2001)10282–10286. [9] A.K.Dutta,Aggregation-inducedreabsorptionofp-quaterphenylassembled

inlangmuir-blodgettfilms:afluorescencestudy,J.Phys.Chem.99(1995) 14758–14763.

[10] H.Hada,R.Hanawa,A.Haraguchi,Y.Yonezawa,PreparationoftheJ-aggregate ofcyaninedyesbymeansoftheLangmuir–Blodgetttechnique,J.Phys.Chem. 89(1985)560–562.

[11]Z.Jia,G.ShwuTyng,A.HuiLing,M.P.Srinivasan,Langmuir–Blodgettfilm fabri-catedwithsolubleimidizedpolyimide,ColloidsandSurfacesA:Physicochem. Eng.Aspects257-258(2005)451–456.

[12]J.J. Giner-Casares, G. De Miguel, M.Perez-Morales, M.T.Martin-Romero, L. Camacho, E. Munoz,Effect of themolecular methylene blue aggrega-tion on the mesoscopic domain morphologyin mixed monolayers with dimyristoyl–phosphatidicacid,J.Phys.Chem.C113(2009)5711–5720. [13]A.K. Dutta, Characterization of aggregates of nonamphiphilic anthracene

assembledinultrathinsupramolecularLangmuir–Blodgettfilms,Langmuir13 (1997)5678–5684.

[14]I.Prieto,A.J.Fernandez,E.Munoz,M.T.Martin,L.Camacho,Langmuir–Blodgett filmscontainingwater-solublemolecules:themethyleneblue-dimyristoyl phosphatidicacidsystem,ThinSolidFilms284(1996)162–165.

[15]K.Meral,H.Y.Erbil,Y.Onganer,Aspectroscopicstudyofwater-solublepyronin BandpyroninYinLangmuir–Blodgettfilmsmixedwithstearicacid,Applied SurfaceSci.258(2011)1605–1612.

[16]R.Sasai,N.Iyi,T.Fujita,F.L.Arbeloa,V.M.Martinez,K.Takagi,H.Itoh, Lumines-cencepropertiesofRhodamine6Gintercalatedinsurfactant/clayhybridthin solidfilms,Langmuir20(2004)4715–4719.

[17] P. Vivo, T. Vuorinen, V. Chukharev, A. Tolkki, K. Kaunisto, P. Iha-lainen,J.Peltonen,H.Lemmetyinen,Multicomponentmolecularlycontrolled Langmuir–Blodgett systemsfor organicphotovoltaicapplications, J.Phys. Chem.C114(2010)8559–8567.

[18] B.Cunderlikova,L.Sikurova,Solventeffectsonphotophysicalpropertiesof merocyanine540,Chem.Phys.263(2001)415–422.

[19] M. Toprak, B.M. Aydın, M. Arık, M.Y. Onganer, Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes, J. Lumin. 131 (2011) 2286–2289.

[20]K.S.Gulliya,S.Pervaiz,R.M.Dowben,J.L.Matthews,Tumor-cellspecificdark cytotoxicityoflight-exposedmerocyanine-540implicationsforsystemic ther-apywithoutlight,Photochem.Photobiol.52(4)(1990)831–838.

[21]D.Mandal,S.KumarPal,D.Sukul,K.Bhattacharyya,Photophysicalprocesses ofMerocyanine540insolutionsandinorganizedmedia,J.Phys.Chem.A103 (1999)8156–8159.

[22]B.M.Aydın,M.Acar,M.Arık,Y.Onganer,Thefluorescenceresonanceenergy transferbetweendyecompoundsinmicellarmedia,DyesPigments81(2009) 156–160.

[23]S.Kuroda,J-aggregationanditscharacterizationinLangmuir–Blodgettfilmsof merocyaninedyes,Adv.ColloidInterfaceSci.111(2004)181–209.

[24]K. Ray, H. Nakahara, Adsorption of sulforhodamine dyes in cationic Langmuir–Blodgettfilms:spectroscopicandstructuralstudies,J.Phys.Chem. B106(1)(2002)92–100.

[25]D. Qian, H. Liu, J. Jiang, Monolayers and Langmuir–Blodgett films of (phthalocyaninato)(tetra-4-pyridylporphyrinato)ceriumdouble-decker hete-rocomplex,ColloidsandSurfacesA:Physicochem.Eng.Aspects163(2000) 191–197.

[26]S.Basu,S.De,B.B.Bhowmik,PhotophysicalstudiesofMerocyanine540dyein aqueousmicellardispersionsofdifferentsurfactantsandindifferentsolvents, Spectrochim.ActaA66(2007)1255–1260.

[27] H.H.Perkampus,UV-VisSpectroscopyanditsApplications,Springer-Verlag, Berlin,Heidelberg,1992.

[28]K.Meral,N.Yılmaz,M.Kaya,A.Tabak,Y.Onganer,Themolecular aggrega-tionofpyroninYinnaturalbentoniteclaysuspension,J.Lumin.131(2011) 2121–2127.

[29] P.Bilski,T.McDevitt,C.F.Chignell,Merocyanine540solubilizedasanion pairwithcationicsurfactantinnonpolarsolvents:spectralandphotochemical properties,Photochem.Photobiol.69(6)(1999)671–676.

[30] V.M.Martinez,F.L.Arbeloa,J.B.Prieto,T.A.Lopez,I.L.Arbeloa,Characterization ofRhodamine6Gaggregatesintercalatedinsolidthinfilmsoflaponiteclay.1. Absorptionspectroscopy,J.Phys.Chem.B108(2004)20030–20037. [31]V.M.Martinez,F.L.Arbeloa,J.B.Prieto,I.L.Arbeloa,Characterizationof

Rho-damine6Gaggregatesintercalatedinsolidthinfilmsoflaponiteclay.2. Fluorescencespectroscopy,J.Phys.Chem.B109(2005)7443–7450. [32]A.C.Khazraji,S.Hotchandani,S.Das,P.V.Kamat,Controllingdye

(Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly

approachforenhancingtheefficiencyofphotosensitization,J.Phys.Chem.B 103(1999)4693–4700.

[33]F.D.Monte,D.Levy,FormationoffluorescentRhodamineBJ-dimersinsol–gel glassesinducedbytheadsorptiongeometryonthesilicasurface,J.Phys.Chem. B102(1998)8036–8041.

[34]G.Zhang,X.Zhai,M.Liu,Y.Tang,Y.Zhang,Regulationofaggregationand mor-phologyofcyaninedyesonmonolayersviageminiamphiphiles,J.Phys.Chem. B111(2007)9301–9308.

[35] A.K. Dutta, P.Vanoppen, K. Jeuris,P.C.M. Grim,D. Pevenage,C. Salesse, DeF.C.Schryver,Spectroscopic,AFM,andNSOMStudiesof3Dcrystallites inmixedLangmuir–BlodgettfilmsofN,N

-bis(2,6-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic diimide andstearic acid,Langmuir15(2) (1999) 607–612.

Şekil

Fig. 1. Chemical structures of merocyanine 540 (MC540) and octadecylamine (ODA).
Fig. 2. Surface pressure–area (–A) isotherms of pristine ODA and the mixture of MC540/ODA at different ratio.
Fig. 4. Absorption spectra of mixed LB films of MC540/ODA.
Fig. 7. Normalized fluorescence spectra of mixed LB films of MC540/ODA.
+3

Referanslar

Benzer Belgeler

Teslim alınmayan bagajın ziyaı veya hasara uğraması halinde sorumluluk Türk Sivil Havacılık Kanununda düzenlenmemiş oldu- ğundan, bu hususa ilişkin kurallar,

Sucuklarda oluşan en önemli biyojen aminler Putresin, Histamin, Kadaverin, Tiramin, Triptofan, β-feniletilamin, Spermidin ve Spermin’dir (Shaply 1996).. Gençcelep

Ayrıca sınav kaygısı yüksek olan bireylerin düşük olanlara göre ders çalışma alışkanlıklarının daha yetersiz düzeyde olduğu da tespit edilmiştir.. Bu

Daha da şaşırtıcı olan, balonun hassas bir şekilde nesneleri tükürebilmesidir; öyle ki, bu tarzda bir kavrayıcıya sahip olan bir robot kol basketbol potasına basketi

In regard to data availability, different than the majority of the reviewer recommendation ap- proaches, where the dataset requirement is limited to either commit history or

A radiographic examination revealed a calcified lesion on the dorsomedial part of the distal phalanx continuing along the underlying bone [Figure 1b].. The mass was

Almanlar, genellik­ le: «Siz, bir Türk kadını olarak nasıl oldu da bütün bunlan ba­ şardınız?!» merakı ve yazarla­ rımızı, Türkler için kafalarında

The crystal sizes of TiO 2 QDs for different acid:TiO 2 ratios and TiO 2 QDs in MWCNT-TiO 2 QDs composite film are calculated.. with Scherrer’s formula according to the