• Sonuç bulunamadı

Atomic force microscopy for the investigation of molecular and cellular behavior

N/A
N/A
Protected

Academic year: 2021

Share "Atomic force microscopy for the investigation of molecular and cellular behavior"

Copied!
17
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Micron89(2016)60–76

ContentslistsavailableatScienceDirect

Micron

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r o n

Review

Atomic

force

microscopy

for

the

investigation

of

molecular

and

cellular

behavior

Alper

D.

Ozkan,

Ahmet

E.

Topal,

Aykutlu

Dana,

Mustafa

O.

Guler,

Ayse

B.

Tekinay

BilkentUniversity,UNAM-InstituteofMaterialsScienceandNanotechnology,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4May2016 Accepted27July2016 Availableonline29July2016 Keywords:

Atomicforcemicroscopy Biomacromolecules Mechanicalcharacterization Cells

a

b

s

t

r

a

c

t

Thepresentreviewdetailsthemethodsusedforthemeasurementofcellsandtheirexudatesusingatomic forcemicroscopy(AFM)andoutlinesthegeneralconclusionsdrawnbythemechanicalcharacterizationof biologicalmaterialsthroughthismethod.AFMisamaterialcharacterizationtechniquethatcanbe oper-atedinliquidconditions,allowingitsusefortheinvestigationofthemechanicalpropertiesofbiological materialsintheirnativeenvironments.AFMhasbeenusedforthemechanicalinvestigationofproteins, nucleicacids,biofilms,secretions,membranebilayers,tissuesandbacterialoreukaryoticcells;however, comparisonbetweenstudiesisdifficultduetovariancesbetweentipsizesandmorphologies,sample fixationandimmobilizationstrategies,conditionsofmeasurementandthemechanicalparametersused forthequantificationofbiomaterialresponse.AlthoughstandardprotocolsfortheAFMinvestigation ofbiologicalmaterialsarelimitedandminordifferencesinmeasurementconditionsmaycreatelarge discrepancies,themethodisnonethelesshighlyeffectiveforcomparativelyevaluatingthemechanical integrityofbiomaterialsandcanbeusedforthereal-timeacquisitionofelasticitydatafollowingthe introductionofachemicalormechanicalstimulus.Whileitiscurrentlyoflimiteddiagnosticvalue,the techniqueisalsousefulforbasicresearchincancerbiologyandthecharacterizationofdiseaseprogression andwoundhealingprocesses.

©2016ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...60

2. Effectofprobemorphology,compositionandsurfacechemistry...61

3. Atomicforcemicroscopyofunicellularorganisms...62

3.1. Bacterialcellsurfaces...62

3.2. Bacterialsecretions,exudatesandbiofilms ... 64

4. Atomicforcemicroscopyofmammaliancellsandtissues...64

4.1. Cancerdiagnosisandcharacterization ... 67

4.2. Diagnosisofotherdiseases ... 69

4.3. Stemcelldifferentiation...70

4.4. Extracellularsecretionsandtissuemicroenvironments ... 71

5. Futuredirections...71

References...73

1. Introduction

Bothuni-andmulticellularorganismscoordinatetheirbehavior usinganetworkofchemical,electricalandmechanicalsignals,and employavarietyofsensorymechanismstoperceiveandrespond

∗ Correspondingauthor.

E-mailaddress:atekinay@bilkent.edu.tr(A.B.Tekinay).

tointernalorexternalregulatorycues(Riccaetal.,2013;Johnson, 2013).Inunicellularorganisms,suchsignalsmayassistin feed-ing,attractingconspecifics,synchronizingreproductivecyclesor initiatingdefensemechanismsinahostileenvironment(Dufour andLevesque,2013);whilemulticellularlifeutilizescell signal-ingnetworkstoregulatecellrecruitment,adhesion,differentiation, proliferationanddeath(WattandHuck,2013;Ravichandran,2003; Zoranovicetal.,2013;JaenischandBird,2003;OwensandWise, 1997).Asthelattercategoryofprocessesareintegraltosustain complexlife,thecharacterizationofregulatorysignalsisofgreat http://dx.doi.org/10.1016/j.micron.2016.07.011

(2)

A.D.Ozkanetal./Micron89(2016)60–76 61 importancetothemedicalandbiologicalsciences,andmuchwork

hasbeenperformedtoelucidatethelinksbetween environmen-talcuesandcellularprocesses(Andoetal.,2013;Carvalhoetal., 2013;Dorobantuetal.,2012).However,whilethechemicaland biological environment of cells are relatively well-defined, the mechanicalpropertiesofcellsandtheirimmediateenvironment areinvestigatedonlytoalesserdegree;partlybecauseofthehigh complexityandvariabilityofthemechanicalinteractionsexhibited bycells andpartly duetolimitationsassociated withthe high-resolutionmechanicalprobingofcellsurfacesandinteriors(Cohen andKalfon-Cohen,2013).Nonetheless,considerableefforthasbeen spenttoestablishhowcellsperceiveandactuponthephysical char-acteristicsofnearbysubstrates(Shaoetal.,1996),andtodetermine howthemechanicalpropertiesofcellsandtissuesarealteredin responsetodiseasestateorenvironmentalfactors,usingmaterial characterizationtoolssuchasmagnetictwistingcytometry,optical tweezers,microneedleprobes,scanningacousticmicroscopyand atomicforcemicroscopy(NeumanandNagy,2008).

Atomicforcemicroscopy(AFM)isacharacterizationtoolthat measures the topology and material properties of surfaces by recordingthedeflectionofametallicprobe(or“tip”)asitmoves overthetargetsurface.AFMcanbeoperatedunderthree princi-palmodes:Incontactmode,thetipisdraggeddirectlyoverthe surfaceanddeflectsawayduetoarepulsiveCoulombic interac-tion,while in non-contact modeit is held at a short(typically <100nm)distanceoverthesampleandoscillatesatafrequency thatdependsontheattractivevanderWaalsforcesactingupon it.Intappingorintermittentcontactmode,thetipiskept oscil-latingabovethesample,andtheoscillationfrequencychangesas thetipapproachesthesurfaceatregularintervals(Giessibl,2003). Contactand intermittentmodesareparticularlysuitableforthe probingofbiologicalsamples,duetotheirapplicabilityinliquid media(Danino,2008).Despiteconsiderablelossesinresolution,a liquidsampleenvironmentallowscellularimaginginanative(or pseudo-native)environmentand,moreimportantly,permitsthe directinvestigationofmechanicalchangesonalivecellsurfacein responsetoanintroducedstimulus(Liuetal.,2005).Time-lapse elastographstakeninthisfashionhavebeenutilizedforadiverse arrayofapplications,includingtovisualizetheformationof amy-loid(Harperetal.,1997)orcollagen(Revenkoetal.,1994)fibers underdifferentenvironmentalconditions,determinehow mem-braneintegrityisalteredin thepresenceofantibiotics(Fantner etal.,2010a),orrecordtheproductionanddissolutionof cytoskele-talelementsduringcellmovement(RotschandRadmacher,2000). Inaddition,itispossibletoutilizetheAFMtipasastimulusto elicitaresponsefromthetargetcell,andtheprobeitselfcanbe functionalizedwithligandmoleculestodeterminetheaffinityof thecellmembranetoaparticularbiologicalmoiety.

DuetotheversatilityandpotentialapplicationareasofAFM, thetechniquehasattractedsubstantialinterestinbiomechanical research,andhasbeenusedinthecharacterizationofagreat vari-etyoftissues,cellsandsub-cellularstructuresinbothlivecondition andfollowingfixinganddrying.Thepresentreviewaimstocover thosestudiesthatfocusonthedifferencesinmechanicalproperties associatedwithpathologicalconditionsorchangesin environmen-talcues,andemphasizestheimportanceofthemechanicalUmwelt inmodulatingthebehaviorofbothsingle-celledandmulticellular systems.

2. Effectofprobemorphology,compositionandsurface chemistry

BeforediscussingtheAFMimagingofbiologicalmaterials,the importanceofAFMtipchoiceshouldbeunderlined.The diame-ters,materials,morphologiesandcantileverlengthsofcommercial

AFMprobesshowconsiderablevariance,andoptimalperformance requirestheuseofaprobeconductivetothetaskathand.The com-positionofthesamplematerialshouldbetakenintoconsideration tochoosethespringconstantoftheAFMprobe,assoftermaterials, suchascells,maybedamagedoverrepeatedcontactwiththeAFM tip(Costa,2003).Inaddition,dependingontheareatobescanned, itmaybedesirabletoincreaseordecreasethetipdiameter.Larger tipsareassociatedwithlowerresolution,butcanbeutilizedtoscan largersampleareaswithoutcompromisingtipintegrity,assharper tipsmayexperiencesignificantwearoverlongscanningdistances, suchaswhenscanningcells.Ontheotherhand,sharpertipsare capableofresolvingsmallerfeaturestoagreaterextent,whichis invaluablewhenmeasuringproteinsandothernanoscale biolog-icalmaterials.Consequently,differencesinmaterialstiffnessthat areevidentundernanoscaleinvestigationmaybeunmeasurable usingmicroscaletips(Stolzetal.,2009a).Ifadhesiondataistobe collected,thematerialandmorphologyoftheAFMtip(alongside substrateproperties)alsodeterminesthesuitablemodelforusein elasticitycalculations(Fig.1).

AFMprobescanalsobefunctionalizedinordertocharacterize theinteractionbetweentwospecifictypesofbiologicalmoieties, suchasbetweenareceptoranditsligand.Thistypeofinteraction isbestexemplifiedbybiotinandavidin,usedbyColtonetal.in theirhallmarkpapertoillustratethepossibilityofusingAFMto directlyevaluatethestrengthofmolecularinteractions(Leeetal., 1994).Mechanicalpropertiesofawidevarietyofproteinshavenow beenelucidated,includingtheinteractionsbetweenantibodiesand theircorrespondingantigens(Allenetal.,1997),actinandmyosin (Koderaetal.,2010),osteopontinandintegrin(Leeetal.,2007),and variouscelladhesionproteoglycans(Dammeretal.,1995).Such proteinscaneitherbecovalentlytetheredtothetargetmaterial (Ebneretal.,2007;Kamruzzahanetal.,2006)orattachedbydrying theproteinsampleonthesurface(Florinetal.,1995).Inaddition, themechanicalstrengthoftheconstituentdomainsofasingle pro-teincanbeevaluatedbyattachingthatproteintoasurfaceand usingtheAFMtiptostretchit(Lietal.,2003).Thisresultsinthe gradualunfoldingoftheprotein,andtheunwindingofeachdomain isassociatedwithamomentarydropinforce.Tensile characteris-ticsoftheimmunoglobulinandfibronectinIIIdomainsoftitinwere investigatedusingthismethod(Riefetal.,1998),andtheabilityof thebacterialribonucleasebarnasetowithstandforcewaslikewise evaluatedbyincorporatingthisproteinintoachimericconstruct consistingoffourTII27and threebarnasesubunits(Bestetal., 2001).

DNAandRNAcanalsobeimmobilizedandcharacterizedina similarmanner,andthemechanicalinvestigationofDNAmolecules ofvaryinglengthsandconfigurationshasbeenperformedusing AFM(Maoetal.,1999; Hansmaetal.,1995).In additiontothe determinationofcovalentbondstrengthinssDNAordsDNA,itis alsopossibletoevaluatethestrengthofthebondsbetween com-plementarystrandsinashortdsDNApiece,ortodeterminethe forcesnecessarytostretchanintactDNAmolecule(Hansmaetal., 1996).High-resolutionAFMimagingcanalsobeusedto character-izethephysicalstructureofaDNAhelix(Fig.2),andmorecomplex DNAarchitecturesandDNA–proteininteractionscanbevisualized andcharacterizedusingatomicforcemicroscopy.Yanevaetal.,for example,confirmedthatDNA-dependentproteinkinase(DNA-PK) canbindtoDNAwithouttheassistanceofKuproteins,andthatthe lattershowsatime-dependentpreferenceforstrandends,by visu-alizingDNA-KuandDNA-DNA-PKinteractionsusingAFM(Yaneva etal.,1997).Theaffinitybetweencellsandspecificproteinscanalso beassessedbyindentingthecellofinterestwithanAFMtip func-tionalizedwiththeproteinofinterest(Hanetal.,1995).Gaubetal. reportedamethodtodistinguishbetweenindividualredbloodcell originsinamixtureofA-andO-grouperythrocytes,usinganAFM tipfunctionalizedwithHelixpomatialectin(Grandboisetal.,2000).

(3)

62 A.D.Ozkanetal./Micron89(2016)60–76

Fig.1. Comparisonofmicro-andnanoindentationfortheidentificationofchangesassociatedwithaginginthecartilageofC57BL/6mice.Microindentationresultscould detectnodifferencebetween1,10and19-montholdindividuals,whilenanoindentationwasabletodeterminethatthecartilageelasticityofnon-arthriticmicechanges withage.ReplicatedwithpermissionfromStolzetal.(2009b).

Fig.2. AFMtopographyofaplasmid,showingthegeneralappearanceoftheDNA helixundervaryingpeakforces(a–d).Minorandmajorgroovescanbeobserved inAFMimages(a–d,insets),andtheDNAstructurecanbecompressedunderhigh peakforces(e,f).Whitearrowdenotesadislocationinaplasmidloopcreatedby highloadforces.ReplicatedwithpermissionfromPyneetal.(2014).

Thislectindisplaysstrongaffinitytoglycolipidsthatarepresentin themembranesofA-groupbutnotO-grouperythrocytes,resulting inhigherruptureforcesassociatedwiththeformer.Thedifferences

inadhesiveforcesarethenutilizedtocreateamapwhereindividual A-andO-groupcellscanbeidentified.

3. Atomicforcemicroscopyofunicellularorganisms

ArepresentativeselectionofAFMstudiesonthestiffness char-acterizationofbacteria,yeastsandcellularsecretionsisprovided inTable1.Itisreadilyevidentthatseveralmeansofsample prepa-ration are available for measurement, and that values suchas tip-sampleadhesion,F-dcurveslopesandcellularspringconstants canallbeusedtocomparethemechanicalintegritiesofbiological samples;consequently,onlythesestudiesdetailingthefullrange ofmeasurementconditionswereincludedintothetable.Bothair andliquidimaginghavebeenperformedformechanical investi-gations;however,biologicalmaterialsareoftenviscoelasticand maydisplaylargechangesinelasticbehaviordependingon envi-ronmentalhumidity.Assuch,samplesinairtendtohavemuch largerYoung’smodulicomparedtosamplesimagedinliquids(e.g. a10-folddifferencewasobservedinbetweentheelasticmoduliof air-driedandrehydratedmurinesacculifromEscherichiacoli(Yao etal.,1999)).Given thedifferences inmeasurementtechniques andsamplepreparationmethods,aswellasthenaturalvariance inthematerialpropertiesofbacterialcellsandtheirsecretions,it isusuallypreferabletocompareresultswithinstudiesratherthan assumingagivenstiffnessvaluewillapplyunderother experimen-talconditions.

3.1. Bacterialcellsurfaces

Unlikemanyvertebratecelllines,bacterialcellsarenot depen-dentonahighlyspecificsetofenvironmentalconditionstosurvive, andcantolerateextendedAFMimagingsessionswithout detrimen-taleffects(Ramanetal.,2011;Franciusetal.,2008).Theireaseof procurement,non-demandinggrowthconditionsandthefactthat manylaboratoryspecieseitherare,orserveasmodelsfor,common pathogensmakebacteriapopulartargetsforAFMimaging. Bacte-riamustbeimmobilizedpriortoimaginginliquidmedia,astheir mobilityotherwisemakesitimpossibletoimage,andeven ses-silebacteriacanbelaterallypushedbytheAFMtip(Doktyczetal., 2003).Immobilizationcanbeperformedbydryingandrehydrating, electrostaticbindingtoapositivelychargedsurface(e.g.gelatinor

(4)

A.D. Ozkan et al. / Micron 89 (2016) 60–76 63 Table1

Mechanicalcharacterizationofmembranes,secretionsandsingle-celledorganismsbyAFM.

Sample Tipproperties Imagingconditions Elasticproperties Reference

Sulfate-reducingbacteria Siliconnitride,k=0.06N/m(nominal) Contactmode,air,sampleonmica (Adhesion)−3.9to−4.3nNatcellsurface,−5.1 to−5.9nNatcell-substrateboundary,−6.5to −6.8nNatcell–cellboundary

Fangetal.(2000)

EnteroaggregativeEscherichiacoli, wild-typeanddispersinmutant

Silicon,k=2.8N/m(nominal) Contactmode,liquid(distilledwater)andair, sampleongelatin-treatedmica

(F-dslope)0.133forwild-typestrainonagar, 0.069forwild-typestraininbroth,0.81for dispersinmutantonagar,0.78fordispersin mutantinbroth

Beckmannetal.(2006)

Bacillussubtilis,Micrococcusluteus, Pseudomonasputida,twostrainsof Escherichiacoli

Siliconnitride,k=0.32N/m(nominal) Contactmode,liquid(HMbuffer),sampleon APTEScoverslip

(Springconstant)variesbetween0.16±0.01to 0.41±0.01,higherinGram-positivecells

Volleetal.(2008)

Pseudomonasaeruginosa Siliconnitrideandsiliconnitridewithsilicon oxidetips,k=0.07±0.01(calibratedbythe thermalmethod)

Contactmode,liquid(milliQwater),sampleon poly-l-lysine-coatedglass

(Springconstant)0.044±0.002N/mfor unfixed,0.11±0.03N/mfor

glutaraldehyde-fixedcells;creepdeformation behavioralsoinvestigated

Vadillo-Rodriguezetal.(2008)

Klebsiellaterrigena Siliconnitride,k=0.06N/m(nominal) Contactmode,liquid(potassiumphosphate bufferatpH6.8),sampleonpolycarbonate membranefilter/poly-l-lysine-coated glass/immobilizedontipbygluteraldehyde fixation

(Adhesion)−0.26±0.05nNformembrane filter,−0.5±0.2forpoly-l-lysine,−35±2nN forgluteraldehydefixation,otheradhesion parametersalsomeasured

Vadillo-Rodriguesetal.(2004)

TwoStreptococcussalivariusstrains Siliconnitride,k=0.03N/m(nominal) Contactmode,liquid(deionizedwateror0.1M KClsolution),sampleonpolycarbonate membranefilter

(Adhesionandrepulsion)Fibrillatedstrain showsalargerrepulsionrange,interpretedto reflectthelayeroffibrils;retractionresultsin threeadhesionforcespotentially

correspondingtothreedifferentlengthsof fibrilsobservedbyelectronmicroscopy

vanderMeietal.(2000)

Desulfovibriodesulfuricans, Pseudomonassp.andan unidentifiedlocalmarineisolate

Siliconnitride,k=0.12±0.02N/m(calibrated bythethermalmethod)

Contactmode,liquid(artificialseawater), samplecoatedontipandbroughtinto interactionwithmetals

(Adhesion)Allthreeisolatesadhereto aluminumbetterthanmildsteel,stainless steel316andcopper;Desulfovibrioand Pseudomonasadherebetterthanthemarine isolate.

Shengetal.(2007)

B.mycoides Silicon,k=0.064N/mand0.4N/m Contactmode(constantheight),liquid (0.145MNaCl),samplecoatedontipand broughtintointeractionwithglass

(Adhesion)7.4±3.7nNofadhesionto hydrophilicglasssurface,49.5±14.42nNof adhesiontohydrophobic-coatedglasssurface

Bowenetal.(2002)

Marinebacterialdepositions Silicon,k=45.7N/m(calibratedbytheadded massmethod)

Tappingmode,air,sampledepositedon fluoridatedandnon-fluoridatedpolyurethane

(Young’smodulus)between1.5and2.2GPa Bakkeretal.(2003)

Bacterialdepositions,suspectedto beextracellularpolymeric substances

Siliconnitride,kvariesfrom0.03to0.5N/m (nominal)

Contactmode,liquid(MilliQwater),sample depositedonpolystrene

(Adhesion)Forcesof0.8±0.2nNobservedover barepolystyrene,asopposedto0.2±0.2nN aftercellattachment

vanderAaandDufrene(2002)

P.aeruginosapili Siliconnitride,0.008±0.004N/m Contactmode,liquid(water),sampleattached topoly-l-lysine-coatedtipsandbroughtinto interactionwithmicasurface

(Adhesion)Ruptureforcesof95pNduring retraction.

Touhamietal.(2006)

E.colibiofilms Siliconnitride,k=0.07-0.4N/m Contactmode,air,sampledepositedonglass (Adhesion)Pull-offforcesof122.65pNfor cell-tipinteractionand51.79pNforglass-tip interaction

Ohetal.(2007)

Bacterialcellulosefibers Siliconnitridek=1.03±0.05N/m(calibrated bythethermalmethod,nominalkof0.5N/m notusedduetolargediscrepancy)

Contactmode,air,sampleonsilicon nitride-coatedsilicongrating

(Young’smodulus)78±17GPa Guhadosetal.(2005)

E.coliandE.colispheroplasts Siliconnitride,k=0.1and0.01N/m(nominal, actualspringconstantscalibratedbythe thermalmethod)

Contactmode,liquid(TBS2buffer),sampleon APTES/Glutmica

(Springconstant)0.194N/mforintactcells, 0.571N/mforfixedspheroplasts

Sullivanetal.(2007)

Saccharomycescerevisiae Siliconnitride,k=0.008±0.4N/m(calibrated bythethermalmethod)

Contactmode,liquid(milliQwater),sampleon polycarbonatemembranefilter

(Young’smodulus)6.1±2.4MPaonbudscar, 0.6±0.4MPaonsurroundingcellwall

Touhamietal.(2003)

Aspergillusnidulans Siliconnitride,k=0.47±0.06N/m(calibrated bythethermalmethod)

Contactmode,liquid(PBS),sampleon poly-l-lysine-coatedglass

(SpringconstantandYoung’smodulus) 0.29±0.02N/mand110±10MPafor wild-typehyphaeincompletemedium, decreasesformutantstrainlackingachitin synthesisgene,aswellasinthepresenceof 0.6MKCl.

(5)

64 A.D.Ozkanetal./Micron89(2016)60–76 poly-l-lysine),entrapmentinadhesiveproteins,covalentbinding

toamino-orcarboxyl-functionalizedsurfacesorbyphysical con-finementinmicrowellsorporousmembranes(Doktyczetal.,2003; Suoetal.,2008).Itshouldbekeptinmindthattheimmobilization methodmayalterthesurfacepropertiesoftheentrappedcells,e.g. bydirectlyalteringthebacterialsurfacechemistryortriggeringa defensemechanismagainsttheenvironmentalstressesassociated withtheimmobilizationtechnique.Duetothesmallsizesof bacte-ria,itisalsopossibletofunctionalizeAFMtipswithbacterialcells, whichcanthenbeusedtotesttheinteractionbetweenthe bac-teriumandmaterialsurfaces.Tingetal.,forexample,usedsuchtips toshowthattheGram-negativebacteriaMassiliatimonaeand Pseu-domonasaeruginosaadherebettertostainlesssteelsurfacesthan doestheGram-positiveBacillussubtilis(Harimawanetal.,2011).

AFMstudiesofbacteriafrequentlyfocusonthemechanismsby whichcertainmoleculesinhibitthegrowthofpathogens. Many antibiotics(e.g.beta-lactamantibiotics,polymyxinsand glycopep-tideantibiotics)actbyinhibitingthesynthesisofbacterialcellwalls ormembranes,andtherebyalterthemembraneintegrityofthe affectedbacteria.Otherantibiotic-mediatedeffects,suchas mem-branethinning(Meckeetal.,2005)orporeformation(Mulleretal., 1999),canalsobeobservedbyAFM,andtheeffectsofless con-ventionalantibiotics,suchasplantextracts(Perryetal.,2009)and peptidesequences(daSilvaandTeschke,2005;Meinckenetal., 2005),canalsobeassessed(Fig.3).TheantimicrobialpeptidePGLa hasbeendemonstrated tolowerthestiffness ofEscherichiacoli membranesandcreatemicelle-likestructuresaroundcell mem-branespriortotheireventualrupture,whilegarlicextractwasalso associatedwithmembranedisruption.Chitosanand chitooligosac-charides(COSs)werealsotestedfortheirantimicrobialeffecton E.coliandStaphylococcusaureus,andthethickpeptidoglycanwallof S.aureuswasfoundtoallowthisbacteriumtobetterretainits over-allmorphology,despiteexperiencingasignificantdecreaseincell rigidity(Fernandesetal.,2009).Whiletheeffectsofantibacterial moleculesmaybeapparentevenunderdryimaging,itisalso possi-bletoquantifytheresultingchangesinatime-dependentmanner bycharacterizingthemechanicalpropertiesofbacterialcellsin liq-uidbeforeandafterintroducingtheantibioticinquestionintothe medium(Fantneretal.,2010a).Thistechniquehastheadvantageof ensuringthatthechangesobservedarefullyduetotheantibiotic,as opposedtoacombinationofitandthedryingprocess,asbacterial cellwallsareviscoelasticandmaygreatlyaltertheirmechanical propertiesinresponsetorelativehumidity(ThwaitesandSurana, 1991).

Avarietyofsubcellularelementscanalsobeidentifiedon mem-branesurfacesusingAFM.Bothbacterialandeukaryoticcellscan beusedintheseefforts,andlipidbilayerscanbesubstitutedas simplifiedmodelsofcellmembranes(Buttetal.,1990;Kuznetsov andMcPherson,2011).Thestructureandfunctionofmembrane proteins(Buttetal.,1990;Fotiadisetal.,2003;Yuanetal.,2002), porecomplexes(Stoffleretal.,1999),gapjunctions(LalandJohn, 1994),amyloidaggregates(Connellyetal.,2012)andavarietyof membrane-componentlipids(Gyorvaryetal.,2003a),aswellas themodeofactionofcholeratoxin(Mouetal.,1995),were inves-tigatedbyatomicforcemicroscopy.Ofparticularinterestarethe recentdevelopmentsinAFM-basedrapid,high-resolutionimaging methods,whichhavegrantedsubstantialinsightintothenature ofsmallsurfaceelements.Processessuchastheself-assemblyof bacterialS-layerproteins(Gyorvaryetal., 2003b), protein fold-ing(Mulleretal.,2002),misfolding(Oberhauseretal.,1999)and crystallization(Reviakineetal.,1998)events,themotionof “walk-ing”proteins(Preineretal.,2014)anddrug-membraneinteractions (Berquandetal.,2004)havebeenthesubjectofreal-timeimaging studies.

3.2. Bacterialsecretions,exudatesandbiofilms

Itiswell-knownthatcellsinmulticellularorganismsenhance theirsurvivalandcoordinationthroughtheproductionofan extra-cellularmatrix;however, this property isnot unique tohigher eukaryotes. Bacteria also secrete proteins, polysaccharides and quorumsensingmoleculesthatrelayinformationbetween con-specificcellsandserveasabufferagainstenvironmentalstresses. Inaddition,thesurfaceattachmentof bacteriaisalsomediated byextracellulardepositions,theadhesioncapacitiesofwhichcan bemeasuredthroughAFM. Colanicacidproduction andsurface lipopolysaccharidelengths,forexample,werepreviously demon-stratedtodeterminethestrengthofattachmentofE.colicells,as colanicacid-overproducingmutantswerefoundtoexhibitstronger attachmentwhileshortersurfacelipolysaccharideswere associ-atedwithalackofadhesivecapacity(Razatosetal.,1998).

BacterialbiofilmsarealsoofspecialinterestwithregardstoAFM characterization.Biofilmsareextracellularpolysaccharidesthatare secretedtofacilitatetheattachmentofbacteria(orotherunicellular organisms)toasurface,andprotecttheadheringcellsagainst hos-tileenvironmentalfactorssuchasantibiotics,detergentsandheavy metals(Daviesetal.,1998).Biofilmsareundesirableelementsin manysettings,andsuitablemeanstoinhibittheirformationis nec-essarytopreventpotentialhealthhazardsinfood,agriculturaland medicalindustries.Assuch,themechanicalpropertiesofbiofilms, as wellasthe mechanismsby which antifoulingmolecules act againstbiofilmproduction,havebeeninvestigatedbyusingAFM and othermechanical characterizationtechniques(Beech etal., 2002;ArnoldandBailey,2000).Corrosiondamageandadhesive capacity of biofilms on a variety of metal surfaces have been detailed intheliterature: Holdenet al.reportthat unsaturated andliquid-grownbiofilmsofPseudomonasputidarespond differ-entlytodrying,suggestingthatthebiofilmcompositionisaltered foroptimalgrowthindryandwetenvironments(Auerbachetal., 2000).Inanotherreport,Tayetal.detailtheeffectofsilverions onStaphylococcusepidermidisbiofilmsandproposeamechanism throughwhichsilverdestabilizesthebiofilmstructurebybinding to the electron donor groups provided by the biofilm compo-nents,therebyweakeningthehydrogenbondsthatholdthebiofilm matrixtogether(Chawetal.,2005).

4. Atomicforcemicroscopyofmammaliancellsandtissues AselectionofAFMstudiesonthestiffnesscharacterizationof eukaryoticcellsandtissuesisprovidedinTable2.AFMof mam-maliancellsandtissuesisoftenundertakenfordiseasediagnosis orstemcelldifferentiationstudies,asdiseasedtissuesoftendisplay mechanicalcharacteristicsdistinctfromtheirhealthycounterparts and stem cells are widely known to alter their differentiation pathwaysand mechanicalcharacteristicsdependingonexternal stimuli.Consequently,AFMofcancerandstemcellscanprovide greaterinsightintothepathwaysrequiredforeventssuchas metas-tasisandlineagecommitment.However,measurementofthese samplesismoredifficultthansingle-cellularorganismsor non-livingbiologicalmaterialssuchasbiofilmsandothersecretions,as mammaliancellsrequireaspecificsetofenvironmentalconditions tosurviveandenvironmentalstresscanhaveamajorimpacton theirmechanicalproperties.Inaddition,whilefixativetreatment canbeusedpriortoimaging,fixationmaygreatlyalterthe mechan-icalpropertiesofeukaryoticcells,andlivecellimagingisgenerally requiredtoacquirereliableelasticitydata(Fig.4).Nonetheless, cellcultureconditionscanbereplicatedtosomeextentwithinthe liquidcellofanAFM,andalargenumberofsuccessful investiga-tionshavebeenmaderegardingthemechanicalcharacterofliving

(6)

A.D. Ozkan et al. / Micron 89 (2016) 60–76 65 Table2

MechanicalcharacterizationofmammaliancellsandtissuesbyAFM.

Sample Tipproperties Imagingconditions Elasticproperties Reference

NIH3T3fibroblasts Siliconnitride,k=0.018N/m (calibratedbythermalmethod)

Contactmode,liquid(DMEM containingd-glucose(1000mg/L)and 10%fetalbovineserum,fresh,warmed Ringer’ssolutionusedasmedium replenishment),sampleon fibronectin-coatedglass

(Young’smodulus)4–100kPaoverthecellsurface,lower aroundthenucleusthanintheperiphery

Hagaetal.(2000)

Breastcancerlines(MCF-10A andMCF7)

Siliconnitride,k=0.01N/m(nominal) modifiedwitha4.5␮mdiameter polystyrenebead

Contactmode,liquid(culture medium),sampleonglass

(Young’smodulus)0.2–1.2kParange,malignantcellline (MCF7)1.4–1.8timessofterthanbenigncellline (MCF-10A)

Lietal.(2008)

Osteoblasts,mesenchymal stemcellsandosteosarcoma cells

Siliconnitride,k∼20N/m(calibrated usingthermalmethod)

Contactmode,liquid(25mMHEPES), fixedcellsonpolystyrene,glassor collagen-coatedglass

(Young’smodulus)0.7±0.1to2.6±0.7kParange,lower Young’smodulusforMG63osteosarcomacellsoncollagen

Dochevaetal.(2008)

Zonalarticularchondrocytes Sphericalgold-coatedborosilicatebead (5␮mdiameter),k∼0.065N/m (calibratedbythermalmethod)

Contactmode,liquid(DMEM),sample onpoly-l-lysine-coatedglass

(Young’smodulus)Instantaneousmoduliat0.55±0.23kPa forsuperficial,0.29±0.14kPaformiddle/deepcells; relaxedmoduliat0.31±0.15kPaforsuperficial, 0.17±0.09kPaformiddle/deepcells;apparentviscosities at1.15±0.66kPasforsuperficial,0.61±0.69kPasfor middle/deepcells

Darlingetal.(2006)

Cardiacmuscle,skeletal muscleandendothelialcells

Siliconnitride,k=0.03to0.05N/m (calibratedusingthermalmethod)

Contactmode,liquid(growth medium),sampleonglassslide

(Young’smodulus)Moduliof100.3±10.7kPaforcardiac muscle,24.7±3.5kPaforskeletalmuscleand1.4±0.1to 6.8±0.4kPadependingontheregiontestedforepithelial cells

Mathuretal.(2001)

Cardiacmyocytes Siliconnitride,k=0.06N/m(nominal) Contactmode,liquid(culture medium),sampleonlaminin-coated petridish

(Young’smodulus)35.1±0.7kPaforcardiomyocytesfrom 4-montholdrats,42.5±1.0kPaforcardiomyocytesfrom 30-montholdrats.

Lieberetal.,(2004a)

LLC-PK1andMDCKkidney epithelialcelllines

Siliconnitride,k=0.12N/m(nominal) Contactmode,liquid(artificialurine) (Young’smodulus)1.5±0.8MPaforLLC-PK1cells, 5±1.5MPaforMDCKcells,oxalatetreatmentdecreases Young’smodulusto1.2±MPaforLLC-PK1cells(other stiffnessparametersalsomeasured)

Rabinovichetal.(2005)

Neuronalgrowthcones Siliconnitride,k=0.006N/m(nominal) Contactanddynamicmodes,liquid (L15/ASWmedium),sampleon poly-l-lysine-coatedglass

(Young’smodulus)3–7kPafortheCdomain,7–23kPafor theTdomain,10–40kPaforthePdomain

Xiongetal.(2009)

Healthyandpathological erythrocytes

Siliconnitride,k=0.03(nominal) Contact,liquid(PBS),sampleon poly-l-lysine-coatedglassandfixedby glutaraldehyde

(Young’smodulus)Moduliof26±7kPaforhealthy erythrocytes,43±21kPaforhereditaryspherocytosis, 40±24kPaforthalassemiaand90±20kPaforG6PD deficiencysamples

Dulinskaetal.(2006)

Liverendothelialcells Siliconnitride,k=0.032N/m Contact,liquid(serum-freeendothelial cellmedium),cellsoncollagen-coated petridisheswithandwithout glutaraldehydefixation

(Young’smodulus)Moduliof2kPaforlivingcellsandover 100kPaforfixedcells

Braetetal.(1998)

Oralsquamouscellcarcinoma, normalandmalignantlines

Siliconnitridetip,k=0.01to0.1N/m; APTES-modifiedsiliconoxidesphere tip,k∼0.5N/m(calibratedusingSader method)

Contact,air,samplepre-fixedwith2% PFAandfixedwith3.7%PFA

(Young’smodulus)Medianvaluesof6.75MPafor“normal” and4.36MPaformetastaticcancercells.Elasticity measurementstakenusingsphere-modifiedtips.

Lasalviaetal.(2015)

PC-3prostatecancercells Siliconnitridetip,k=0.012N/m (calibratedusingthermalmethod)

Contact,liquid(culturemedium), samplestreatedwithanticancerdrugs orDMSOcontrolfor24hpriorto analysis.

(Young’smodulus)c.3kPaforuntreatedcells,increasedto c.6–12kPainadose-dependentmannerfollowingdrug treatment.Frequency-dependencyoftheelasticmodulus wasalsotestedandfoundtochangesignificantlyfor Celebrex,BAY,Totamine,TPAandVPAtreatment,butnot forDSF,MKandTaxol.Thiseffectislinkedtothefactthat theformerdrugsmayaltercrosslinkingratesof cytoskeletalfilaments,whilethelatteronlychangefiber lengthandthickness.

(7)

66 A.D. Ozkan et al. / Micron 89 (2016) 60–76 Table2(Continued)

Sample Tipproperties Imagingconditions Elasticproperties Reference

Normalandcancerousbladder epitheliumcells

Siliconnitridetip,k=0.011to0.018 (calibratedusingthermalmethod)

Contact,liquid(culturemedium), sampleonglass

(Adhesionenergy)averageof8.17×10−16Jfornormal,

26.95×10−16Jforcancercells

(Young’smodulus)averageof27.57kPafornormal, 2.46kPaforcancercells

Canettaetal.(2014)

Porcinearticularcartilage Siliconnitride,k=0.06N/m(nominal) andborosilicateglassbeadswith r=2.5␮m,k=0.06and13N/m (nominal)

Contact,liquid(PBS),tissueson poly-l-lysine-coatedglass

(Dynamicelasticmodulus)Ontheorderof2.6MPafor borosilicateglassbeads,about100-foldlowerforsharp tips

Stolzetal.(2004)

Articularcartilageofnormal andarthritic(Col9a1−/−

knockout)mice

Siliconnitride,k=0.06N/m(nominal) andmicrospheres,k=10and12N/m

Contact,liquid(PBS),bulktissuesglued onaroundTeflondisk

(Dynamicelasticmodulus)1.3±0.4MPaformicrospheres (nochangerecordedbetweenages);22.3±1.5kPa, 36.8±1.5kPaand50.9±4.7kPaforsharptipsin1-, 10-and19-montholdnormalmice;22.3±1.5kPa,25.5±kPa and27.7±1.1kPainthenon-thickened,intermediateand heavilythickenedcollagenfibersof1-montholdarthritic mice.

Stolzetal.(2009b)

Aorticintimaofrats Notlisted,tipmountedonacustom platformforinvivoAFMimaging

Anaesthetizedlivinganimals (Young’smodulus)0.4–0.5MParangeforbloodvessels withoutdruginfluence,raisedtoc.1.0MPainthepresence ofnitroglycerinanddecreasedbacktoc.0.3MPainthe presenceofnorepinephrine

Maoetal.(2009)

Anteriorhumancornealstroma Phosphorus-dopedsilicon,k=25and 33N/m(calibratedbyanoptical method,asdescribedbySaderetal.)

Contact,liquid(15%dextran),bulk tissueplacedonTefloncellwithout attachment

(Young’smodulus)Between1.14and2.63MPa,consistent acrosstheindentationdepths(between1.0and2.7␮m)

Lombardoetal.(2012),Sader etal.(1999)

Humancornealbasement membrane

Borosilicateglass,k=0.06N/m (nominal)

Contact,liquid(PBS),a3×3mmtissue piecedissectedandgluedontoawell onsteeldisk

(Young’smodulus)2–15KPa,meanof7.5±4.2kPaaverage fortheanteriorbasementmembrane;20–80KPa, 50±17.8kPaaveragefortheDescemet’smembrane

Lastetal.(2009)

Monkeylenses Gold-coatedtip,k=0.01N/m (nominal),calibratedbythe relationshipbetweenappliedvoltage andcantileverdeflection

Contact,liquid(BSS),lensesdissected andplacedonTeflonslide

(Young’smodulus)1.720±0.88kPa Ziebarthetal.(2007)

Humanbone Various Various (Young’smodulus)16.6±1.1to27.1±1.7fordryadult

tibiae(lowerforchildren),13.4±2.0to22.7±3.1fordry adultvertebrae(lowerforwetsamples),16.58±0.32to 26.6±2.1fordryadultfemoralmidshaft(lowerforwet samplesandinthefemoralneck),otherbone measurementsandtissuehardnessesalsonoted

Thurner(2009)

Bovineoculartendonfibers Siliconnitridetip,k=0.02N/m (calibratedusingthermalmethod)

Contact,air(samplingchamberkeptat 100%humidity),samplegluedonglass petridish

(Young’smodulus)60±2.69MPaforlateralrectus, 59.69±5.34MPaforinferiorrectus,56.92±1.91MPafor medialrectus,59.66±2.64MPaforsuperiorrectus, 57.7±1.36MPaforinferiorobliqueand59.15±2.03for superiorobliquetendons.Differencesbetweentendon elasticitiesarenotstatisticallysignificant.

Yooetal.(2014)

Breasttissuesections Borosilicateglasstip,k=0.06N/m (nominal),individualtipscalibrated usingthermalmethod

Contact,liquid(PBSsuppliedwith proteaseinhibitorsandpropidium iodide),samplessectionedby cryomicrotomy

(Young’smodulus)c.400Painhealthyandnon-invasive tumorregions,4-foldincreaseinaveragestiffnessin invasivetumorfront.Higheraveragestiffnessinthe invasivefrontiscausedbyhighlystiff(>5kPa)regionsin thisarea.Aggressivebreastcancersubtypesarealsofound toexhibithigherYoung’smoduli,quantifiedintermsof upper10%stiffness.

Acerbietal.(2015)

Benignandaggressiveprostate tumors

Siliconnitridetip,k=0.06N/m (nominal),individualtipscalibrated usingthermalmethod

Contact,liquid(physiologicalbuffer), sampleslicedbyrazorandgluedon glass

(Young’smodulus)3.03±0.64kPaforbenign,1.727±1.22 forcanceroustissues.TheaverageYoung’smodulusfor cancersampleswithGleasonscoresinthe2–7rangewas 2.07±1.30,thisvaluewas1.39±0.48forsampleswith Gleasonscoresinthe8–10range.Inaddition,metastatic tumorshadanaveragemodulusof1.06±0.58,while non-metastaticcancertissuehadanaverageelasticity valueof1.99±1.24.Thesevaluesreflectthetissue microenvironmentandcontrastmacro-scaleelastography results,inwhichmoreaggressivecancersarestiffer.

(8)

A.D.Ozkanetal./Micron89(2016)60–76 67

Fig.3. Theeffectofanantimicrobialpeptide(CM15)onE.colicellwalls,asobservedbyhigh-speedAFM.Disruptionsbegintoappearoncellsurfacesasearlyast=13sand increaseinseveritywithtime(a).Althoughsomebacteriaresisttheeffectsofthepeptide(b,c),theseindividualsneverthelessreacttoprolongedtreatment(d,att=∼30min). ReplicatedwithpermissionfromFantneretal.(2010b).

mammaliancellsandtissues,eitherculturedexvivoorcollected immediatelypriortoimaging.

4.1. Cancerdiagnosisandcharacterization

Whilemedicaladvanceshaveledtosignificantdecreasesinthe incidencesofmanycancers,cancerstillremainstobeoneofthe mostimportantdiseasesinrecent history.Itis well-established thatcancercellsexhibitmarkeddifferencesinstiffnessand elas-ticitycomparedtotheirhealthycounterparts(Crossetal.,2007); however,diagnosticapplicationsof mechanicalcharacterization methodsshouldcurrentlybeconsideredlimited.Effective diagnos-tictechniquesmustascertainthepresence(orabsence)ofdisease withhighconfidenceandusingminimalamountsofsample tis-sueandtime,anddespitetheabilityofmechanicalmeasurements toeffectivelydistinguishbetweenhealthyand tumorcells,it is unlikelythatabiopsyatanearlystageofdiseasewouldyieldtumor cellsinnumbersnecessarytoperformdiagnosisbasedpurelyon mechanicaldata.Nonetheless,oncethepresenceofatumoris con-firmed usingmore conventional methods, AFM mayserve as a valuabletoolfor itscharacterization:Laidleretal.,forexample, reportthepossibilityofutilizingAFMtodeterminewhethera sus-pectedbreast orprostatetumoris malignantonthebasisofits

elasticproperties(Lekkaetal.,2012).Inaddition,AFMcantilevers canbefunctionalizedwithantibodiesfordisease-specificmarkers andusedinthedetectionofcancerandotherdisorders(Laurent etal.,2014);however,thistechniqueeffectivelyconvertstheAFM intoabiosensororsortingsysteminsteadofrelyingonitscapacity formechanicalcharacterization.

Greaterutilityliesin thecharacterization oftumorcellsand theirinteractionsbyAFM,whichmayfurtherthecurrent under-standingofcancerbiologyand allowthedesign andevaluation of novelcancerdrugs. Discrepanciesbetweentheelasticitiesof cancerandnon-malignantcells,forexample,havebeenrecorded inhumanlung,breast,pancreas,fibroblast,prostate, adenocarci-nomaandothercelllines(MullerandDufrene,2008;Crossetal., 2011).Thesechanges are suspectedtoincrease themobility of malignantcellsduringmetastasis,anddecreasesincellstiffness appear tobeprogressive, withmore malignantcells expressing lowerYoung’smoduli.Fuhrmannetal.reportedthatthedysplastic Barrett’sesophaguscelllinesarelessrigidcomparedto metaplas-ticcells,whichinturnaresofterthantheirhealthycounterparts (Fuhrmannetal.,2011).Otherchangesin cellmorphologymay alsooccurtofacilitatemetastasis,andthesetoocanbequantified byAFM.Sokolov etal.,forexample, havedeterminedthat can-ceroushumancervicalepithelial cellsdisplay twobrushlayers,

(9)

68 A.D.Ozkanetal./Micron89(2016)60–76

Fig.4.Effectoffixationoncellularelasticity.Unfixed(a,d)andGA-fixed(bandefor20min;candffor60min)cellshavedistinctappearancesandelasticmoduli;withGA fixationgreatlyincreasingcellularYoung’smoduliinatime-dependentmanner(g).ReplicatedwithpermissionfromShibata-Sekietal.(2015).

incontrasttothesingle-lengthmolecularbrushofnon-malignant cervicalepithelium,which mayalsoassistin invasion attempts bythesemalignantcells(Iyeretal.,2009).Inaddition,thetumor microenvironmentalsoappearstocontributesignificantlytothe alterationsintumorelasticity:Insteadoftheexpecteddecreasein Young’smoduli,Weaveretal.observedatime-dependentincrease intumorstiffnessduringmammarytumordevelopmentinPyMT mice,andthisincreaseinrigiditywasalsoreflectedinepithelial cellstakenfromthetumorsite.However,cellstakenoutoftheir nativeenvironmentandgrowninvitrohadlowerYoung’s mod-ulicompared totheirinvivocounterparts,andtheinhibitionof theECM-crosslinkingenzymelysyloxidasemitigatedthegradual increaseintheelasticmodulusofmammaryglandtumors(Fig.5) (Lopez etal.,2011).Assuch,tissue culturesamplesandinvivo tumorcellsmaynotnecessarilyagreeinelasticproperties,asthe stiffnessoftheformerdependsonthecytoskeletalpropertiesof thecells,whilethatofthelatterislargelymediatedbythetissue microenvironment.

DrugresponsesofcancercellscanalsobequantifiedbyAFM. Zhangetal.observedthatHeLa,HepG2andC6cellsexperience dose-dependentmorphologicalchangesontheircellmembranes followingtreatmentwithcolchicineorcytarabine.Surface rough-nessincreasedandporesappearedonthecellmembraneafterdrug administrationandbeforeMTT-quantifiabledecreasesinviability couldbeobserved,suggestingthatthesurfacealterations repre-sentanearlyresponsetodrugpresence(Wangetal.,2009).Such differencesmaybemonitoredtoevaluatetheeffectivenessofdrug candidates.Changesassociatedwithgenedeletionorrestoration canalsobeobservedthroughAFM:Zhouetal.reportedthatthe expressionofBRMS1(restoringbreastcancermetastasis suppres-sor1)inducesincreasesincelladhesioncapacity,cellularspring constantandYoung’smodulus,whichsupportstheideathatBRMS1 expressionisassociatedwithcytoskeletalrearrangementsthatare unfavorablefor metastaticactivity.Cell morphologyand rough-nesswerealsoalteredfollowingBRMS1expression,possiblyasa consequenceofcytoskeletalmodifications(Wuetal.,2010).

(10)

A.D.Ozkanetal./Micron89(2016)60–76 69

Fig.5. Changesassociatedwithmammarytumorformation,asquantifiedbyAFM.Normalmammaryducttissueislessstiffcomparedtotumortissue(a),andthetissueelastic modulusincreaseswithtumorage(b).Inaddition,theinhibitionofcollagencross-linkingbyBAPN(whichblockstheactivityoflysyloxidase)preventsthetumor-associated increaseinstiffness,suggestingthatthetumorenvironmentismodifiedthroughchangesintheextracellularmatrix.ReplicatedwithpermissionfromLopezetal.(2011).

4.2. Diagnosisofotherdiseases

Whilecancer-associatedchangesincellelasticityare particu-larlydrastic,canceris by nomeanstheonlycondition toalter themechanicalpropertiesofaffectedtissues.Avarietyofother conditions,includingmalaria,sicklecellanemia,hepaticfibrosis, cardiovasculardisease,renalstiffness,musculardystrophiesand bonedisorders,havealsobeenassociatedwithnotablechangesin theelasticpropertiesoftheaffectedtissues(Fig.6)(Costa,2003; Nagaoetal.,2000;Lieberetal.,2004b;Bozecetal.,2005;Engler etal.,2004).Mechanicaldiagnosismethodshavebeendevisedfor somesuchconditions,andAFMcanbeutilizedtostudythe struc-turalandmechanicalpropertiesofaffectedtissues;butitmustbe notedthat,aswithcancer,AFM-baseddiagnosticmethodsforthese diseasescurrentlyappeartobemoresuitedtowardssupporting conventionaldiagnosis.However,thehigh-resolutionimagingand mechanicalprobingcapacityofAFMisidealforthedetermination ofthecausesunderlyingtheprogressionofthediseasesinquestion. SeveralreportsonAFM-baseddiseasecharacterizationexistin theliterature.Szymo ´nskietal.,forexample,demonstratethatred bloodcellsbelongingtopatientswithhereditaryblooddiseases generally bear a higher Young’s modulus compared to healthy erythrocytes(Dulinskaetal.,2006).Inparticular, gluteraldehyde-fixed, poly-l-lysine-immobilized erythrocytes of patients with hereditary spherocytosis, thalassemia or G6PD deficiency were

stiffercomparedtonormalcells,whilepatientswithanisocytosis displayedtwodistinctpeaksintheirhistogramofYoung’s mod-uli,correspondingtohealthyanddiseasedpopulationsofcells.In patientswithhereditaryspherocytosis,changesincell morphol-ogywerealsoobserved.Similarly,Vatneretal.haveinvestigated theeffectsofagingoncardiacmyocytesbyAFMindentation, com-paring4month-and30month-oldratsinordertoassesswhether myocytehealthinfluencestheaging-associateddiastolic dysfunc-tionof theleftventricule(Lieber etal., 2004b).Myocytes were foundto significantly increase in stiffness withage,suggesting thattheobserveddysfunctioncanbelinkedatleastinparttothe malfunctionofindividualmyocytes.Theeffectofagingoncellular Young’smoduliwasalsonotedbySokolovetal.,whohaveshown thatolderhumanepithelialcellsaremorerigidthantheiryounger counterparts,andhavefurtherdemonstratedthatanincreaseinthe densityofcytoskeletalelementsisresponsiblefortheage-related increaseinstiffness(Berdyyevaetal.,2005a,b).Theearly detec-tionofosteoarthritiswasalsoperformedonthearticularcartilage ofnormalandarthriticmice,andnanoindentation(butnot micro-scaletips)wasshowntoresolvethegradualchangesincartilage stiffnessbetweenarthriticandnon-arthriticanimalsofthesame age(Stolzetal.,2009b).

AnotherinterestingfrontierinAFM-based disease character-ization is theinvestigation of malfunctioning proteinsthat are involvedinthepathogenesisofneurodegenerativedisorderssuch

(11)

70 A.D.Ozkanetal./Micron89(2016)60–76

Fig.6.Young’smodulusmeasurementsoferythrocytesfromyoungandhealthy(YHP;a,dandg);oldandhealthy(OHP;b,eandh)andoldandtype-IIdiabetic(ODP; c,fandi)individuals.ErythrocytesexhibitedhigherstiffnessinODPindividualscomparedtoeitherYHPorOHP(1.78±0.39×105N/m2v.1.04±0.19×105N/m2and

1.53±0.41×105N/m2,respectively).Inaddition,OHPandODPerythrocytesexhibitedhigheradhesioncomparedtoYHPerythrocytes(420±25pNand510±63pNv.

200±38pN,respectively).ReplicatedwithpermissionfromJinetal.(2010). as Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-easeandamyotrophiclateralsclerosis.Thesedisordersseverely decreasethequalityoflife,areexceptionallycommonamongthe elderlyandhavenodefinitivecures,whichrendersitcrucialtogain furtherinsightintothenatureoftheircausativeagents.Assuch, theformationofamyloidplaqueshasbeeninvestigatedindetail usingavarietyofbiological,chemicalandmaterialcharacterization methods,includingseveralAFM-basedstudies.Lansburyetal.,for example,reportedontheinvitroformationofmetastableA␤ amy-loidfibrilprecursorsthatmaylaterdevelopintocompleteamyloid assemblies,andsuggestthatthehaltingofthismechanismmay preventtheonsetofAlzheimer’sdiseasebyretainingthe precur-sorfibrils(“protofibrils”)intheirbenignintermediateform(Harper etal.,1997).Inaddition,KowalewskiandHoltzmandemonstrated thatthesize,shapeandproductionkineticsofA␤aggregateswere altereddependingonthesurfaceonwhichtheaggregationoccurs (KowalewskiandHoltzman,1999)(i.e.particulateassemblieswere generatedonthehydrophilicmicasurface,while␤-sheetsformed onthehydrophobicgraphite),andsuggestedthatthe␤-sheet form-ingbehaviorofA␤ongraphitemayyieldusefulinformationonhow proteinfoldingoccursinvivo.TheabilityofA␤peptidestoform ion-channellikestructureswithoutinteractingwithother mem-branecomponentswasalsoconfirmedusingAFM,withtrimeric, tetrameric,pentamericandhexamericporestructuresbeing iden-tifiedin topographic images. BothD-and L-enantiomers of A␤ peptideswereabletoformthesechannels,suggestingthatthepore formationmechanismisnotstereospecific(Connellyetal.,2012).

4.3. Stemcelldifferentiation

Fluctuationsinmechanicalpropertiesdonotnecessarilysuggest aging-relateddeteriorationoradiseasestate,ashealthycellsmay

alsorespondtoenvironmentalsignalsbyalteringtheirmembrane integrity.Thisismostobviouslyobservedinstemcells,as differen-tiationinducesfundamentalchangesnotonlyincellmorphology andexpressionpatterns,butalsoinmembranecontentand stiff-ness(Discher,2006;Evansetal.,2009;ReillyandEngler,2010). Since themaintenance, recruitmentand differentiationof stem cellsareintimately linkedtothemechanicalpropertiesof their immediateenvironment,itisfeasibletouseAFMmeasurementsin ordertodeterminethefactorsthatdrivethedifferentiationprocess inthesecells.Suchfactorsarerelativelyclearinsomecases,such asthemesenchymalstemcelldifferentiationintomyogenic, chon-drogenicorosteogeniclineages,butthemechanicaltriggersbehind thedifferentiationofothercellsarewelllessunderstood.In addi-tiontostemcelldifferentiation,changesinthemicroenvironmental conditionsoftissuescanbeassessedusingAFMorother mechani-calcharacterizationmethods,especiallyinsituationsinvolvingthe slowrecoveryofadamagedsystem,asinthecasesofbonefracture healing.Otherprocesses,suchasthelocalremodelingand extra-cellularmatrixsecretionofcellsinatissuecultureenvironment, orthecapacityofbiomimeticmaterialstoimitatethemechanical environmentoftheirtissuemodel,alsofallwithinthepurviewof AFM.

Thedifferencesbetweenstemandderivedcellshavealsobeen investigated by AFM. Guilak et al. have confirmed that chon-drocytes,osteoblastsandadipocytes,theprimarydifferentiation productsof mesenchymalstemcells, displaydifferentrigidities, anddeterminedthatundifferentiatedmesenchymalstemcellsare similartoadipocytesintheirmechanicalcharacteristics(Darling etal.,2008).Schiekeretal.reportedthatthetwosubcategories of humanmesenchymal stem cells, flat cells and rapidly self-renewing cells, can also be differentiated on thebasis of their morphologicalandadhesivecharacteristics(Dochevaetal.,2008),

(12)

A.D.Ozkanetal./Micron89(2016)60–76 71 withtheformertypeappearingtopographicallysimilartohuman

osteoblastsand displayinga highadhesiontothesurface,while thelatterexhibitedcharacteristicssimilartoMG63osteosarcoma cells anddisplayeda smoothertopography. Evenstemcellfate canbepredictedbymechanical propertiesprior tothe appear-anceofvisibleindicators.Gonzalez-CruzandDarlingreportedthat adipose-derivedstemcellscanbeclassifiedaccordingtotheir dif-ferentiationpotentialtoadipogenic, osteogenicorchondrogenic lineagesonthebasisoftheirmechanicalbehavior(Gonzalez-Cruz etal.,2012).Ascouldbeexpected;softer,largerand more pli-antadipose-derivedstemcellsaremorelikelytodifferentiateinto adipocytes,whilesmallerandmorerigidstemcellsareinclined towardsosteogenicor chondrogenicdifferentiation.Inaddition, theeffectofstemcellsonaninvivoenvironmentcanbedetermined followingtheirimplantation:Mesenchymalstemcellsinjectedinto thesiteofamyocardialinfarctionhavebeenrecordedtodecrease therigidityofthemyocardium,whichwasassociatedwithreduced fibrosisandabetterprognosisforthepostinfarctedheart.

Theimportanceoftheextracellularmatrix(ECM)forthe main-tenance and differentiation of stem cells is both obvious and paramount(Bosnakovskietal.,2006;Suzukietal.,2003).Itis there-foreunsurprisingthatthemechanicalpropertiesofECMelements arevitalinprovidingthesignalsresponsibleforinducingstemcells todifferentiate,orforretainingthemintheirquiescentstate(Reilly andEngler,2010;Guilaketal.,2009).Greatdifferences existin theECMrigiditiesofadulttissues,from0.1kPainbrainto>30kPa inbone(Huangetal.,2012),andexcessivelysoftorrigidtissues mayresultinsuboptimaldifferentiation(seee.g.Engleretal.foran accountofaberrantmyotubeformationassociatedwith unsatisfac-torysurfacestiffness(Engleretal.,2004)).Inadditiontoadultstem cellsinmaturetissues,thereisalsoevidencethatendo-,meso-and ectodermalprogenitorsarearrangedintodistinctivegermlayers withtheassistanceofdifferencesintensilestrength(Discheretal., 2005;Puechetal.,2005):Cell-cortextensionsofendodermal pro-genitorsingastrulatingzebrafishembryosarehigherthanthatof themesodermalprogenitors,whichinturnarelargerthanthatof ectodermalprogenitorcells(Fig.7)(Kriegetal.,2008b).Inasimilar vein,cardiacloopinginchickenembryoswassuggestedtooccur asaresultofastiffness-mediatedasymmetryinthedeveloping cardiacjelly(Zamiretal.,2003).

4.4. Extracellularsecretionsandtissuemicroenvironments

AFMcanbeusedtomeasurethenativestiffnessoftissue micro-andnanoenvironments,althoughothermethods,suchas microin-dentation,canalsobeusedforthemicromechanicalinvestigation oflargerareas oftissues. Bone,cartilageand theoculartissues havebeenfrequentlyinvestigatedusingAFM,andage-or disease-relatedeffectshavebeenfoundtobereflectedintissuestiffness.As withbacterialandeukaryoticcells,themethodofsample prepara-tioncangreatlyaltertheelasticmodulusoftissues,andsampling locationlikewisehasasubstantialeffectonmechanicalproperties (Stolzetal.,2009b;Thurner,2009).Itmustalsobekeptinmind thatthemicro-andnanoscalestiffnessesofagiventissuemay dif-fergreatly,e.g.themicrostiffnessofporcinearticularcartilagewas observedtobeover100-foldgreaterthanitsnanostiffness,and theage-relatedeffectsofosteoarthritisonthearticularcartilage ofmicecouldonlybeobservedthroughnanoscaletips(Stolzetal., 2009a,2004).Assuch,caremustbetakennottocomparetheresults ofcell-ortissue-basedAFMstudiestoliteratureexamplesthatuse dissimilarconditionsofmeasurement.

Theextentofnatural heterogeneitywithina givencell pop-ulationortissue samplecan alsobeestablishedusingAFM.An AFMapparatusadaptedforuseinlivingbraintissue,forexample, hasbeenusedtodemonstratethattherat hippocampusis het-erogeneous,andthathippocampalsubregionsareassociatedwith

differentelasticmoduli(Elkinetal.,2007).Thewoundhealing pro-cesshasalsobeencharacterizedusingAFM,andtheleadingedge ofthewoundwasfoundtoexhibitaspatiallylimitedincreasein stiffnesstorecruitfibroblaststothewoundsite.Thislocalizedpeak iscreatedbycytoskeletalchangesinthecellsofthewoundedge, anddisappearsiftheexpressionoftheactinfiber-regulating pro-teinRhoAisdisabled,resultinginalackoffibroblasticrecruitment tothesiteofinjury(Waghetal.,2008).Inadditiontotissues,an individualcellcanalsobeanalyzedtoidentifydistinctregionsonits surface:Scheuringetal.havecharacterizedthemechanismsused byredbloodcellstocontortduringtheirpassagethroughblood ves-sels,utilizingamethodinwhichthefunctionofknownstructural proteinsarealteredandtheresultantchangesonthecellsurface aremeasuredtomaptheseproteinsontothemechanically het-erogeneousregionspresentontheerythrocyte(Picasetal.,2013). TheadditionofMgATPwasutilizedtoelicitchangesonthe mem-braneelementsontheextracellular(“outwards”)andcytoplasmic (“inwards”)sidesoftheerythrocyte,whichbehavedintwo dis-tinctwaysandthereforeallowedthedetailedcharacterizationof membranestructuresandmolecularcompositionsonbothsides.

In addition to characterizing the structure of previously depositedmatrixmicroenvironments,AFMcanalsodeterminehow cellularexudatesaresecretedoutsidecells,especiallywithregards tothemembranebuddingandfusioneventsthatoccurduringthe secretionprocess.Researchinthisdirectionfocusesmostlyoncells involvedinthesecretionofhormonesordigestivefluids,suchas pancreaticacinarcells(Schneideretal.,1997b)orgrowthhormone (GH)-secretingcells(Choetal.,2002).Secretioninacinarcellswas foundtodependonlarge(500–2000nm)apical“pits”thatcontain 3–20smaller(100–180nm)“depressions”or“fusionpores”,the diametersofwhichincreaseduringamylasesecretion(Fig.8). Simi-larpitsanddepressionswerealsopresentinGH-secretingcells,and theexistenceofGHwithinthesestructureswasconfirmedusing gold-taggedGH antibodies,demonstrating that thedepressions weresecretoryinnature.Acombinationofatomicforcemicroscopy andconfocalmicroscopywasalsousedtodemonstratethatthe secretoryvesicleswellingprocessisregulatedbyaGTP-binding protein(Jenaetal.,1997).

5. Futuredirections

AFMisaversatiletechniqueandcanbeusedinthemechanical characterizationofabroadrangeofbiomaterials,rangingfrom sin-glemoleculestobulktissues.Itsnanometer-scaleresolutionallows thedirectobservationofproteins,nucleicacidsandother biologi-callyimportantmolecules,whileitsabilitytocharacterizematerial stiffnessinliquidsisacrucialadvantageforinvestigatingthe nat-uralmechanicalenvironmentofcells.However,themethodsused forthepreparationofbiologicalsamplesforAFMimagingarehighly diverseandmayalterthemechanicalpropertiesofbiomaterials. Environmentalconditionssuchastemperatureandbuffersalinity canaltertheresponseofcellstomechanicalstimuli,whilefixation andimmobilizationprotocolsmaydirectlychangethechemical compositionofthetreatedcells.Theseeffectsinturnmakeit diffi-culttocompareresultsbetweenstudiesperformedunderdifferent conditions.Whilecountermeasures,suchasliquidcellswhich sup-plytheenvironmentnormallyexperiencedbymammaliancellsin cellculture,havebeendeveloped,agreatdealofprocess optimiza-tionandstandardizationisstillnecessaryforAFMtotrulyemerge asabiologicaltool.

Nevertheless, the mechanical environment of cells remains largelyunexplored,andAFMisanidealmethodforcharacterizing thebehaviorsofcellsandtissuesunderclose-to-naturalconditions. Thetechniquewillnodoubtremainindispensableforstudyingthe mechanicalcomponentsofsignalingpathwaysand theeffectof

(13)

72 A.D.Ozkanetal./Micron89(2016)60–76

Fig.7.Endo-andmesodermalcellsofthedevelopingzebrafishembryopreferentiallyadheretocellssharingthesamegermlayerinacadherin-dependentmanner.Adhesive forcesbetweentwocellscanbemeasuredbyattachingonecelltotheprobe(a).Endo-andmesodermalcellsexhibitstrongerhomotypicadhesioncomparedtoectodermal cells,andheterotypicadhesionisgenerallyweakerthanendoderm–endodermandmesoderm–mesoderminteractions(bandc,dusedascontroltoensurecontactstiffness didn’taccountforthedifferencesobserved).Calciumdepletionandsuppressionofcadherinblockstheobservedeffects,andcadherinexpressionishigherinendo-and mesodermalcells,suggestingthatadhesioniscadherin-dependent(e,f).ReplicatedwithpermissionfromKriegetal.(2008a).

Fig.8.Inducedsecretionofamylasefromacinarcellsofthepancreas,showing“depressions”inasingle“pit”(a)andtheirsecretoryresponses5min(b)and30min(c) aftersimulationbythesecretion-stimulatingpeptideMas7.Secretionisassociatedwithincreasesinthediametersanddepthsofthesecretorydepressions.Replicatedwith permissionfromSchneideretal.(1997a).

(14)

A.D.Ozkanetal./Micron89(2016)60–76 73 physicalsignalsonmetabolicfunctionsundernormalanddisease

states,whichisanareathathasremainedlargelyuninvestigated untilnow,forlackofadequatemethodsofanalysis.

References

Acerbi,I.,Cassereau,L.,Dean,I.,Shi,Q.,Au,A.,Park,C.,Chen,Y.Y.,Liphardt,J., Hwang,E.S.,Weaver,V.M.,2015.Humanbreastcancerinvasionandaggression correlateswithECMstiffeningandimmunecellinfiltration.Integr.Biol. (Camb.),http://dx.doi.org/10.1039/c5ib00040h.

Allen,S.,Chen,X.Y.,Davies,J.,Davies,M.C.,Dawkes,A.C.,Edwards,J.C.,Roberts,C.J., Sefton,J.,Tendler,S.J.B.,Williams,P.M.,1997.Detectionofantigen-antibody bindingeventswiththeatomicforcemicroscope.Biochemistry36(24), 7457–7463,http://dx.doi.org/10.1021/Bi962531z.

Ando,T.,Uchihashi,T.,Kodera,N.,2013.High-speedAFMandapplicationsto biomolecularsystems.Annu.Rev.Biophys.42,393–414,http://dx.doi.org/10. 1146/annurev-biophys-083012-130324.

Arnold,J.W.,Bailey,G.W.,2000.Surfacefinishesonstainlesssteelreducebacterial attachmentandearlybiofilmformation:scanningelectronandatomicforce microscopystudy.PoultrySci.79(12),1839–1845.

Auerbach,I.D.,Sorensen,C.,Hansma,H.G.,Holden,P.A.,2000.Physicalmorphology andsurfacepropertiesofunsaturatedPseudomonasputidabiofilms.J.Bacteriol. 182(13),3809–3815,http://dx.doi.org/10.1128/Jb.182.13.3809-3815.2000. Bakker,D.,Huijs,F.,deVries,J.,Klijnstra,J.,Busscher,H.,vanderMei,H.,2003.

Bacterialdepositiontofluoridatedandnon-fluoridatedpolyurethanecoatings withdifferentelasticmodulusandsurfacetensioninaparallelplateanda stagnationpointflowchamber.ColloidsSurf.B32(3),179–190,http://dx.doi. org/10.1016/S0927-7765(03)00159-0.

Beckmann,M.,Venkataraman,S.,Doktycz,M.,Nataro,J.,Sullivan,C., Morrell-Falvey,J.,Allison,D.,2006.Measuringcellsurfaceelasticityon enteroaggregativeEscherichiacoliwildtypeanddispersinmutantbyAFM. Ultramicroscopy106(8–9),695–702,http://dx.doi.org/10.1016/j.ultramic. 2006.02.006.

Beech,I.B.,Smith,J.R.,Steele,A.A.,Penegar,I.,Campbell,S.A.,2002.Theuseof atomicforcemicroscopyforstudyinginteractionsofbacterialbiofilmswith surfaces.ColloidSurf.B23(2–3),231–247.

Berdyyeva,T.K.,Woodworth,C.D.,Sokolov,I.,2005a.Humanepithelialcells increasetheirrigiditywithageinginvitro:directmeasurements.Phys.Med. Biol.50(1),81–92.

Berdyyeva,T.,Woodworth,C.D.,Sokolov,I.,2005b.Visualizationofcytoskeletal elementsbytheatomicforcemicroscope.Ultramicroscopy102(3),189–198. Berquand,A.,Mingeot-Leclercq,M.,Dufrene,Y.,2004.Real-timeimagingof

drug-membraneinteractionsbyatomicforcemicroscopy.Biochim.Biophys. Acta1664(2),198–205,http://dx.doi.org/10.1016/j.bbamem.2004.05.010. Best,R.B.,Li,B.,Steward,A.,Daggett,V.,Clarke,J.,2001.Cannon-mechanical

proteinswithstandforce?Stretchingbarnasebyatomicforcemicroscopyand moleculardynamicssimulation.Biophys.J.81(4),2344–2356.

Bosnakovski,D.,Mizuno,M.,Kim,G.,Takagi,S.,Okumura,M.,Fujinaga,T.,2006. Chondrogenicdifferentiationofbovinebonemarrowmesenchymalstemcells (MSCs)indifferenthydrogels:influenceofcollagentypeIIextracellularmatrix onMSCchondrogenesis.Biotechnol.Bioeng.93(6),1152–1163.

Bowen,W.,Fenton,A.,Lovitt,R.,Wright,C.,2002.ThemeasurementofBacillus mycoidessporeadhesionusingatomicforcemicroscopy,simplecounting methods,andaspinningdisktechnique.Biotechnol.Bioeng.79(2),170–179, http://dx.doi.org/10.1002/bit.10321.

Bozec,L.,deGroot,J.,Odlyha,M.,Nicholls,B.,Nesbitt,S.,Flanagan,A.,Horton,M., 2005.Atomicforcemicroscopyofcollagenstructureinboneanddentine revealedbyosteoclasticresorption.Ultramicroscopy105(1–4),79–89,http:// dx.doi.org/10.1016/j.ultramic.2005.06.021.

Braet,F.,Rotsch,C.,Wisse,E.,Radmacher,M.,1998.Comparisonoffixedandliving liverendothelialcellsbyatomicforcemicroscopy.Appl.Phys.A66,

S575–S578,http://dx.doi.org/10.1007/s003390051204.

Butt,H.J.,Downing,K.H.,Hansma,P.K.,1990.Imagingthemembrane-protein bacteriorhodopsinwiththeatomicforcemicroscope.Biophys.J.58(6), 1473–1480.

Canetta,E.,Riches,A.,Borger,E.,Herrington,S.,Dholakia,K.,Adya,A.K.,2014. Discriminationofbladdercancercellsfromnormalurothelialcellswithhigh specificityandsensitivity:combinedapplicationofatomicforcemicroscopy andmodulatedRamanspectroscopy.ActaBiomater.10(5),2043–2055,http:// dx.doi.org/10.1016/j.actbio.2013.12.057.

Carvalho,F.A.,Martins,I.C.,Santos,N.C.,2013.Atomicforcemicroscopyandforce spectroscopyontheassessmentofproteinfoldingandfunctionality.Arch. Biochem.Biophys.531(1–2),116–127,http://dx.doi.org/10.1016/j.abb.2012. 11.007,S0003-9861(12)00400-6[pii].

Chaw,K.C.,Manimaran,M.,Tay,F.E.H.,2005.Roleofsilverionsindestabilizationof intermolecularadhesionforcesmeasuredbyatomicforcemicroscopyin Staphylococcusepidermidisbiofilms.Antimicrob.AgentsChemother.49(12), 4853–4859,http://dx.doi.org/10.1128/Aac.49.12.4853-4859.2005. Cho,S.J.,Jeftinija,K.,Glavaski,A.,Jeftinija,S.,Jena,B.P.,Anderson,L.L.,2002.

StructureanddynamicsofthefusionporesinliveGH-secretingcellsrevealed usingatomicforcemicroscopy.Endocrinology143(3),1144–1148. Cohen,S.R.,Kalfon-Cohen,E.,2013.Dynamicnanoindentationbyinstrumented

nanoindentationandforcemicroscopy:acomparativereview.BeilsteinJ. Nanotechnol.4,815–833,http://dx.doi.org/10.3762/bjnano.4.93.

Connelly,L.,Jang,H.,Arce,F.T.,Capone,R.,Kotler,S.A.,Ramachandran,S.,Kagan, B.L.,Nussinov,R.,Lal,R.,2012.AtomicforcemicroscopyandMDsimulations revealpore-likestructuresofall-d-enantiomerofalzheimer’sbeta-amyloid peptide:relevancetotheionchannelmechanismofADpathology.J.Phys. Chem.B116(5),1728–1735.

Costa,K.D.,2003.Single-cellelastography:probingfordiseasewiththeatomic forcemicroscope.Dis.Markers19(2–3),139–154.

Cross,S.E.,Jin,Y.S.,Rao,J.,Gimzewski,J.K.,2007.Nanomechanicalanalysisofcells fromcancerpatients.Nat.Nanotechnol.2(12),780–783,http://dx.doi.org/10. 1038/nnano.2007.388.

Cross,S.E.,Jin,Y.S.,Lu,Q.Y.,Rao,J.Y.,Gimzewski,J.K.,2011.Greenteaextract selectivelytargetsnanomechanicsoflivemetastaticcancercells.

Nanotechnology22(21),http://dx.doi.org/10.1088/0957-4484/22/21/215101 (Artn215101).

Dammer,U.,Popescu,O.,Wagner,P.,Anselmetti,D.,Guntherodt,H.J.,Misevic,G.N., 1995.Bindingstrengthbetweencell-adhesionproteoglycansmeasuredby atomic-forcemicroscopy.Science267(5201),1173–1175,http://dx.doi.org/10. 1126/science.7855599.

Danino,D.,2008.Advancesinatomicforcemicroscopyinvestigationsof biomolecules.Curr.Opin.ColloidInt.13(5),315,http://dx.doi.org/10.1016/j. cocis.2008.07.001.

Darling,E.,Zauscher,S.,Guilak,F.,2006.Viscoelasticpropertiesofzonalarticular chondrocytesmeasuredbyatomicforcemicroscopy.OsteoarthritisCartilage 14(6),571–579,http://dx.doi.org/10.1016/j.joca.2005.12.003.

Darling,E.M.,Topel,M.,Zauscher,S.,Vail,T.P.,Guilak,F.,2008.Viscoelastic propertiesofhumanmesenchymally-derivedstemcellsandprimary osteoblasts,chondrocytes,andadipocytes.J.Biomech.41(2),454–464,http:// dx.doi.org/10.1016/j.jbiomech.2007.06.019.

daSilva,A.,Teschke,O.,2005.DynamicsoftheantimicrobialpeptidePGLaaction onEscherichiacolimonitoredbyatomicforcemicroscopy.WorldJ.Microbiol. Biotechnol.21(6–7),1103–1110.

Davies,D.G.,Parsek,M.R.,Pearson,J.P.,Iglewski,B.H.,Costerton,J.W.,Greenberg, E.P.,1998.Theinvolvementofcell-to-cellsignalsinthedevelopmentofa bacterialbiofilm.Science280(5361),295–298,http://dx.doi.org/10.1126/ science.280.5361.295.

Discher,D.E.,Janmey,P.,Wang,Y.L.,2005.Tissuecellsfeelandrespondtothe stiffnessoftheirsubstrate.Science310(5751),1139–1143.

Discher,D.E.,2006.BIOT463-Matrixelasticityissensedwithnon-musclemyosinII anddirectsstemcelllineagespecification.Abstr.Pap.Am.Chem.Soc.,232. Docheva,D.,Padula,D.,Popov,C.,Mutschler,W.,Clausen-Schaumann,H.,Schieker,

M.,2008.Researchingintothecellularshape,volumeandelasticityof mesenchymalstemcells,osteoblastsandosteosarcomacellsbyatomicforce microscopy.J.Cell.Mol.Med.12(2),537–552,http://dx.doi.org/10.1111/j. 1582-4934.2007.00138.x.

Doktycz,M.J.,Sullivan,C.J.,Hoyt,P.R.,Pelletier,D.A.,Wu,S.,Allison,D.P.,2003.AFM imagingofbacteriainliquidmediaimmobilizedongelatincoatedmica surfaces.Ultramicroscopy97(1–4),209–216,http://dx.doi.org/10.1016/ S0304-3991(03)00045-7.

Dorobantu,L.S.,Goss,G.G.,Burrell,R.E.,2012.Atomicforcemicroscopy:a nanoscopicviewofmicrobialcellsurfaces.Micron43(12),1312–1322,http:// dx.doi.org/10.1016/j.micron.2012.05.005,S0968-4328(12)00156-4[pii]. Dufour,D.,Levesque,C.M.,2013.Bacterialbehaviorsassociatedwiththe

quorum-sensingpeptidepheromone(’alarmone’)instreptococci.Fut. Microbiol.8(5),593–605,http://dx.doi.org/10.2217/fmb.13.23.

Dulinska,I.,Targosz,M.,Strojny,W.,Lekka,M.,Czuba,P.,Balwierz,W.,Szymonski, M.,2006.Stiffnessofnormalandpathologicalerythrocytesstudiedbymeans ofatomicforcemicroscopy.J.Biochem.Biophys.Methods66(1–3),1–11, http://dx.doi.org/10.1016/j.jbbm.2005.11.003.

Ebner,A.,Wildling,L.,Kamruzzahan,A.S.,Rankl,C.,Wruss,J.,Hahn,C.D.,Holzl,M., Zhu,R.,Kienberger,F.,Blaas,D.,Hinterdorfer,P.,Gruber,H.J.,2007.Anew, simplemethodforlinkingofantibodiestoatomicforcemicroscopytips. Bioconjug.Chem.18(4),1176–1184,http://dx.doi.org/10.1021/bc070030s. Elkin,B.S.,Azeloglu,E.U.,Costa,K.D.,Morrison,B.,2007.Mechanicalheterogeneity

oftherathippocampusmeasuredbyatomicforcemicroscopeindentation.J. Neurotrauma24(5),812–822,http://dx.doi.org/10.1089/neu.2006.0169. Engler,A.J.,Griffin,M.A.,Sen,S.,Bonnetnann,C.G.,Sweeney,H.L.,Discher,D.E.,

2004.Myotubesdifferentiateoptimallyonsubstrateswithtissue-likestiffness: pathologicalimplicationsforsoftorstiffmicroenvironments.J.CellBiol.166 (6),877–887,http://dx.doi.org/10.1083/jcb.200405004.

Evans,N.D.,Minelli,C.,Gentleman,E.,LaPointe,V.,Patankar,S.N.,Kallivretaki,M., Chen,X.Y.,Roberts,C.J.,Stevens,M.M.,2009.Substratestiffnessaffectsearly differentiationeventsinembryonicstemcells.Eur.CellsMater.18,1–14. Fang,H.,Chan,K.,Xu,L.,2000.Quantificationofbacterialadhesionforcesusing

atomicforcemicroscopy(AFM).J.Microbiol.Methods40(1),89–97,http://dx. doi.org/10.1016/S0167-7012(99)00137-2.

Fantner,G.E.,Barbero,R.J.,Gray,D.S.,Belcher,A.M.,2010a.Kineticsof antimicrobialpeptideactivitymeasuredonindividualbacterialcellsusing high-speedatomicforcemicroscopy.Nat.Nanotechnol.5(4),280–285,http:// dx.doi.org/10.1038/nnano.2010.29.

Fantner,G.E.,Barbero,R.J.,Gray,D.S.,Belcher,A.M.,2010b.Kineticsof antimicrobialpeptideactivitymeasuredonindividualbacterialcellsusing high-speedatomicforcemicroscopy.Nat.Nanotechnol.5(4),280–285,http:// dx.doi.org/10.1038/nnano.2010.29.

Fernandes,J.C.,Eaton,P.,Gomes,A.M.,Pintado,M.E.,Malcata,F.X.,2009.Studyof theantibacterialeffectsofchitosansonBacilluscereus(anditsspores)by

Şekil

Fig. 2. AFM topography of a plasmid, showing the general appearance of the DNA helix under varying peak forces (a–d)
Fig. 3. The effect of an antimicrobial peptide (CM15) on E. coli cell walls, as observed by high-speed AFM
Fig. 4. Effect of fixation on cellular elasticity. Unfixed (a, d) and GA-fixed (b and e for 20 min; c and f for 60 min) cells have distinct appearances and elastic moduli; with GA fixation greatly increasing cellular Young’s moduli in a time-dependent manner (
Fig. 5. Changes associated with mammary tumor formation, as quantified by AFM. Normal mammary duct tissue is less stiff compared to tumor tissue (a), and the tissue elastic modulus increases with tumor age (b)
+3

Referanslar

Benzer Belgeler

Fotoaktivasyonu gerçekleştirmek için, numuneler Akdeniz Üniversitesi Nükleer Bilimler Uygulama ve Araştırma Merkezi’ndeki son nokta enerjisi 18 MeV olan Philips

Using the proposed analysis method, several cases of slotted sectoral waveg- uide antenna arrays with dielectric radomes are analyzed, and numerical results in the form of slot

Mürdümüğe ait bitki boyu, ana dal sayısı, alt bakla yüksekliği, bitkide bakla sayısı ve baklada tohum sayısı istatistiksel olarak önemli olmamasına rağmen, en

This study gathered empirical data to find out 194 teaching staffs‟ (a) personal and computer related characteristics, (b) their computer self-efficacy beliefs, (c)

To answer this question we need to examine closely the specific objects, practices, and attitudes that constitute the new urban henna- night ritual, this time with an emphasis on

This study was an experimental study on the immediate and delayed effects of two types of keyword vocabulary learning methods (teacher-provided and student-generated)

Copyright © 2006. John Benjamins Publishing Co. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S.

In this method, trans-cinnamic acid, p-coumaric acid, vanillic acid, gallic acid, caffeic acid, ferulic acid, apigenin, naringenin, luteolin, epicatechin, quercetin, carnosic