• Sonuç bulunamadı

Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy

N/A
N/A
Protected

Academic year: 2021

Share "Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

Effect

of

dipped

cryogenic

approach

on

thrust

force,

temperature,

tool

wear

and

chip

formation

in

drilling

of

AZ31

magnesium

alloy

Ugur

Koklu

a,∗

,

Himmet

Coban

b

aDepartmentofMechanicalEngineering,KaramanogluMehmetbeyUniversity,70100Karaman,Turkey

bNaturalandAppliedScience,KaramanogluMehmetbeyUniversity,Karaman,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11December2019 Accepted10January2020 Availableonline22January2020

Keywords:

Cryogenicapproach AZ31magnesiumalloy Drilling

Thrustforce Drillwear Temperature

a

b

s

t

r

a

c

t

Magnesiumalloystendtohaveinflammablenatureandchipself-ignitionathighcutting speedsunderdrymachiningcondition,althoughtheycanbeeasilymachinedwithgood surfacequality.Inthedrillingprocess,coolingandlubricationhaveacriticalimpactasit controlsheatgeneration,toolwear,surfacequality,andcuttingforce.Inthepresentstudy, drillingtestsonAZ31magnesiumalloywereperformedwithdryandcryogenicconditions atvariousfeedratesandcuttingspeeds.Theeffectofdippedcryogenicapplicationduring drillingonthrustforce,temperature,toolwear,andchipformationwereinvestigated.The resultsshowedthattheappliedcryogenicdrillingmethodprovidedlesstoolwear,smaller chipsandreducedamountofadhesions.Drillingtestsperformedinthecryogenic envi-ronmentincreasethethrustforcesby32%–39%comparedtodrycutting.Sparkandchip ignitionwerenotobservedevenathighcuttingspeedsduringdrycutting.

©2020TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Magnesium alloys attract significant attention in most engineeringapplicationssuchaselectronics,aerospace, auto-mobile,structuralandbio-medicalindustries.Mostofthefinal productsusedinmanyengineeringapplicationsare manu-facturedbymachiningprocesses[1,2].Itispossibletoeasily machine,andgoodsurfacefinishcanbeachieved.However, underdrycuttingcondition,inflammablenatureofthe mate-rial may cause self-ignition offinechip particles athigher cutting speeds. Built-up edge formation in metal cutting, whichresultsinpoorsurfacefinishanddimensionalaccuracy,

Correspondingauthor.

E-mail:ugurkoklu@kmu.edu.tr(U.Koklu).

iscausedbylowmeltingpointofthesealloysandmaterial adhesiononthecuttingtool[1].Itisalreadyknownthatthe majorityoftheworkduringmachiningisconvertedtoheat andendsupwithariseinthetemperatureoftool,workpiece, andchip,whichhasanimportanteffectonchipformation, cuttingtoolwear,andmachinedsurfacefinish.Temperature isalwaysofconcerninmachining.Forthepurposeof decreas-ingthecuttingtemperature,applyingcryogenicsasacoolant isthegeneralproceduretoeliminatetheeffectofthe temper-ature,whichisknownascryogenicmachining[3,4].

Baloutetal.[5]investigatedtheeffectofsubjecting vari-ousmetallicmaterials(magnesium,aluminumandbrass)to pre-coolingandpreheatingonthedrillingprocess.The exper-imentalstudywascarriedoutatmanydifferenttemperature values(15, 10,5,0, –20,–30,–40,–50,and −60◦C)andthey stated thatthrustforce andtorquedecreasedwith increas-https://doi.org/10.1016/j.jmrt.2020.01.038

2238-7854/©2020 The Authors. Publishedby Elsevier B.V. This is anopen access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ingmaterialtemperature.Kakinumaetal.[6],Mishimaetal. [7],andKakinumaetal.[8]experimentallyinvestigatedthe micro machinability offrozen polydimethylsiloxane elastic material.The materialwas machinedwhen the mold was filledwithliquidnitrogen.Theauthorsstatedthatmicro chan-nelsweremilledeasilyandaccuratelyusingthismethod.In addition,itwasemphasizedthattestsundercryogenic con-ditionyieldhighercuttingforcethanroomtemperaturetests. Songetal.[9]investigatedthedirectmechanicalmachiningof polydimethylsiloxaneusingcryogeniccooling.Themachined surfacewas analyzed using various machiningparameters such as spindle speed and feed rate, and their effects on thecutting temperaturewere examined.When the cutting temperatureroseabovethecriticalvalue,itwasnotedthat thesurface qualityofthepolydimethylsiloxane was signif-icantly degraded due to increased adhesion and reduced elasticmodulus.Dhokiaetal.[10]predictedby compensat-ingtheshrinkageofmidsolefoamedpolymerand ethylene vinylacetate which are widely used inthe manufacturing ofshoe,undercryogeniccondition.Theauthorsemphasized thatthecryogenicshrinkagefactorinthecryogenic process-ing was less than 1 % of the original CAD model. Dhokia et al.[11], inanother study,investigatedthe machinability ofEVA and neoprene elastomermaterialsunder cryogenic conditions. In the experimentalstudy, the glass transition temperatureataspecifictemperature andelasticity values ofthetwoselectedmaterialswerecharacterized.Kokluand Morkavuk[12]experimentallyinvestigateddrilling machin-abilityofcarbon fiber-reinforced compositematerialunder cryogeniccondition. Drillingtests werecarried out using a speciallydesignedthermallyisolatedmold.Theeffectsof dif-ferentcuttingconditionsonthrustforce,delamination,tool wear,andsurfaceroughnesswereinvestigated.Theauthors emphasizedthatthecryogenicmethodsignificantlyreduced toolwearandimprovedsurfacequality;however,itcausedto increasethethrustforce.

Therearemanyacademicpapersonthemachinabilityof magnesiumalloysinliterature.Themajorityofthese stud-ies arefocusedin theturning process.Onthe other hand, therearemanystudiesoncryogenicturningofmagnesium alloys [1,2,13–21]. But, limited study has been carried out ondrilling processesofmagnesium alloys undercryogenic condition.Kheireddineetal.[22]examinedtheinfluenceof cryogenic applicationon the surfaceintegrity ofmachined holesinAZ31BMgalloy.Intheexperimentalstudyconducted bythe authors,thrust force,torque, surfacehardness, and grainstructureweremeasured.Itwasreportedthatcryogenic applicationduringmachining resultedinimprovedsurface hardness of machined holes as compared with machined underdrycondition.Kheireddineetal.[23]investigatedthe effectof usingliquid nitrogenin drilling ofAZ31b magne-siumalloyontheholesurfaceintegrityusingaindexabledrill. Thrust force, torque,and surface hardnesswere examined bothexperimentallyandnumerically.Itwasstatedthatthe hardnessvaluewashigherinthetestsperformedunder cryo-genic condition. Finiteelement analysis withexperimental justificationhasbeendiscussed.Bhowmicketal.[24] investi-gateddryandminimumquantitylubricationdrillingofAM60 magnesiumalloy.Thrustforce,torque,cuttingtemperature, toollifetests, surfacetopography,chip,microhardnessand

toolwear were measured.Itisemphasized bythe authors thatuniformtorqueandthrustforce,smalland discontinu-ouschipsand smoothholesurfaceareobtainedbydrilling themagnesiumalloyunderMQLcondition.Wangetal.[25] studiedwearofHSStoolsduringdrillingofmagnesiumalloy. SEManalysisshowedthreetypesofwearmechanismsinHSS tools.Theseweartypesareadhesivewear,abrasivewearand diffusion wear. This wear mechanism map is indicated to be a good reference for selecting suitable drilling parame-tersfordrillingofcastmagnesiumalloys.Berzosaetal.[26] focused on cuttingtoolselection indrilling of magnesium workpieceunderdryandminimumquantitylubrication envi-ronments basedonsurfaceroughness.Intheexperimental study,twodifferentpointangles,cuttingspeeds,feedrates andMQLflowvariableswereselected.Foraeronautical sec-tor, the importance ofdeterminingthe tooland operation accordingtotherequirementofsurfaceroughnessvaluesof 0.8–1.6␮misemphasized.Gariboldi[27]investigateddrilling machinabilityofamagnesiumalloyusingPVDcoatedtwist drills. Thedrills werecoatedwithTiN,CrNand two differ-ent ZrN by PVD method. Tool life, tool wear and surface roughness wereinvestigated. Adhesivewearforms,cutting parameters, thepresenceand typeofcoatingare statedto berelated.KaracaandAksakal[28]studiedeffectoftheTiBN coating onHSSdrillindrillingMA8MMgalloy.The perfor-manceofHSSandTiBNcoateddrillbitsweredeterminedby performingtestsatvariousspindlespeedsandfeeds.Surface roughness,topographyandchipformationwereinvestigated. TheTiBN-coateddrillexhibitedpoorsurfacequality. Balamu-ruganetal.[29]investigateddrillingofMg/SiCcompositefor defenseapplications.Theeffectsofmachiningtemperature onchipmorphology,toolwearandsurfaceprofilewere inves-tigated.Ithasbeenobservedthatthemostimportanteffectin machiningtemperatureformationiscausedbyspindlespeed andalsobothabrasiveandadhesiveweartypeoccur.Sunil etal.[30]researchedinfluenceofaluminumcontentondrilling characteristicsofAZ31andAZ91magnesiumalloys.Drilling testswereperformedusingdifferentcuttingparameters. Cut-tingforcesandformedchipswereanalyzed.Itisstatedthat the presenceofsecondary phase(Mg17Al12) has a signifi-canteffectonthecuttingforcesandanincreaseincutting speed reducesthe resultingcuttingforce andload fluctua-tions.

As theliteraturereviewshows thatin thefield of cryo-genicmachiningofmagnesiumalloys,machinabilitystudies aregenerallyfocusedonturningprocess,andtherearevery fewstudiesondrilling.Inthemachiningundercryogenic con-dition,itisgenerallymadebysprayingthecryogenicliquid intothemachiningzonethroughanozzle.Inthisstudy,the magnesium alloyisdrilledinafixturewhichiscompletely filled withliquid nitrogen.By usingthis approach(dipping the workpiece into liquid nitrogen), drilling performance ofAZ31 magnesium alloywas experimentallyinvestigated. Two different cutting speeds (40 and 120m/min) and four different feed rates (0.1, 0.15, 0.2 and 0.25mm/rev) were chosenasdrillingparameters.Also,toolweartestswere per-formedunderbothdryandcryogenicconditionsatconstant 80m/min cutting speed and 0.08mm/rev and 0.16mm/rev feedrates.Theresultsoftheexperimentsdemonstratedthat cryogenic machiningtechnique proposed inthis study can

(3)

be applied in order to obtain less tool wear and smaller chips.

2.

Material

and

methods

TheworkpieceusedintheexperimentalstudywasanAZ31 magnesiumalloyplate.Themechanicalpropertiesand chem-icalcompositionoftheAZ31magnesiumalloyareshownin Tables1and2,respectively.ThedimensionsoftheAZ31 mag-nesiumalloyworkpiecewas150×100×10mm.

Inthe experimentalstudy,twoflutehelical PVD(TiAlN) coateddrillswithadiameterof4mmwereusedascutting tools(Fig.1).Thepointangleofthedrillwas140◦.Anewdrill

Table1–MechanicalpropertiesofAZ31magnesium alloy[31]. Tensile strength (MPa) Yield strength (MPa) Elongation % Hardness HB Machinability % 290 220 15 73 100

wasusedforeachseriesofexperiments.Thefirstseriesof experimentswereconductedtodeterminetheeffectofthe cuttingparametersontheresults.Theexperimentswere car-riedoutindryandcryogenicconditionsat40and120m/min cuttingspeedsand0.1,0.15,0.2and0.25mm/revfeedrates.In thesecondseriesoftheexperiments,toolweartestswere

per-Fig.1–Drillusedintheexperimentalstudy.

(4)

Table2–ChemicalcompositionofAZ31magnesiumalloy[31].

Element Mg Al Zn Mn Si Ca Cu Fe Ni

Wt% 96 2.5–3.5 0.6–1.4 ≥0.2 ≤0.1 ≤0.04 ≤0.05 ≤0.005 ≤0.005

formedunderbothdryandcryogenicconditionsat80m/min cuttingspeedand0.08mm/revand0.16mm/revfeedrates.

Alldrilling testswere performed on3axisCNC vertical machining center (Quaser MV154C CNC). At the moment of experiments, thrust forces were measured by a force dynamometer(Kistler9257Btypeanddataacquisition equip-ment).Measurement oftemperature inmachining arevery difficultduetoclosedspace,chipobstacles,andthenatureof thecontactphenomenabetweentoolandchip[32].Therefore, thethermalcameraispositionedtoseethecuttingprocess inthe bestpossibleway. Temperaturemeasurementswere madebyathermalcamera(Flirsystem).Manyimageswere capturedwiththethermalcameraduringthedrillingprocess andthemaximumtemperatureobtainedfromtheseimages wasdetermined.Thethermal camera featuredobject tem-peratureranges from −25◦C to 380C withan accuracyof ± 1.5 % or 1.5◦C, a field of view 50◦×38.6◦, IR resolution of80×60pixelsandathermalsensitivity/NETDof<150mK. Theemissivityvaluewasselectedas0.6inthe experimen-talstudy.Thewearonthedrillsweremonitoredbyadigital microscope (Keyence VHX-900F). Thechips formed during experimentswere visualizedwithadigitalmicroscope.The experimentalsetupandmeasurementinstrumentsareshown inFig.2.AfixturewasmanufacturedtodrilltheAZ31 mag-nesiumalloyincryogenicenvironmentwithoutdamagingthe machineandcuttingforcemeasurementdevices.Thethermal insulatorfixturewaspositionedontheforcedynamometer. Polytetrafluoroethylenewasemployedasathermalinsulation materialtoavoidtheeffectofhigh-levelcoldcryogeniccoolant onthedynamometer.Asthecryogeniccoolant,liquidnitrogen wasemployedat−196◦C.Moredetailedinformationaboutthe experimentalset-upandthermalinsulationdiecanbefound inreference[12,33].Significantimprovementsin machinabil-ityandcuttingparameterscanbeachievedusingcryogenic processing[34].

3.

Results

and

discussion

Machinabilityisthefacilityordifficultyinmachininga mate-rialunderacertainsetofoperatingconditionsthatinclude cuttingdepth,feedrateand cuttingspeed.Thegeneral cri-teriacommonlyadoptedforassessingmachinabilityaretool life,powerconsumption,chipshape,surfacefinishand com-ponentforcesduringacuttingoperation[35,36].Inthisstudy thrustforce,temperature,toolwearandchipswere consid-ered.

3.1. Thrustforcecomparison

TheforcesintheXandYdirectionduringthedrilling opera-tionwereclosetozero.Ontheotherhand,themeasurement ofthrustforceisveryimportanttoanalyzemoreeffectively the machinability factors of AZ31 magnesium alloy under cryogenic and dry conditions. Each experiment series was

Fig.3–Theeffectoffeedratevariationonthrustforce.

madewith3replicates,andthearithmeticaveragewastaken. Fig. 3shows a samplechartof the overall thrustforce for theexperimentscarriedoutatfourfeedrates(0.1,0.15,0.2 and 0.25mm/rev)and 40m/mincuttingspeed.Thrust force increasesasthefeed rateincreases.Theeffectsofdry and cryogeniccuttingconditionsonthethrustforcesoccurredat differentcuttingspeeds(40m/minand120m/min)and con-stantfeedrate(0.1mm/rev)areshowninFig.4.

ThethrustforcerecordedduringdrillingoftheAZ31 mag-nesiumalloyispresentedinFig.5.Thrustforce indry and cryogenicenvironmentshowsdecreasingtrendwhencutting speed is increased. As cutting speed increases, the thrust force decreases byabout 16 %–27 %. This behaviorcan be ascribed to the reduction of the contact area at the drill-Mgalloyinterface andthe reductionofthespecificcutting energy.Furthermore,withanincreaseincuttingspeed,the cuttingtemperatureincreasedandsubsequentlyreducedthe materialhardness.Increasingthefeedrateinbothdry and cryogenicconditionsincreases(about34%–54%)thethrust force.Thisphenomenonstemmedfromthehigherfeedrates, whichcausedanincreaseintheamountofuncutchipand theenergyrequiredforcutting.Inaddition,drillingtests per-formed inthe cryogenic environment increased the thrust forcesby32%–39%comparedtodrycutting.Inthepresent study,dippedcryogenic drillingledto higherthrustforces, which was associatedwithincreasing Youngmodulus and tensile strength of AZ31magnesium alloy incaseexposed tocryogenicenvironment;andtherefore,higherthrustforces areobtainedincryogenicdrilling[33].Inpreviouslypublished studies, it was highlighted that tensile strength, hardness andyoungmodulusofthematerialsincreaseastemperature decrease[4,12,37–42].

(5)

Fig.4–Thrustforcevariationswithcuttingspeedunderdryandcryogenicconditions.

Fig.5–Variationofthrustforce(a)40m/mincuttingspeed(b)120m/mincuttingspeed.

Toolweartestswere conductedtoexaminetheeffectof thesubsequentholenumberonthethrustforce.Atdifferent feedrates(0.08and0.16mm/rev)andaconstantcuttingspeed (80m/min),360holes weredrilledon theAZ31magnesium plate underdry andcryogenic conditions. Inthe toolwear experiments,thethrustforcewasmeasuredperiodicallyafter drilling20consecutiveholes.Thethrustforcegraphobtained fromthetoolwearexperimentsisgiveninFig.6.Inbothdry andcryogenicconditions,thethrustforcetendstoincrease

withincreasingnumberofholes.Thefundamentalreasonfor thissituationwassimplytoolwear.Indrydrillingcondition, lowerthrustforcewasgeneratedthanthoseinthecryogenic condition.

3.2. Temperaturecomparison

Surfacetemperaturesofthecuttingtoolatthetimeofdrilling weremeasuredbyathermalcamera.Inthedrillingtests

(6)

per-Fig.6–Comparisonofthethrustforceobtainedatdryandcryogenicconditions.

Fig.7–Temperaturesoccurredindrycuttingconditions.

formedundercryogeniccondition,thetemperaturewasnot measured since liquid nitrogenwas supplied continuously thereforethetemperaturesoftooland workpiecewas sup-posed−196◦C.Temperaturesgeneratedat40and120m/min cuttingspeedsanddifferentfeedratesindrycutting condi-tionaregiveninFig.7.Temperaturesinthedrillingprocess increasedlinearlywithincreasingbothcuttingspeedandfeed rate.Thetemperatureincreasedby20%withincreasingfeed rateatlowcuttingspeed,whileitincreasedby40%athigh cuttingspeed.Cuttingspeedhasadominanteffectonheat

for-mation.Sparkandchipignitionwasnotobservedevenathigh cuttingspeedsduringdrycutting.Thisisofvitalimportance formachiningsafety.

Inthetoolweartestscarriedoutwithaconstantcutting speed (80m/min)andtwo differentfeedrates(0.08mm/rev and0.16mm/rev)underdrydrillingcondition,temperatures measuredforeach60holes.Imagesfromthethermalcamera areshowninFig.8.Ascanbeshown,anincreaseinthe num-berofholesincreasesthetemperature.Atbothfeedrates,as thenumberofholesincreases,thetemperatureincreasesas

(7)

Fig.8–Temperaturechangewithnumberofholes.

well.At0.08mm/revfeedrate,thetemperaturemeasuredas 40.2◦Cinthe360thhole,whileatthefeedrateof0.16mm/rev, thetemperaturewas56.7◦Cinthe360thhole.

3.3. Toolwear

Becauseofrapidwearandfailureofcuttingtool,itis possi-bletoencountersomeproblemslikeshortlifecycleoftool, poorhole quality,low cuttingefficacy,and high machining costs[37].Inthetoolweartestsperformedatdryand cryo-genicconditionsataconstant80m/mincuttingspeedand0.08 and0.16mm/revfeedrates,thewearonthedrillisvisualized withadigitalmicroscope.Animagewastakenfrom adrill inevery120holes(Fig.9).Indrydrillingcondition,excessive adhesionofAZ31magnesiumalloyonthedrillwasobserved. Intestsperformedundercryogeniccondition,theadhesionis

verylow,whileathighfeedratestheadhesionisalmost negli-gible.Toolweartestsconductedunderdryconditionresulted ingreater wearthan thoseincryogenic condition.In addi-tion,athigherfeedratesinbothcuttingconditions,morewear occurredcomparedtothetestsconductedatlowfeedrate.

3.4. Chipmorphology

Chipshapeisthemostsignificantfactoraffectingthe smooth-nessofametalcuttingprocess.Theprocesswillbesmoothas long aschipsare brokenand fragmentedinto smallpieces. However,asthechipsgetlarger,theycannotmovewellvia theflutesofthedrill,andthisincreasestorquerequirements. Moreover,itmaycausethedrillbittobreak.Yet,many duc-tilematerialsdonotbreakbutformcontinuouschipsduring drilling.Inordertoshowthechipshapedependingoncutting

(8)

Fig.9–Comparisonofthetoolwearobservedatdryandcryogeniccuttingprocess.

parameters(cuttingspeedandfeedrate),numberof subse-quentholes,dryandcryogenicconditions[43],thechipswere collectedandvisualizedinadigitalmicroscope(Keyence VHX-900F)aftereachexperiment.Specimenswererepresentedby digitalmicroscope by selecting samplesfrom the collected chips.Chipsformedat40and120m/mincuttingspeedsand 0.1,0.15,0.2and0.25mm/revfeedrateindryandcryogenic conditionsare giveninFig.10.Bothcuttingspeedandfeed rateshaveadominanteffectonchipformation.Asthe cut-tingspeedincreases,chipsareformedlongerinbothdryand

cryogenic cuttingconditions. Withincreasingfeedrate, the chipsbecomeshorterinbothcuttingconditions.Thechips formedincryogenicconditionareshorterthanthoseinthe drycuttingcondition.Inthetestscarriedoutunderdrycutting condition, withthe cuttingspeed increasedfrom 40m/min to120m/min, moretemperature wasgeneratedduring the cuttingprocess (Fig.7).Inthe testsperformedathigh cut-tingspeed,theincreasedtemperatureduringcuttingcaused thechiptoemergeinalongerform.Thefactthatthechips are longer shows that the chips is in ductile form.

(9)

Previ-Fig.10–Photographsofchipsobtainedatdifferentdrillingconditions.

ously,similarfindings arereportedinthe literature[30,43]. Becausethecuttingtemperaturedidnotgreatlyincreaseinthe testsperformedundercryogenicconditionatcuttingspeedof 120m/min,thechipsweregeneratedinamuchshorterform comparedtothoseformedinthedrycutting.Althoughitis mentionedintheliteraturethatmagnesiumalloyhasa ten-dencytoigniteathighercuttingspeed,nosuchsituationhas beenobservedinthisstudy.

360holeswasdrilledonAZ31magnesiumplateata con-stantcuttingspeedof80m/minand0.08and0.16mm/revfeed rate.Chips were collectedineach 120holes. Thisseriesof experimentswereperformedunderbothdryandcryogenic cuttingconditions. Thechipsformedafterthe experiments arecategorizedandgiveninFig.11.Withanincreaseinthe numberofholes,shapeofthechipsalsochanges.Thechip shapeforthefirst240holesindrycuttingconditionwasin theformofaspiral conewhichwas moreeasilyremoved. Afterthe240thhole,dependingonanincreaseinthethrust forceandwear,thechipthicknessdecreasedasthechippitch increased,thusribbonchips wereformed. Inthetests per-formedincryogenicenvironment,shorterchipsare formed becausethematerialbecomesbrittle.Toolwearwasthe fun-damentalreasonforthevariationofchipshapebasedonthe increaseinthenumberofholes[43].Undercryogenic condi-tion,asmallamountofdiscolorationwasobservedinthechips formedat0.16mm/rev feedrateforthe 360thhole.By per-formingdrillingtestsinacryogenicenvironment,thematerial changesfromductilemode tobrittlemode.Brittlematerial becomesmorerigidandharder.Muchmorepowerisneededto drillthehardermaterial.InSection3.1itwasmentionedthat testscarriedout undercryogenicconditiongeneratedmore thrustforcethanunderdrycutting.Moreplasticdeformation

occurredduringdrillingofthehardenedmaterialunderthe cryogenicprocess.Thishighplasticdeformationwasreflected intheformofthechip.

4.

Conclusion

Theeffect ofdippedcryogenic approachanddry condition on thrustforce,temperature, toolwearand chipformation indrillingofAZ31magnesiumalloywasinvestigated. • Inthetestsperformedunderbothdryandcryogenic

con-ditions,thethrustforcedecreases(about16%–27%)with increasing cutting speed; and the thrust force increases (about34%–54%)withanincreaseofthefeedrate.Drilling testsperformedinthecryogenicenvironmentincreasethe thrustforcesby32%–39%comparedtodrycutting.Intests performedunderdryandcryogenicconditions,inaddition, thethrustforcetendstoincreasewithincreasingnumber ofholes.

• Temperaturesinthedrillingprosesincreasedlinearlywith increasingbothcuttingspeedandfeedrate.Cuttingspeed hasadominanteffectonheatformation.Sparkandchip ignitionwerenotobservedevenathighcuttingspeeds dur-ingdrycutting.Anincreaseinthenumberofholesincreases thetemperature.

• Indrydrillingcondition, theAZ31magnesium alloyisin anexcessiveamountofadhesionstothedrill.Intests per-formedundercryogeniccondition,theadhesionisverylow, whileathighfeedratesitisalmostnegligible.Toolwear testsconductedunderdryconditionresultedingreatertool

(10)

Fig.11–Chipchangewithnumberofholes.

wear.Inaddition,athigherfeedratesinbothcutting con-ditions,morewearoccurred.

• Itisobservedthatthecuttingspeedisdominantonthechip formationandthechipsformedincryogenicconditionare shorterthanthechipsformedindrycuttingcondition.

Conflict

of

interest

Theauthorsdeclarenoconflictofinterest.

Acknowledgments

This work was supported by Commission of Scientific Research Projects of Karamanoglu Mehmetbey University, Karaman-Turkey(ProjectNo.04-YL-17).

Appendix

A.

Supplementary

data

Supplementary material related to this article can be found,intheonlineversion,atdoi:https://doi.org/10.1016/j. jmrt.2020.01.038.

r

e

f

e

r

e

n

c

e

s

[1]DineshS,SenthilkumarV,AsokanP,ArulkirubakaranD. Effectofcryogeniccoolingonmachinabilityandsurface qualityofbio-degradableZK60Mgalloy.MaterDes 2015;87:1030–6.

[2]DineshS,SenthilkumarV,AsokanP.Experimentalstudieson thecryogenicmachiningofbiodegradableZK60Mgalloy usingmicro-texturedtools.MaterManufProcess 2017;32(9):979–87.

[3]DillonOW,DeAngelisRJ,LuWY,GunasekeraJS,DenoJA. Theeffectsoftemperatureonthemachiningofmetals.J MaterShapTechnol1990;8(1):23–9.

[4]ZhaoZ,HongSY.Coolingstrategiesforcryogenicmachining fromamaterialsviewpoint.JMaterEngPerform

1992;1(5):669–78.

[5]BaloutB,SongmeneV,MasounaveJ.Anexperimentalstudy ofdustgenerationduringdrydrillingofpre-cooledand pre-heatedworkpiecematerials.JManufProcess 2007;9(1):23–34.

[6]KakinumaY,YasudaN,AoyamaT.Micromachiningofsoft polymermaterialapplyingcryogeniccooling.JAdvMechDes SystManuf2008;2(4):560–9.

[7]MishimaK,KakinumaY,AoyamaT.

Pre-deformation-assistedcryogenicmicromachiningfor fabricationofthree-dimensionaluniquemicrochannels.J AdvMechDesSystManuf2010;4(5):936–47.

(11)

[8] KakinumaY,KidaniS,AoyamaT.Ultra-precisioncryogenic machiningofviscoelasticpolymers.CIRPAnnManuf Technol2012;61(1):79–82.

[9] SongK,GangMG,JunMB,MinBK.Cryogenicmachiningof PDMSfluidicchannelusingshrinkagecompensationand surfaceroughnesscontrol.IntJPrecisEngManuf 2017;18(12):1711–7.

[10]DhokiaVG,NewmanST,CrabtreeP,AnsellMP.A methodologyforthedeterminationoffoamedpolymer contractionratesasaresultofcryogenicCNCmachining. RobotComputIntegrManuf2010;26(6):665–70.

[11]DhokiaVG,NewmanST,CrabtreeP,AnsellMP.Adiabatic shearbandformationasaresultofcryogenicCNC machiningofelastomers.ProcInstMechEngPartBJEng Manuf2011;225(9):1482–92.

[12]KokluU,MorkavukS.Cryogenicdrillingofcarbon fiber-reinforcedcomposite(CFRP).SurfRevLett 2019;26(09):1–11.

[13]PuZ,DillonOW,JawahirIS,PuleoDA.Microstructural changesofAZ31magnesiumalloysinducedbycryogenic machininganditsinfluenceoncorrosionresistancein simulatedbodyfluidforbiomedicalapplications.In:ASME 2010InternationalManufacturingScienceandEngineering Conference.AmericanSocietyofMechanicalEngineers. 2010.p.271–7.January.

[14]PuZ,OuteiroJC,BatistaAC,DillonOW,PuleoDA,JawahirIS. SurfaceintegrityindryandcryogenicmachiningofAZ31B Mgalloywithvaryingcuttingedgeradiustools.ProcediaEng 2011;19:282–7.

[15]PuZ,OuteiroJC,BatistaAC,DillonOW,PuleoDA,JawahirIS. EnhancedsurfaceintegrityofAZ31BMgalloybycryogenic machiningtowardsimprovedfunctionalperformanceof machinedcomponents.IntJMachToolsManuf 2012;56:17–27.

[16]PuZ,UmbrelloD,DillonOW,JawahirIS.Finiteelement simulationofresidualstressesincryogenicmachiningof AZ31BMgalloy.ProcediaCirp2014;13:282–7.

[17]PuZ,UmbrelloD,DillonOW,LuT,PuleoDA,JawahirIS. Finiteelementmodelingofmicrostructuralchangesindry andcryogenicmachiningofAZ31Bmagnesiumalloy.J ManufProcess2014;16(2):335–43.

[18]OuteiroJC,RossiF,FromentinG,PoulachonG,GermainG, BatistaAC.Processmechanicsandsurfaceintegrityinduced bydryandcryogenicmachiningofAZ31B-Omagnesium alloy.ProcediaCirp2013;8:487–92.

[19]NasrMN,OuteiroJC.Sensitivityanalysisofcryogeniccooling onmachiningofmagnesiumalloyAZ31B-O.ProcediaCirp 2015;31:264–9.

[20]BertoliniR,BruschiS,GhiottiA,PezzatoL,DabalàM.The effectofcoolingstrategiesandmachiningfeedrateonthe corrosionbehaviorandwettabilityofAZ31alloyfor biomedicalapplications.ProcediaCirp2017;65:7–12. [21]SivaiahP,ChakradharD.Influenceofcryogeniccoolanton

turningperformancecharacteristics:acomparisonwithwet machining.MaterManufProcess2017;32(13):1475–85. [22]KheireddineAH,AmmouriAH,LuT,DillonOW,HamadeRF,

JawahirIS.Anexperimentalandnumericalstudyofthe effectofcryogeniccoolingonthesurfaceintegrityofdrilled holesinAZ31BMgalloy.IntJAdvManufTechnol

2015;78(1–4):269–79.

[23]KheireddineAH,AmmouriAH,LuT,JawahirIS,HamadeRF. AnFEManalysiswithexperimentalvalidationtostudythe hardnessofin-processcryogenicallycooleddrilledholesin MgAZ31B.ProcediaCirp2013;8:588–93.

[24]BhowmickS,LukitschMJ,AlpasAT.Dryandminimum quantitylubricationdrillingofcastmagnesiumalloy(AM60). IntJMachToolsManuf2010;50(5):444–57.

[25]WangJ,LiuYB,AnJ,WangLM.Wearmechanismmapof uncoatedHSStoolsduringdrillingdie-castmagnesiumalloy. Wear2008;265(5-6):685–91.

[26]BerzosaF,deAgustinaB,RubioEM.Toolselectionindrilling ofmagnesiumUNSM11917piecesunderdryandMQL conditionsbasedonsurfaceroughness.ProcediaEng 2017;184:117–27.

[27]GariboldiE.DrillingamagnesiumalloyusingPVDcoated twistdrills.JMaterProcessTechnol2003;134(3):287–95. [28]KaracaF,AksakalB.EffectoftheTIBNcoatingonaHSSdrill

whendrillingtheMA8MMgalloy.MaterTehnol 2016;50(1):75–9.

[29]BalamuruganK,UthayakumarM,KumaranST,SamyGS, PillaiUTS.DrillingstudyonlightweightstructuralMg/SiC compositefordefenceapplications.DefTechnol2019. [30]SunilBR,GaneshKV,PavanP,VadapalliG,SwarnalathaC,

SwapnaP,etal.Effectofaluminumcontentonmachining characteristicsofAZ31andAZ91magnesiumalloysduring drilling.JMagnesAlloy2016;4(1):15–21.

[31]http://www.matweb.com/search/datasheet.aspx?matguid= d1e286e1ac0742358544b953bbf3c2e9&ckck=1.

[32]AydınM,KarakuzuC,Uc¸arM,CengizA,C¸avus¸luMA. Predictionofsurfaceroughnessandcuttingzone temperatureindryturningprocessesofAISI304stainless steelusingANFISwithPSOlearning.IntJAdvManuf Technol2013;67(1-4):957–67.

[33]MorkavukS,KöklüU,Ba ˘gcıM,GemiL.Cryogenicmachining ofcarbonfiberreinforcedplastic(CFRP)compositesandthe effectsofcryogenictreatmentontensileproperties:a comparativestudy.ComposPartBEng2018;147:1–11. [34]KaraF,TakmazA.OptimizationbytheTaguchimethodof

effectonthesurfaceroughnessofcryogenictreatment appliedtocuttingtools.MaterialTesting2019;61(11):1101–4. [35]EzugwuEO,BonneyJ,YamaneY.Anoverviewofthe

machinabilityofaeroenginealloys.JMaterProcessTechnol 2003;134(2):233–53.

[36]SeahKHW,SharmaSC.Machinabilityofalloyed austemperedductileiron.IntJMachToolsManuf 1995;35(10):1475–9.

[37]BasmaciG,YorukA,KokluU,MorkavukS.Impactof cryogenicconditionanddrilldiameterondrilling performanceofCFRP.ApplSci2017;7(7):667. [38]XiaT,KaynakY,ArvinC,JawahirIS.Cryogenic

cooling-inducedprocessperformanceandsurfaceintegrity indrillingCFRPcompositematerial.IntJAdvManufTechnol 2016;82(1–4):605–16.

[39]HongSY,DingY,JeongWC.Frictionandcuttingforcesin cryogenicmachiningofTi–6Al–4V.IntJMachToolsManuf 2001;41(15):2271–85.

[40]Uc¸akN,C¸ic¸ekA.Investigationoftheeffectsofcryogenic coolingondrillingperformanceindrillingofInconel718 superalloy.JFacultyEngArchitectGaziUniv

2019;34(3):1242–52.

[41]KumarD,GururajaS.ExperimentalinvestigationofCFRP/Ti stackdrillingundercryogeniccondition.In:International ConferenceonCompositeMaterialsandStructures-ICCMS. 2017.Hyderabad,27–29thDecember.

[42]KaraF,C¸ic¸ekA,DemirH.MultipleregressionandANN modelsforsurfacequalityofcryogenically-treatedAISI 52100bearingsteel.JBalkanTribologAssoc

2013;19(4):570–84.

[43]KokluU,MorkavukS,UrtekinL.Effectsofthedrillflute numberondrillingofacastedAZ91magnesiumalloy.Mater Test2019;61(3):260–6.

Şekil

Table 1 – Mechanical properties of AZ31 magnesium alloy [31]. Tensile strength (MPa) Yield strength(MPa) Elongation% HardnessHB Machinability% 290 220 15 73 100
Table 2 – Chemical composition of AZ31 magnesium alloy [31].
Fig. 4 – Thrust force variations with cutting speed under dry and cryogenic conditions.
Fig. 6 – Comparison of the thrust force obtained at dry and cryogenic conditions.
+5

Referanslar

Benzer Belgeler

Alındığı tarih (Received): 02.12.2013 Kabul tarihi (Accepted): 10.02.2014 Online Baskı tarihi (Printed Online): 11.02.2014 Yazılı baskı tarihi (Printed): 21.03.2014

[r]

İndirekt bilirubin değerinin doğum şekli açısından karşılaştırılması (Mann Whitney); Doğum şekli sezaryen ile vajinal olan bebeklerin indirekt bilirubin değerleri arasında

The aim of the present study was to investigate and compare the impact of the breeding (BS) and non-breeding (NBS) seasons on scrotal circumference, and native and post-thaw

With the increase of annealing time and establishment of correlation between the tetragonal precipitates dissipation capacity of the alloy increases, and there is a strong

Tablo 3.5 İşletme Türü İle “Bölgenin Ekonomik Hayatında Turizm Sektörü Diğer Sektörlerden Daha Önemlidir” Arasındaki İlişki ...128.. Tablo 3.6 İşletme Türü

Prior nose surgery, coexistence of nasal obstruction or nasal deformity, previous cosmetic proce- dures, complications, and patient satisfaction were analyzed.. All of the

A more general version of this problem is known as the parallel (identical, non-dedicated) machine scheduling problem with a single server, P2S1/ / C max.. Both Glass