• Sonuç bulunamadı

On computing lth (l=2p, p∈N) powers for one type even order antipentadiagonal matrix

N/A
N/A
Protected

Academic year: 2021

Share "On computing lth (l=2p, p∈N) powers for one type even order antipentadiagonal matrix"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Special Issue. pp. 81-86, 2010 Applied Mathematics

On Computing th ( = 2  ∈ ) Powers for One Type Even Order Antipentadiagonal Matrix

Hümeyra Kıyak, ˙Irem Gürses, Durmu¸s Bozkurt

Selçuk University, Science Faculty, Department of Mathematics, 42003, Kampus, Konya, Türkiye

e-mail: db ozkurt@ selcuk.edu.tr

Presented in 2National Workshop of Konya Ere˘gli Kemal Akman College, 13-14 May 2010.

Abstract. In this paper, we derive the general expression of the th ( = 2  ∈ N) power for one type of even order antipentadiagonal matrix.

Key words: Antipentadiagonal, Matrix power,Chebyshev Polynomial. 2000 Mathematics Subject Classification: 15A60, 33C45.

1. Introduction

Anti-pentadiagonal matrices find application in many fields, such as solution of boundary value problems, numerical analysis and high order harmonic spec-tral filtering theory [1]. In this paper, we derive the general expression of the th power for one type of symmetric anti-pentadiagonal matrices of even order.

2. Derivation of Formulation Let us define a matrix  as following :

 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ −1 0 0 1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 . .. . .. . .. . .. . .. 1 0 0 0 1 0 0 0 −1 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

It is known that, the th power of a matrix is obtained by the expression =  −1[2] where  is Jordan’s form and  is the transforming matrix. The

(2)

matrices  and  are derived by the eigenvalues and eigenvectors of the matrix . The eigenvalues of a matrix are derived by the characteristic equation of the matrix which is defined by

() = | − | = 0

here  = − and  is th order identity matrix. Let us denote

∆() = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  −1 1  1 −1  −1 . .. ... ... −1  −1 1  ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ and () = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ −1 0 0 1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 . .. . .. . .. . .. . .. 1 0 0 0 1 0 0 0 −1 0 0 1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ − − ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  0 0 0  0 0 0 0  0 . .. 0 0  . .. 0 . .. ... ... 0 0 0 0  0 0 0 0  0 0 0  ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

(3)

= ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  −1 0 0  1 0 0 0 . .. −1 0 0 0 −1  1 0 0 0 1 −1  0 0 −1 1 0 0  1 . .. . .. . .. . .. . ..  1 0 0 0 1 . .. 0 0 0 −1  0 0 1  ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

We can write the following difference equation,

(1) ∆() = ∆−1() + ∆−2()

where ∆0() = 1 ∆1() =  ∆2() = 2+ 1. Solution of the difference

equation (1) is: 1=  +√2+ 4 2  2=  −√2+ 4 2 ⇒ ∆= 1(1)+ 2(2)

Writing ∆0 = 1 and ∆1 =  on the equation, we obtain 1 = 22−−1 and

2= 2−−11. Substituting 1 2 1 2on ∆we obtain

∆ = Ã +√2+ 4 2√2+ 4 ! Ã +√2+ 4 2 ! − Ã −√2+ 4 2√2+ 4 ! Ã −√2+ 4 2 ! = 1 2+1 ¡  +√2+ 4¢+1¡ −2+ 4¢+1 ¡√ 2+ 4¢ 

By definition of second kind Chebyshev polynomials [4] and rewriting¡ 2

¢ on the the following equality instead of ;

() = 1 2 ¡  +√2− 1¢+1¡ −2− 1¢+1 ¡√ 2− 1¢ 

(4)

Then, (  2) = 1 2 µ  2 + q¡ 2 ¢2 − 1 ¶+1 − µ  2 − q¡ 2 ¢2 − 1 ¶+1 µq¡ 2 ¢2 − 1 ¶ = 1 2 ¡ 2 ¢+1n¡  +√2+ 4¢+1¡ −2+ 4¢+1o ¡ 2 ¢ ¡√ 2+ 4¢ = 1 2 µ  2 ¶¡  +√2+ 4¢+1¡ −2+ 4¢+1 ¡√ 2+ 4¢ = ()  2+1 ¡  +√2+ 4¢+1¡ −2+ 4¢+1 ¡√ 2+ 4¢ = () 1 2+1 ¡  +√2+ 4¢+1¡ −2+ 4¢+1 ¡√ 2+ 4¢ | {z } ∆ (  2) = ()  ∆() (2) ∆() = (−)(  2) and () =¡∆ 2() ¢2 From (2): (3) () = µ (−)2 2(  2) ¶2

All roots of the polynomial () are included in the interval [−1 1] and

ob-tained by the relation

= 2 cos

2

 + 2  = 1  2

So we can write the  form of the matrix .

All the eigenvalues  ( = 12  = 2  ∈ N) are double multiple (the

(5)

 = (1 1 2 2      2 

 2).

Using the equation  −1 we find the matrices  and −1 derive the

ex-pression of the th power  = 2  ∈ N of the matrix  as following:  =  −1 = 1  + 2() () = (1 + (−1)+  2 (+)−) − 4 X =1 (−)(4 + 2) − 2 (−  2 ) × × − 2 (−  2 ) here  = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0  = 2 + 4( = 0 1 2 ) − 1  = 4 + 4 1 (−1)+ = −1 (−1)+ = 1 (−1)+ = 1 where  = 0 1 2      = ( −1 1 (−1)= (−1) = 1 (−1)= (−1)= −1= ( − 1 (−1)= (−1)= 1 (−1)= (−1)= −1  = ( 0 2  = 2 ( = 2 4 6 8 )  = 2 ( = 3 5 7 9 )  3. Numerical Examples

We can compute arbitrary positive integer powers of the matrix taking into account the derived formula. For example, if  = 4;

 = ⎡ ⎢ ⎢ ⎣ 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 ⎤ ⎥ ⎥ ⎦

  form of the matrix is

 = (1 1 2 2) = (− −  ) =1 6(()) = 1 2 ⎡ ⎢ ⎢ ⎣ 1 2 0 0 2 1 0 0 0 0 1 2 0 0 2 1 ⎤ ⎥ ⎥ ⎦

(6)

1() = −(1 + (−1)) 2() = 1 − (−1) and −1 = ⎡ ⎢ ⎢ ⎣ 0 1 0 0 −1 0 0 0 0 0 0 1 0 0 −1 0 ⎤ ⎥ ⎥ ⎦  If  = 6 :  = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ Jordan form of matrix  is:

 = (1 1 2 2 3 3) = (− − 0 0  )  = 2 cos  4 =  √ 2 = 1 8(()) = 1 4 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 2 1 0 0 1 2 0 0 1 0 2 3 0 0 2 2 0 0 3 2 0 1 0 0 2 1 0 0 1 2 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦   = 2 + 4 1() = −(1 + (−1)) 2() = −(1 − (−1))+1 3() = −(1 + (−1))+2  ∈ N If  = 4 + 4 1() = (1 + (−1)) 2() = (1 − (−1))+1 3() = (1 + (−1))+2  ∈ N

Since  is a singular matrix, we can not compute the negative integer powers of the matrix.

References

1. Jonas Rimas, On computing of arbitrary positive integer powers for one type of sym-metric pentadiagonal matrices of even order, Applied Mathematics and Computation 203 (2008) 582—591.

2. R. A. Horn, Ch. Johnson, "Matrix Analysis", Cambridge University Press, Cam-bridge, 1985.

3. R. P. Agarwal, "Difference Equations and Inequlities", Marcel Dekker, New York, 1992.

4. J. C. Mason, D. C. Handscomb, "Chebyshev Polynomials", CRC Press, Washington, 2003.

Referanslar

Benzer Belgeler

CORELAP is a construction program.. chart In construeting layouts. A building outline is not required for CORELAP. It constructs laiyouts by locating rectc\ngu

637 Bu ba ğlamda tahkim usûlüne uygulanacak kuralla rın tarafların beyanda bulunmaları için çok kısa süreler öngörmesi veya avukatla temsili yasaklaması gibi

show that a Nearest- Neighbor (NN) based classifier which computes direct image-to-class distances without any quantization step achieves performance rates among the top lead-

Öte yandan, bu kurallar Roma hukukunun teknik detayları ile çeliĢmiĢ olup, klasik Roma hukukunda exceptio doli, dar hukuk sözleĢmeleri bakımından sadece savunma

Gülen Muşkara'nın dünürleri, Esra ve Emre Muşkara'nın sevgili dedeleri, Tufan Muşkara'nın kayınpederi, Banu Muşkara ile A li Sinan Konyalı'nın sevgili babaları,

99 學年度社團幹部持續教育講座~邀本校李祖德董事暢談「鉅變時代的北醫 人」 優秀的領導人才,將為北醫大社團帶來無限創意與生機。本校於 12

' İşte bu aşamada kütüphaneci, kullanıcı, işletmeci, düzen ­ leyici ve evsahibi olma özelliklerini kullanarak yaşadığı çevre ile ilgili elde ettiği pratik

Bu grafikten görüldüğü gibi, son üç yılda eğitim fakültelerinin öğrencilerin ortalama M puanları, aynı dönemlerde tüm üniversitelerim ize yerleştirilen