• Sonuç bulunamadı

APPROXIMATION BY A GENERALIZED SZASZ TYPE OPERATOR FOR FUNCTIONS OF TWO VARIABLES

N/A
N/A
Protected

Academic year: 2021

Share "APPROXIMATION BY A GENERALIZED SZASZ TYPE OPERATOR FOR FUNCTIONS OF TWO VARIABLES"

Copied!
16
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 15 (2014), No 2, pp. 345-359 DOI: 10.18514/MMN.2014.666

Approximation by a generalized Szász type

operator for functions of two variables

Nursel Çetin, Sevilay Kirci Serenbay, and Çi§dem

(2)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 15 (2014), No. 2, pp. 345–359

APPROXIMATION BY A GENERALIZED SZ ´ASZ TYPE

OPERATOR FOR FUNCTIONS OF TWO VARIABLES

NURSEL C¸ ET˙IN, SEVILAY KIRCI SERENBAY, AND C¸ I ˘GDEM ATAKUT Received 05 December, 2012

Abstract. In the present paper, we define a new Sz´asz-Mirakjan type operator in exponential weighted spaces for functions of two variables having exponential growth at infinity using a method given by Jakimovski-Leviatan. This operator is a generalization of two variables of an operator defined by A. Ciupa [1]. In this study, we investigate approximation properties and also estimate the rate of convergence for this new operator.

2010 Mathematics Subject Classification: 41A25;41A36

Keywords: linear positive operator, Jakimovski-Leviatan operator, weighted space, modulus of continuity, rate of convergence

1. INTRODUCTION

For a real function of real variable f W Œ0; 1/ ! R, the Sz´asz-Mirakjan operators are defined in [2] as Sn.fI x/ D e nx 1 X j D0 .nx/j j Š f . j n/ , x2 Œ0; 1/ ;

where the convergence of Sn.fI x/ to f .x/ under the exponential growth condition

on f that is jf .x/j  CeBx; for all x2 Œ0; 1/ ; with C; B > 0 was proved. Then, various modifications and further properties of the Sz´asz-Mirakjan operators have been studied intensively by many authors (e.g. [1,3–9]).

In [4], A. Jakimovski and D. Leviatan investigated approximation properties of a generalization of the Sz´asz-Mirakjan operators which are stated as follows:

Let g.´/D P1

nD0

an´nbe an analytic function in the diskj´j < R; R > 1 and

sup-pose g.1/¤ 0: Define the Appell polynomials pk.x/D pk.x; g/ .k 0/ by

g.u/euxD 1 X kD0 pk.x/uk: c

(3)

For each function f defined in Œ0;1/ ; they considered the operators Lndefined by Ln.fI x/ D e nx g.1/ 1 X kD0 pk.nx/f  k n  ; n > 0

and also the authors obtained several approximation properties of these operators. A. Ciupa [1] introduced a Sz´asz-Mirakjan type operator that is a generalization of the operator defined by M. Lesniewicz and L. Rempulska [5] using the method given by Jakimovski-Leviatan. A. Ciupa studied the properties of approximation for functions of one variable in the space of continuous functions having an exponential growth at infinity.

In this paper, inspired by [1], for each function f defined in Œ0;1/  Œ0; 1/ ; we define the operators Ln;mby

Ln;m.fI x; y/ D e nxe my .g .1//2 1 X kD0 1 X j D0 pk.nx/ pj.my/ f  k n; j m  where g .u1/ eu1xg .u2/ eu2yD 1 X kD0 pk.x/ uk1 1 X j D0 pj.y/ uj2:

Now, we consider the function g .x/D P1

kD0

x2kC1

.2kC 1/Š D sinh x where sinh x is the hyperbolic function of x and let pkbe the polynomials generated by relation

sinh u1sinh .u1x/ sinh u2sinh .u2y/D 1 X kD0 1 X j D0 p2k.x/ p2j.y/ u2k1 u 2j 2 :

Using the following equalities sinh u1sinh .u1x/D 1 2 1 X kD0 .1C x/2k .1 x/2k .2k/Š u 2k 1 sinh u2sinh .u2y/D 1 2 1 X j D0 .1C y/2j .1 y/2j .2j /Š u 2j 2 ; we have p2k.x/D .1C x/2k .1 x/2k 2 .2k/Š , p2j.y/D .1C y/2j .1 y/2j 2 .2j /Š : Let C R12 be the set of all real-valued continuous functions of two variables on R12WD f.x; y/ W x  1; y  1g :

(4)

For p; q > 0 and .x; y/2 R12, we define

wp;q.x; y/D wp.x/ wq.y/D e pxe qy

Cp;qD˚f 2 C R21 W wp;qf is uniformly continuous and bounded on R12

kf kp;qD sup

.x;y/2R2 1

wp.x/ wq.y/jf .x; y/j

and also for h; k 0, ı  0 , f 2 Cp;q; the first order modulus of continuity given by

! f; Cp;qI ı D sup 0h;kı h;kf p;q where h;kf .x; y/D f .x C h; y C k/ f .x; y/ :

In this study, in the space Cp;q; p; q > 0; we introduce the following positive linear

operators Pn;m.fI x; y/ D

1

.sinh 1/2sinh .nx/ sinh .my/

1 X kD0 1 X j D0 p2k.nx/ p2j.my/ f  2k n ; 2j m  (1) n; m2 N , .x; y/ 2 R21and investigate the theorems on convergence of Pn;m.fI x; y/

operators to functions of two variables. We also estimate the rate of convergence for this new operator by using the modulus of continuity.

2. AUXILIARYRESULTS

In this section, we will give some useful results in order to study the convergence of the sequence Pn;mf to the function f 2 Cp;q:

Lemma 1. If.x; y/2 R21andn; m2 N; we have Pn;m e0;0I x; y D 1 Pn;m e1;0I x; y D 1 ncoth 1C x coth .nx/ Pn;m e0;1I x; y D 1

mcoth 1C y coth .my/ Pn;m e1;02 C e0;12 I x; y D x2C y2 C  1 n2C 1 m2  .1C coth 1/ C .1 C 2 coth 1/x ncoth .nx/C y mcoth .my/  whereei;j.t1; t2/D t1it j

(5)

Lemma 2. If.x; y/2 R21; p; q > 0 and n; m2 N; then we have

Pn;m ept1I x; y D

1

sinh 1 sinh .nx/sinh  ep=nsinh  nxep=n Pn;m eqt2I x; y D 1

sinh 1 sinh .my/sinh  eq=msinh  myeq=m Pn;m t1ept1I x; y D ep=n n 1 sinh 1 sinh .nx/ n cosh  ep=n  sinh  nxep=n  C nx sinhep=ncoshnxep=no

Pn;m t2eqt2I x; y D

eq=m m

1 sinh 1 sinh .my/

n cosh  eq=msinh  myeq=m C my sinheq=mcoshmyeq=mo

Pn;m t12ept1I x; y D 1 sinh 1 sinh .nx/ ( e2p=n n2 sinh  ep=nsinh  nxep=n C2x n e 2p=n cosh  ep=ncosh  nxep=nC x2e2p=nsinh  ep=nsinh  nxep=n C 1 n2e p=n cosh  ep=nsinh.nxep=n/Cx ne p=n sinh  ep=ncosh  nxep=n  Pn;m t22eqt2I x; y D 1 sinh 1 sinh .my/

( e2q=m m2 sinh  eq=msinh  myeq=m C2y me

2q=mcosheq=mcoshmyeq=m

C y2e2q=msinheq=msinhmyeq=m C 1 m2e q=m cosh  eq=msinh.myeq=m/Cy me q=m sinh  eq=mcosh  myeq=m  : Lemma 3. For all.x; y/2 R21andn; m2 N; we have

Pn;m  .t1 x/2ept1I x; y  D 1 sinh 1 sinh nx  x2sinh  ep=nsinh  nxep=n hep=n 1i2 C sinhnxep=n " e2p=n n2 sinh  ep=nCe p=n n2 cosh  ep=n 2x n e p=n cosh  ep=n  C coshnxep=n 2x n e 2p=n cosh  ep=n

(6)

C x ne

p=nsinhep=ni 2x2ep=nsinhep=ne nxep=no Pn;m  .t2 y/2eqt2I x; y  D 1 sinh 1 sinh my  y2sinh  eq=msinh  myeq=m heq=m 1i 2 C sinhmyeq=m " e2q=m m2 sinh  eq=mCe q=m m2 cosh  eq=m 2y me q=mcosheq=m  C coshmyeq=m 2y me 2q=mcosheq=m C y me q=m sinh  eq=m i 2y2eq=msinh  eq=m  e myeq=m o : Lemma 4. For all.x; y/2 R21andn; m2 N; we have

Pn;m  .t1 x/2I x; y  3 .xC 1/ n Pn;m  .t2 y/2I x; y  3 .ymC 1/: Proof. By Lemma1, we get

Pn;m  .t1 x/2I x; y  D .coth .nx/ 1/ 2x 1 ncoth 1 x  Cx ncoth nx C 1 n2.1C coth 1/ :

Thus for .x; y/2 R12; we can write Pn;m  .t1 x/2I x; y  x 1 n C 2x n C 3 n2  3 .xC 1/ n : Similarly, we can easily obtain

Pn;m  .t2 y/2I x; y  3 .yC 1/ m :  Lemma 5. Letp; q > 0 , r > p; s > q and let n0D n0.p; r/ ; m0D m0.q; s/ be

fixed natural numbers such thatn0> p= .ln r ln p/ and m0> q= .ln s ln q/. Then

there exist positive constantsCp;r andCq;sdepending only onp; r and q; s such that

wr.x/ Pn;m  .t1 x/2ept1I x; y   Cp;r sinh  ep=n sinh 1 xC 2 n

(7)

ws.y/ Pn;m  .t2 y/2eqt2I x; y   Cq;s sinh  eq=m  sinh 1 yC 2 m for all.x; y/2 R21andn n0; m m0:

Proof. Firstly, for m; n2 N; we consider the sequence of real numbers .pn/ and

.qm/ ; pnD n  ep=nC 1 (2.1) qmD m  eq=mC 1 (2.2) which are decreasing and lim

n!1pnD p; limm!1qmD q. Thus

p < pn< pep=n pep (2.3)

q < qm< qeq=m qeq (2.4)

Since n0> p= .ln r ln p/ ; we have ep=n0< eln.r=p/D r=p and r > pep=n0> pn0>

pn for n n0: Also, because m0> q= .ln s ln q/ ; we get eq=m0 < eln.s=q/D s=q

and s > qeq=m0> qm0> qmfor m m0:

Applying2.1, we obtain sinh



nxep=n.sinh nx/ 1 2epnx

coshnxep=n.sinh nx/ 1 epnx (2.5) x2.sinh nx/ 1x

n: Also using2.2, we get

sinh 

myeq=m.sinh my/ 1 2eqmy

coshmyeq=m.sinh my/ 1 eqmy (2.6) y2.sinh my/ 1 y

m:

By writing the last inequalities in Lemma2, we get respectively Pn;m ept1I x; y  sinh  ep=n sinh 1 2e pnx Pn;m eqt2I x; y  sinh  eq=m sinh 1 2e qmy

(8)

and Pn;m ept1I x; y r sup sinh  ep=n sinh 1 2e .pn r/x Pn;m eqt2I x; y  s sup sinh  eq=m sinh 1 2e .qm s/y:

Taking into account Lemma3and2.5, we obtain Pn;m  .t1 x/2ept1I x; y   1 sinh 1  2x2epnxp 2 n n2sinh  ep=nC2x n sinh  ep=nepn nxep=n C 2 n2e pnxe2p=n sinh  ep=nC 2 n2e pnxep=n cosh  ep=n 4x n e pnxep=n cosh  ep=nC2x n e pnxe2p=n cosh  ep=n Cx ne pnxep=n sinh  ep=no  sinh  ep=n sinh 1  2x2p 2 n n2e pnx C2x n e p=n C 2 n2e pnx e2p=n Cn22e pnxep=ncothep=n C2xn epnxe2p=ncothep=n Cx ne pnxep=no Since coth 

ep=n coth 1 < 2 and ep=n< ep; we can write Pn;m  .t1 x/2ept1I x; y   sinh  ep=n sinh 1  2x2 n2 p 2 nepnxC 2x n e p C 2 n2e pnxe2p C 4 n2e pnxepC4x n e pnxe2pCx ne pnxep  : Say wr.x/D e rx: Thus, we get

wr.x/ Pn;m  .t1 x/2ept1I x; y   sinh  ep=n sinh 1  2x n e .pn r/x x np 2 nC ep 2 C 2e 2p  C2x n e p rx C 2 n2e .pn r/x e2p C 2ep  :

(9)

Now, by using2.1and inequalities x np 2 n< x np 2e2p=n< xp2e2p; it follows wr.x/ Pn;m  .t1 x/2ept1I x; y   sinhep=n sinh 1  2x n e .pn r/x  xp2e2pCe p 2 C 2e 2p  C2x n e p C 2 n2e .pn r/x e2p C 2ep  :

Also, we have r pn r pn0> 0 and xe .r pn/x xe .r pn0/x  1= .r pn0/

for n n0: Applying e.pn r/x< 1; we obtain

wr.x/ Pn;m  .t1 x/2ept1I x; y   sinh  ep=n sinh 1  2 n 1 r pn0  xp2e2pC 2e2pCe p 2  C2x n e p C 2 n2 e 2p C 2ep   sinh  ep=n sinh 1  2x n e2p r pn0 p2C2 n 1 r pn0  2e2pCe p 2  C2x n e p C 2 n2 e 2p C 2ep   Cp;r sinh  ep=n sinh 1 xC 2 n :

Similarly as above, applying 2.6 to Lemma 3, by simple calculations we easily obtain the required inequality

ws.y/ Pn;m  .t2 y/2eqt2I x; y   Cq;s sinheq=m sinh 1 yC 2 m :  Lemma 6. Ifp; q > 0 , r > p; s > q and n0D n0.p; r/ ; m0D m0.q; s/ be fixed

natural numbers such that n0> p= .ln r ln p/ ; m0 > q= .ln s ln q/ and if f 2

Cp;q; then we have

kPn;m.fI x; y/kr;s 2 kf kp;q

sinh.ep/ sinh.eq/ .sinh 1/2 :

(10)

Proof. By (1), we can write e rxe syjPn;m.fI x; y/j

D e

rxe sy

.sinh 1/2sinh .nx/ sinh .my/ ˇ ˇ ˇ ˇ ˇ ˇ 1 X kD0 1 X j D0 p2k.nx/ p2j.my/ e 2kp n e 2j q m f  2kn ;2j m  e2kpn e 2j q m ˇ ˇ ˇ ˇ : Sincekf kp;q D sup .x;y/2R21

e pxe qyjf .x; y/j ; it follows that e rxe syjPn;m.fI x; y/j

 e

rxe sy

.sinh 1/2sinh .nx/ sinh .my/kf kp;q

1 X kD0 1 X j D0 p2k.nx/ p2j.my/ e 2kp n e 2j q m D e rxe sykf kp;qPn;m ept1I x; y Pn;m eqt2I x; y D e rxe sykf kp;q

sinhep=nsinhnxep=n sinh 1 sinh .nx/

sinheq=msinhmyeq=m sinh 1 sinh .my/ : Using the notations in Lemma5, the inequalities (2.5) and (2.6), we obtain e rxe syjPn;m.fI x; y/j  kf kp;qe rxe sy sinh  ep=n sinh 1 2e pnx sinh  eq=m sinh 1 2e qmy D 4 kf kp;qe x.r pn/e y.s qm/ sinh  ep=n  sinh  eq=m  .sinh 1/2  4 kf kp;q sinh .ep/ sinh .eq/ .sinh 1/2 :  3. APPROXIMATION BYPn;m OPERATORS

In this section, we give theorems on the degree of approximation of functions of two variables by these operators.

Theorem 1. Letp; q > 0 , r > p; s > q and n0D n0.p; r/ ; m0D m0.q; s/ be

fixed natural numbers such thatn0> p= .ln r ln p/ and m0> q= .ln s ln q/. If f 2

Cp;q1 ; where Cp;q1 D˚f 2 Cp;q W fx; fy2 Cp;q , then there exists a positive constant

(11)

wr;s.x; y/jPn;m.fI x; y/ f .x; y/j  Mp;q;r;s ( @f @x p;q r x C 2 n C @f @y p;q r y C 2 m )

Proof. Let .x; y/ be a fixed point in R21: For f 2 Cp;q1 and .t1; t2/2 R21we have

f .t1; t2/ f .x; y/D t1 Z x @f @u.u; t2/ duC t2 Z y @f @v.x; v/ dv: Using Pn;m.1I x; y/ D 1; it results that

Pn;m.f .t1; t2/I x; y/ f .x; y/ D Pn;m 0 @ t1 Z x @f @u.u; t2/ duI x; y 1 AC Pn;m 0 @ t2 Z y @f @v.x; v/ dvI x; y 1 A: For r > p; s > q and m; n2 N; we have

wr;s.x; y/jPn;m.f .t1; t2/I x; y/ f .x; y/j  wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t1 Z x @f @u.u; t2/ du ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A C wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t2 Z y @f @v .x; v/ dv ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A: By using the following inequalities

ˇ ˇ ˇ ˇ ˇ ˇ t1 Z x @f @u.u; t2/ du ˇ ˇ ˇ ˇ ˇ ˇ  @f @x p;q ˇ ˇ ˇ ˇ ˇ ˇ t1 Z x 1 wp;q.u; t2/ du ˇ ˇ ˇ ˇ ˇ ˇ  @f @x p;q 1 wq.t2/  1 wp.t1/C 1 wp.x/  jt1 xj ; ˇ ˇ ˇ ˇ ˇ ˇ t2 Z y @f @v .x; v/ dv ˇ ˇ ˇ ˇ ˇ ˇ  @f @y p;q ˇ ˇ ˇ ˇ ˇ ˇ t2 Z y 1 wp;q.x; v/ dv ˇ ˇ ˇ ˇ ˇ ˇ  @f @y p;q 1 wp.x/  1 wq.t2/C 1 wq.y/  jt2 yj

(12)

and H¨older inequality, we can write wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t1 Z x @f @u.u; t2/ du ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A  @f @x p;q wr;s.x; y/ Pn;m  1 wq.t2/I x; y   Pn;m jt 1 xj wp.t1/I x; y  C 1 wp.x/ Pn;m.jt1 xj I x; y/   @f @x p;q h wr.x/Pn;m  .t1 x/2ept1I x; y i1=2 wr.x/Pn;m ept1I x; y 1=2 C e.p r/xhPn;m  .t1 x/2I x; y i1=2 ws.y/Pn;m eqt2I x; y ; wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t2 Z y @f @v.x; v/ dv ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A  @f @y p;q wr.x/ wp.x/ Pn;m.1I x; y/ ws.y/  Pn;m jt2 yj wq.t2/I x; y  Cw 1 q.y/ Pn;m.jt2 yj I x; y/   @f @y p;q  h ws.y/ Pn;m  .t2 y/2eqt2I x; y i1=2 ws.y/ Pn;m eqt2I x; y 1=2 ChPn;m  .t2 y/2I x; y i1=2 : Applying the inequalities2.5and2.6to Lemma2, we obtain

wr.x/Pn;m ept1I x; y  e rx sinh  ep=n sinh 1 2e pnx D 2 sinh  ep=n sinh 1 e x.r pn/  2 sinhep=n sinh 1 and ws.y/Pn;m eqt2I x; y  e sy sinh  eq=m sinh 1 2e qmy

(13)

D 2 sinh  eq=m  sinh 1 e y.s qm/  2 sinh  eq=m sinh 1 : By these inequalities, Lemma5and Lemma4, we get to

wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t1 Z x @f @u.u; t2/ du ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A  2 @f @x p;q sinh  ep=nsinh  eq=m .sinh 1/2 r 2Cp;r xC 2 n C 2 @f @x p;q sinh  eq=m sinh 1 e x.r p/ r 3 .xC 1/ n  @f @x p;q Mp;rr x C 2 n ; and wr;s.x; y/ Pn;m 0 @ ˇ ˇ ˇ ˇ ˇ ˇ t2 Z y @f @v.x; v/ dv ˇ ˇ ˇ ˇ ˇ ˇ I x; y 1 A  @f @y p;q sinh  eq=m sinh 1 r 2Cq;s yC 2 m C @f @y p;q r 3.yC 1/ m  @f @y p;q Mq;sr y C 2 m

for all m m0and n n0: This proves the theorem. 

Theorem 2. Suppose thatf 2 Cp;q andp; r; q; s; n0; m0 satisfy the conditions of

Theorem1. Then there exists positive constant MD Mp;q;r;s depending only on

p; q; r; s such that wr;s.x; y/jPn;m.fI x; y/ f .x; y/j  M! f; Cp;qI x C 2 n 1=2 ; y C 2 m 1=2! for all.x; y/2 R21andm m0; n n0:

(14)

Proof. Similarly as in [5]; we consider the Steklov means for f 2 Cp;q fh;ı.x; y/D 1 hı h Z 0 ı Z 0 f .xC u; y C v/ dudv ; h; ı > 0; .x; y/ 2 R12: We have fh;ı.x; y/ f .x; y/D 1 hı h Z 0 ı Z 0 u;vf .x; y/ dudv; @fh;ı @x .x; y/D 1 hı ı Z 0 .f .xC h; y C v/ f .x; y C v// dv; @fh;ı @y .x; y/D 1 hı h Z 0 .f .xC u; y C ı/ f .x C u; y// du; which implies fh;ı2 Cp;q1 .h; ı > 0/ and

fh;ı f p;q  w f; Cp;qI h; ı ; @fh;ı @x p;q  sup .x;y/2R2 1 wp;q.x; y/ 1 hı ı Z 0 ˇ ˇh;vf .x; y/ ˇ ˇC j0;vf .x; y/j dv  2 hw f; Cp;qI h; ı  and @fh;ı @y p;q 2 ıw f; Cp;qI h; ı  for h; ı > 0:

For every fixed .x; y/2 R12; r > p; s > q and n; m2 N; h; ı > 0 we have

wr;s.x; y/jPn;m.fI x; y/ f .x; y/j  wr;s.x; y/ ˚ˇ ˇPn;m f fh;ıI x; y ˇ ˇ CˇˇPn;m fh;ıI x; y  fh;ı.x; y/ ˇ ˇC ˇ ˇfh;ı.x; y/ f .x; y/ ˇ ˇ : By Lemma5, one obtains

wr;s.x; y/

ˇ

ˇPn;m f fh;ıI x; yˇˇ 4w f; Cp;qI h; ı

for all m m0and n n0: Since Theorem1, we can write

wr;s.x; y/ ˇ ˇPn;m fh;ıI x; y  fh;ı.x; y/ ˇ ˇ

(15)

 Mp;q;r;sw f; Cp;qI h; ı ( 1 h r x C 2 n C 1 ı r y C 2 m ) for m m0, n n0: Therefore wr;s.x; y/jPn;m.fI x; y/ f .x; y/j  4w f; Cp;qI h; ı C Mp;q;r;sw f; Cp;qI h; ı ( 1 h r x C 2 n C 1 ı r y C 2 m ) C wr;s.x; y/ ˇ ˇfh;ı.x; y/ f .x; y/ ˇ ˇ  w f; Cp;qI h; ı  5C Mp;q;r;s ( 1 h r x C 2 n C 1 ı r y C 2 m )! for all h; ı > 0 and m m0, n n0: Setting hD

q xC2 n ; ıD q yC2 m we obtain the desired result. 

Corollary 1. Iff 2 Cp;q; then for all .x; y/2 R21

lim

m;n!1Pn;m.fI x; y/ D f .x; y/ :

Also, the convergence is uniform on every rectangle 1 x  a; 1  y  b: REFERENCES

[1] A. Ciupa, “Approximation by a generalized Szasz type operator,” J. Comput. Anal. Appl., vol. 5, no. 4, pp. 413–424, 2003.

[2] J. Favard, “Sur les multiplicateurs d’interpolation,” J. Math. Pures Appl., vol. 9, no. 23, pp. 219– 247, 1944.

[3] Z. Finta, N. K. Govil, and V. Gupta, “Some results on modified Sz´asz-Mirakjan operators,” J. Math. Anal. Appl., vol. 327, no. 2, pp. 1284–1296, 2007.

[4] A. Jakimovski and D. Leviatan, “Generalized Szasz operators for the approximation in the finite interval.” Mathematica, Cluj, vol. 11, pp. 97–103, 1969.

[5] M. Le´sniewicz and L. Rempulska, “Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces,” Glas. Mat., III. Ser., vol. 32, no. 1, pp. 57–69, 1997.

[6] R. N. Mohapatra and Z. Walczak, “Remarks on a class of Sz´asz-Mirakyan type operators,” East J. Approx., vol. 15, no. 2, pp. 197–206, 2009.

[7] C. Mortici, “An extension of the Sz´asz-Mirakjan operators,” An. S¸tiint¸. Univ. “Ovidius” Constant¸a, Ser. Mat., vol. 17, no. 1, pp. 137–144, 2009.

[8] L. Rempulska and S. Graczyk, “On certain class of Sz´asz-Mirakyan operators in exponential weight spaces,” Int. J. Pure Appl. Math., vol. 60, no. 3, pp. 259–267, 2010.

[9] Z. Walczak, “On the convergence of the modified Szasz-Mirakyan operators,” Yokohama Math. J., vol. 51, no. 1, pp. 11–18, 2004.

(16)

Authors’ addresses Nursel C¸ etin

Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100 Ankara, Tur-key

E-mail address: ncetin@ankara.edu.tr Sevilay Kirci Serenbay

Bas¸kent University, Department of Mathematics Education, 06530 Ankara, Turkey E-mail address: kirci@baskent.edu.tr

C¸ i˘gdem Atakut

Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100 Ankara, Tur-key

Referanslar

Benzer Belgeler

Horatius şehrin dağdağasından ve hâyu-huyun- dan uzakta kalan âsude kırlar içinde sakin malikâ­ nesinin sükûnunu ve inzivasını, sade ve âlâyışsız

Dr. The algorithm is based on an approximation of correlation. The input signal is correlated with the hardlimited versions of three sinusoids having 7Ty^3 phase

This is a quasi-experimental research study conducted over a period of four months, focusing on the development of young learners‟ willingness to communicate in English as a

[r]

Major restruc- ise to use, state resources to enhance their chances turing would have required de-linking the SEEs of public office, the outcome is ultimately

Lütfen aşağıdaki soruları Çorum ilinin destinasyon imajını düşünerek, ilgili ifadeye ilişkin görüşünüze en uygun gelecek cevabı (X) işaretleyerek belirtiniz. 2

In this study, AISI D2 cold work tool steel was used as the workpiece, along with CVD- and PVD-coated tungsten carbide cutting tools The main purpose of this study investigated

In this work, a metal-ferroelectric-semiconductor (MFS) type capacitor was fabricated and admittance measurements were held in a wide frequency range of 1 kHz-5 MHz at room